mirror of
https://git.dev.opencascade.org/repos/occt.git
synced 2025-05-26 11:05:31 +03:00
330 lines
8.8 KiB
Plaintext
Executable File
330 lines
8.8 KiB
Plaintext
Executable File
// Copyright (c) 1995-1999 Matra Datavision
|
|
// Copyright (c) 1999-2012 OPEN CASCADE SAS
|
|
//
|
|
// The content of this file is subject to the Open CASCADE Technology Public
|
|
// License Version 6.5 (the "License"). You may not use the content of this file
|
|
// except in compliance with the License. Please obtain a copy of the License
|
|
// at http://www.opencascade.org and read it completely before using this file.
|
|
//
|
|
// The Initial Developer of the Original Code is Open CASCADE S.A.S., having its
|
|
// main offices at: 1, place des Freres Montgolfier, 78280 Guyancourt, France.
|
|
//
|
|
// The Original Code and all software distributed under the License is
|
|
// distributed on an "AS IS" basis, without warranty of any kind, and the
|
|
// Initial Developer hereby disclaims all such warranties, including without
|
|
// limitation, any warranties of merchantability, fitness for a particular
|
|
// purpose or non-infringement. Please see the License for the specific terms
|
|
// and conditions governing the rights and limitations under the License.
|
|
|
|
#include <AppParCurves_MultiBSpCurve.hxx>
|
|
#include <AppParCurves_MultiPoint.hxx>
|
|
#include <TColStd_Array1OfReal.hxx>
|
|
#include <TColStd_Array1OfInteger.hxx>
|
|
#include <TColStd_HArray1OfInteger.hxx>
|
|
#include <gp_Pnt.hxx>
|
|
#include <gp_Pnt2d.hxx>
|
|
#include <gp_Vec.hxx>
|
|
#include <gp_Vec2d.hxx>
|
|
#include <TColgp_Array1OfPnt.hxx>
|
|
#include <TColgp_Array1OfPnt2d.hxx>
|
|
#include <math_Vector.hxx>
|
|
#include <AppParCurves_ConstraintCouple.hxx>
|
|
#include <AppParCurves_HArray1OfConstraintCouple.hxx>
|
|
|
|
|
|
AppParCurves_BSpFunction::
|
|
AppParCurves_BSpFunction(const MultiLine& SSP,
|
|
const Standard_Integer FirstPoint,
|
|
const Standard_Integer LastPoint,
|
|
const Handle(AppParCurves_HArray1OfConstraintCouple)& TheConstraints,
|
|
const math_Vector& Parameters,
|
|
const TColStd_Array1OfReal& Knots,
|
|
const TColStd_Array1OfInteger& Mults,
|
|
const Standard_Integer NbPol) :
|
|
MyMultiLine(SSP),
|
|
MyMultiBSpCurve(NbPol),
|
|
myParameters(Parameters.Lower(), Parameters.Upper()),
|
|
ValGrad_F(FirstPoint, LastPoint),
|
|
MyF(FirstPoint, LastPoint,
|
|
1, ToolLine::NbP3d(SSP)+ToolLine::NbP2d(SSP), 0.0),
|
|
PTLX(FirstPoint, LastPoint,
|
|
1, ToolLine::NbP3d(SSP)+ToolLine::NbP2d(SSP), 0.0),
|
|
PTLY(FirstPoint, LastPoint,
|
|
1, ToolLine::NbP3d(SSP)+ToolLine::NbP2d(SSP), 0.0),
|
|
PTLZ(FirstPoint, LastPoint,
|
|
1, ToolLine::NbP3d(SSP)+ToolLine::NbP2d(SSP), 0.0),
|
|
A(FirstPoint, LastPoint, 1, NbPol),
|
|
DA(FirstPoint, LastPoint, 1, NbPol),
|
|
MyLeastSquare(SSP, Knots, Mults, FirstPoint, LastPoint,
|
|
FirstConstraint(TheConstraints, FirstPoint),
|
|
LastConstraint(TheConstraints, LastPoint), NbPol)
|
|
{
|
|
Standard_Integer i;
|
|
for (i = Parameters.Lower(); i <= Parameters.Upper(); i++)
|
|
myParameters(i) = Parameters(i);
|
|
FirstP = FirstPoint;
|
|
LastP = LastPoint;
|
|
myConstraints = TheConstraints;
|
|
NbP = LastP-FirstP+1;
|
|
Adeb = FirstP;
|
|
Afin = LastP;
|
|
nbpoles = NbPol;
|
|
MyMultiBSpCurve.SetKnots(Knots);
|
|
MyMultiBSpCurve.SetMultiplicities(Mults);
|
|
Contraintes = Standard_False;
|
|
Standard_Integer myindex;
|
|
Standard_Integer low = TheConstraints->Lower(), upp= TheConstraints->Upper();
|
|
AppParCurves_ConstraintCouple mycouple;
|
|
AppParCurves_Constraint Cons;
|
|
|
|
for (i = low; i <= upp; i++) {
|
|
mycouple = TheConstraints->Value(i);
|
|
Cons = mycouple.Constraint();
|
|
myindex = mycouple.Index();
|
|
if (myindex == FirstP) {
|
|
if (Cons >= 1) Adeb = Adeb+1;
|
|
}
|
|
else if (myindex == LastP) {
|
|
if (Cons >= 1) Afin = Afin-1;
|
|
}
|
|
else {
|
|
if (Cons >= 1) Contraintes = Standard_True;
|
|
}
|
|
}
|
|
|
|
Standard_Integer nb3d = ToolLine::NbP3d(SSP);
|
|
Standard_Integer nb2d = ToolLine::NbP2d(SSP);
|
|
Standard_Integer mynb3d= nb3d, mynb2d=nb2d;
|
|
if (nb3d == 0) mynb3d = 1;
|
|
if (nb2d == 0) mynb2d = 1;
|
|
|
|
NbCu = nb3d+nb2d;
|
|
tabdim = new TColStd_HArray1OfInteger(0, NbCu-1);
|
|
|
|
if (Contraintes) {
|
|
for (i = 1; i <= NbCu; i++) {
|
|
if (i <= nb3d) tabdim->SetValue(i-1, 3);
|
|
else tabdim->SetValue(i-1, 2);
|
|
}
|
|
|
|
TColgp_Array1OfPnt TabP(1, mynb3d);
|
|
TColgp_Array1OfPnt2d TabP2d(1, mynb2d);
|
|
|
|
for ( i = FirstP; i <= LastP; i++) {
|
|
if (nb3d != 0 && nb2d != 0) ToolLine::Value(SSP, i, TabP, TabP2d);
|
|
else if (nb3d != 0) ToolLine::Value(SSP, i, TabP);
|
|
else ToolLine::Value(SSP, i, TabP2d);
|
|
for (Standard_Integer j = 1; j <= NbCu; j++) {
|
|
if (tabdim->Value(j-1) == 3) {
|
|
TabP(j).Coord(PTLX(i, j), PTLY(i, j),PTLZ(i, j));
|
|
}
|
|
else {
|
|
TabP2d(j).Coord(PTLX(i, j), PTLY(i, j));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
AppParCurves_Constraint AppParCurves_BSpFunction::FirstConstraint
|
|
(const Handle(AppParCurves_HArray1OfConstraintCouple)& TheConstraints,
|
|
const Standard_Integer FirstPoint) const
|
|
{
|
|
Standard_Integer i, myindex;
|
|
Standard_Integer low = TheConstraints->Lower(), upp= TheConstraints->Upper();
|
|
AppParCurves_ConstraintCouple mycouple;
|
|
AppParCurves_Constraint Cons = AppParCurves_NoConstraint;
|
|
|
|
for (i = low; i <= upp; i++) {
|
|
mycouple = TheConstraints->Value(i);
|
|
Cons = mycouple.Constraint();
|
|
myindex = mycouple.Index();
|
|
if (myindex == FirstPoint) {
|
|
break;
|
|
}
|
|
}
|
|
return Cons;
|
|
}
|
|
|
|
|
|
AppParCurves_Constraint AppParCurves_BSpFunction::LastConstraint
|
|
(const Handle(AppParCurves_HArray1OfConstraintCouple)& TheConstraints,
|
|
const Standard_Integer LastPoint) const
|
|
{
|
|
Standard_Integer i, myindex;
|
|
Standard_Integer low = TheConstraints->Lower(), upp= TheConstraints->Upper();
|
|
AppParCurves_ConstraintCouple mycouple;
|
|
AppParCurves_Constraint Cons = AppParCurves_NoConstraint;
|
|
|
|
for (i = low; i <= upp; i++) {
|
|
mycouple = TheConstraints->Value(i);
|
|
Cons = mycouple.Constraint();
|
|
myindex = mycouple.Index();
|
|
if (myindex == LastPoint) {
|
|
break;
|
|
}
|
|
}
|
|
return Cons;
|
|
}
|
|
|
|
|
|
|
|
|
|
Standard_Boolean AppParCurves_BSpFunction::Value (const math_Vector& X,
|
|
Standard_Real& F) {
|
|
|
|
myParameters = X;
|
|
|
|
// Resolution moindres carres:
|
|
// ===========================
|
|
MyLeastSquare.Perform(myParameters, mylambda1, mylambda2);
|
|
if (!(MyLeastSquare.IsDone())) {
|
|
Done = Standard_False;
|
|
return Standard_False;
|
|
}
|
|
if (!Contraintes) {
|
|
MyLeastSquare.Error(FVal, ERR3d, ERR2d);
|
|
F = FVal;
|
|
}
|
|
|
|
// Resolution avec contraintes:
|
|
// ============================
|
|
else {
|
|
}
|
|
return Standard_True;
|
|
}
|
|
|
|
|
|
|
|
|
|
void AppParCurves_BSpFunction::Perform(const math_Vector& X) {
|
|
Standard_Integer j;
|
|
|
|
myParameters = X;
|
|
// Resolution moindres carres:
|
|
// ===========================
|
|
MyLeastSquare.Perform(myParameters, mylambda1, mylambda2);
|
|
|
|
if (!(MyLeastSquare.IsDone())) {
|
|
Done = Standard_False;
|
|
return;
|
|
}
|
|
|
|
for(j = myParameters.Lower(); j <= myParameters.Upper(); j++) {
|
|
ValGrad_F(j) = 0.0;
|
|
}
|
|
|
|
if (!Contraintes) {
|
|
MyLeastSquare.ErrorGradient(ValGrad_F, FVal, ERR3d, ERR2d);
|
|
}
|
|
else {
|
|
}
|
|
}
|
|
|
|
|
|
|
|
void AppParCurves_BSpFunction::SetFirstLambda(const Standard_Real l1)
|
|
{
|
|
mylambda1 = l1;
|
|
}
|
|
|
|
void AppParCurves_BSpFunction::SetLastLambda(const Standard_Real l2)
|
|
{
|
|
mylambda2 = l2;
|
|
}
|
|
|
|
|
|
|
|
Standard_Integer AppParCurves_BSpFunction::NbVariables() const{
|
|
return NbP;
|
|
}
|
|
|
|
|
|
Standard_Boolean AppParCurves_BSpFunction::Gradient (const math_Vector& X,
|
|
math_Vector& G) {
|
|
|
|
Perform(X);
|
|
G = ValGrad_F;
|
|
|
|
return Standard_True;
|
|
}
|
|
|
|
|
|
Standard_Boolean AppParCurves_BSpFunction::Values (const math_Vector& X,
|
|
Standard_Real& F,
|
|
math_Vector& G) {
|
|
|
|
|
|
Perform(X);
|
|
F = FVal;
|
|
G = ValGrad_F;
|
|
|
|
/*
|
|
math_Vector mygradient = G;
|
|
math_Vector myx = X;
|
|
Standard_Real myf = FVal;
|
|
Standard_Real F2 = FVal;
|
|
math_Vector G2 = ValGrad_F;
|
|
for (Standard_Integer i = 1; i <= X.Length(); i++) {
|
|
myx = X;
|
|
myx(i) = X(i) + 1.0e-10;
|
|
Value(myx, F2);
|
|
mygradient(i) = (F2 - myf)/(1.0e-10);
|
|
}
|
|
|
|
cout << " Gradient calcule : " << G2 << endl;
|
|
cout << " Gradient interpole : " << mygradient << endl;
|
|
*/
|
|
return Standard_True;
|
|
}
|
|
|
|
|
|
AppParCurves_MultiBSpCurve AppParCurves_BSpFunction::CurveValue() {
|
|
if (!Contraintes) MyMultiBSpCurve = MyLeastSquare.BSplineValue();
|
|
return MyMultiBSpCurve;
|
|
}
|
|
|
|
|
|
Standard_Real AppParCurves_BSpFunction::Error(const Standard_Integer IPoint,
|
|
const Standard_Integer CurveIndex) {
|
|
const math_Matrix& DD = MyLeastSquare.Distance();
|
|
Standard_Real d = DD.Value(IPoint, CurveIndex);
|
|
if (!Contraintes) return d;
|
|
else return Sqrt(MyF(IPoint, CurveIndex));
|
|
}
|
|
|
|
Standard_Real AppParCurves_BSpFunction::MaxError3d() const
|
|
{
|
|
return ERR3d;
|
|
}
|
|
|
|
Standard_Real AppParCurves_BSpFunction::MaxError2d() const
|
|
{
|
|
return ERR2d;
|
|
}
|
|
|
|
|
|
|
|
const math_Vector& AppParCurves_BSpFunction::NewParameters() const
|
|
{
|
|
return myParameters;
|
|
}
|
|
|
|
|
|
const math_Matrix& AppParCurves_BSpFunction::FunctionMatrix() const
|
|
{
|
|
return MyLeastSquare.FunctionMatrix();
|
|
}
|
|
|
|
const math_Matrix& AppParCurves_BSpFunction::DerivativeFunctionMatrix() const
|
|
{
|
|
return MyLeastSquare.DerivativeFunctionMatrix();
|
|
}
|
|
|
|
|
|
const math_IntegerVector& AppParCurves_BSpFunction::Index() const
|
|
{
|
|
return MyLeastSquare.KIndex();
|
|
}
|