mirror of
https://git.dev.opencascade.org/repos/occt.git
synced 2025-04-05 18:16:23 +03:00
Curve splitting is added to handle seam passing by initial curve. test cases are added. Minor corrections.
1931 lines
62 KiB
C++
1931 lines
62 KiB
C++
// Created on: 1997-09-23
|
|
// Created by: Roman BORISOV
|
|
// Copyright (c) 1997-1999 Matra Datavision
|
|
// Copyright (c) 1999-2014 OPEN CASCADE SAS
|
|
//
|
|
// This file is part of Open CASCADE Technology software library.
|
|
//
|
|
// This library is free software; you can redistribute it and/or modify it under
|
|
// the terms of the GNU Lesser General Public License version 2.1 as published
|
|
// by the Free Software Foundation, with special exception defined in the file
|
|
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
|
|
// distribution for complete text of the license and disclaimer of any warranty.
|
|
//
|
|
// Alternatively, this file may be used under the terms of Open CASCADE
|
|
// commercial license or contractual agreement.
|
|
|
|
|
|
#include <algorithm>
|
|
|
|
#include <Adaptor2d_HCurve2d.hxx>
|
|
#include <Adaptor3d_HCurve.hxx>
|
|
#include <Adaptor3d_HSurface.hxx>
|
|
#include <Extrema_ExtCS.hxx>
|
|
#include <Extrema_ExtPS.hxx>
|
|
#include <Extrema_GenLocateExtPS.hxx>
|
|
#include <Extrema_POnCurv.hxx>
|
|
#include <Extrema_POnSurf.hxx>
|
|
#include <GeomAbs_CurveType.hxx>
|
|
#include <GeomLib.hxx>
|
|
#include <gp_Mat2d.hxx>
|
|
#include <gp_Pnt2d.hxx>
|
|
#include <gp_Vec2d.hxx>
|
|
#include <gp_XY.hxx>
|
|
#include <Precision.hxx>
|
|
#include <ProjLib_CompProjectedCurve.hxx>
|
|
#include <ProjLib_HCompProjectedCurve.hxx>
|
|
#include <ProjLib_PrjResolve.hxx>
|
|
#include <Standard_DomainError.hxx>
|
|
#include <Standard_NoSuchObject.hxx>
|
|
#include <Standard_NotImplemented.hxx>
|
|
#include <Standard_OutOfRange.hxx>
|
|
#include <TColgp_HSequenceOfPnt.hxx>
|
|
#include <Adaptor3d_CurveOnSurface.hxx>
|
|
#include <Geom2d_Line.hxx>
|
|
#include <Geom2dAdaptor_HCurve.hxx>
|
|
#include <Extrema_ExtCC.hxx>
|
|
#include <NCollection_Vector.hxx>
|
|
|
|
#define FuncTol 1.e-10
|
|
|
|
#ifdef OCCT_DEBUG_CHRONO
|
|
#include <OSD_Timer.hxx>
|
|
|
|
static OSD_Chronometer chr_init_point, chr_dicho_bound;
|
|
|
|
Standard_EXPORT Standard_Real t_init_point, t_dicho_bound;
|
|
Standard_EXPORT Standard_Integer init_point_count, dicho_bound_count;
|
|
|
|
static void InitChron(OSD_Chronometer& ch)
|
|
{
|
|
ch.Reset();
|
|
ch.Start();
|
|
}
|
|
|
|
static void ResultChron( OSD_Chronometer & ch, Standard_Real & time)
|
|
{
|
|
Standard_Real tch ;
|
|
ch.Stop();
|
|
ch.Show(tch);
|
|
time=time +tch;
|
|
}
|
|
#endif
|
|
|
|
// Structure to perform splits computation.
|
|
// This structure is not thread-safe since operations under mySplits should be performed in a critical section.
|
|
// myPeriodicDir - 0 for U periodicity and 1 for V periodicity.
|
|
struct SplitDS
|
|
{
|
|
SplitDS(const Handle(Adaptor3d_HCurve) &theCurve,
|
|
const Handle(Adaptor3d_HSurface) &theSurface,
|
|
NCollection_Vector<Standard_Real> &theSplits)
|
|
: myCurve(theCurve),
|
|
mySurface(theSurface),
|
|
mySplits(theSplits)
|
|
{ }
|
|
|
|
// Assignment operator is forbidden.
|
|
void operator=(const SplitDS &theSplitDS);
|
|
|
|
const Handle(Adaptor3d_HCurve) myCurve;
|
|
const Handle(Adaptor3d_HSurface) mySurface;
|
|
NCollection_Vector<Standard_Real> &mySplits;
|
|
|
|
Standard_Real myPerMinParam;
|
|
Standard_Real myPerMaxParam;
|
|
Standard_Integer myPeriodicDir;
|
|
|
|
Extrema_ExtCC *myExtCC;
|
|
Extrema_ExtPS *myExtPS;
|
|
};
|
|
|
|
//! Compute split points in the parameter space of the curve.
|
|
static void BuildCurveSplits(const Handle(Adaptor3d_HCurve) &theCurve,
|
|
const Handle(Adaptor3d_HSurface) &theSurface,
|
|
const Standard_Real theTolU,
|
|
const Standard_Real theTolV,
|
|
NCollection_Vector<Standard_Real> &theSplits);
|
|
|
|
//! Perform splitting on a specified direction. Sub-method in BuildCurveSplits.
|
|
static void SplitOnDirection(SplitDS & theSplitDS);
|
|
|
|
//! Perform recursive search of the split points.
|
|
static void FindSplitPoint(SplitDS & theSplitDS,
|
|
const Standard_Real theMinParam,
|
|
const Standard_Real theMaxParam);
|
|
|
|
|
|
//=======================================================================
|
|
//function : Comparator
|
|
//purpose : used in sort algorithm
|
|
//=======================================================================
|
|
inline Standard_Boolean Comparator(const Standard_Real theA,
|
|
const Standard_Real theB)
|
|
{
|
|
return theA < theB;
|
|
}
|
|
|
|
//=======================================================================
|
|
//function : d1
|
|
//purpose : computes first derivative of the projected curve
|
|
//=======================================================================
|
|
|
|
static void d1(const Standard_Real t,
|
|
const Standard_Real u,
|
|
const Standard_Real v,
|
|
gp_Vec2d& V,
|
|
const Handle(Adaptor3d_HCurve)& Curve,
|
|
const Handle(Adaptor3d_HSurface)& Surface)
|
|
{
|
|
gp_Pnt S, C;
|
|
gp_Vec DS1_u, DS1_v, DS2_u, DS2_uv, DS2_v, DC1_t;
|
|
Surface->D2(u, v, S, DS1_u, DS1_v, DS2_u, DS2_v, DS2_uv);
|
|
Curve->D1(t, C, DC1_t);
|
|
gp_Vec Ort(C, S);// Ort = S - C
|
|
|
|
gp_Vec2d dE_dt(-DC1_t*DS1_u, -DC1_t*DS1_v);
|
|
gp_XY dE_du(DS1_u*DS1_u + Ort*DS2_u,
|
|
DS1_u*DS1_v + Ort*DS2_uv);
|
|
gp_XY dE_dv(DS1_v*DS1_u + Ort*DS2_uv,
|
|
DS1_v*DS1_v + Ort*DS2_v);
|
|
|
|
Standard_Real det = dE_du.X()*dE_dv.Y() - dE_du.Y()*dE_dv.X();
|
|
if (fabs(det) < gp::Resolution()) Standard_ConstructionError::Raise();
|
|
|
|
gp_Mat2d M(gp_XY(dE_dv.Y()/det, -dE_du.Y()/det),
|
|
gp_XY(-dE_dv.X()/det, dE_du.X()/det));
|
|
|
|
V = - gp_Vec2d(gp_Vec2d(M.Row(1))*dE_dt, gp_Vec2d(M.Row(2))*dE_dt);
|
|
}
|
|
|
|
//=======================================================================
|
|
//function : d2
|
|
//purpose : computes second derivative of the projected curve
|
|
//=======================================================================
|
|
|
|
static void d2(const Standard_Real t,
|
|
const Standard_Real u,
|
|
const Standard_Real v,
|
|
gp_Vec2d& V1, gp_Vec2d& V2,
|
|
const Handle(Adaptor3d_HCurve)& Curve,
|
|
const Handle(Adaptor3d_HSurface)& Surface)
|
|
{
|
|
gp_Pnt S, C;
|
|
gp_Vec DS1_u, DS1_v, DS2_u, DS2_uv, DS2_v,
|
|
DS3_u, DS3_v, DS3_uuv, DS3_uvv,
|
|
DC1_t, DC2_t;
|
|
Surface->D3(u, v, S, DS1_u, DS1_v, DS2_u, DS2_v, DS2_uv,
|
|
DS3_u, DS3_v, DS3_uuv, DS3_uvv);
|
|
Curve->D2(t, C, DC1_t, DC2_t);
|
|
gp_Vec Ort(C, S);
|
|
|
|
gp_Vec2d dE_dt(-DC1_t*DS1_u, -DC1_t*DS1_v);
|
|
gp_XY dE_du(DS1_u*DS1_u + Ort*DS2_u,
|
|
DS1_u*DS1_v + Ort*DS2_uv);
|
|
gp_XY dE_dv(DS1_v*DS1_u + Ort*DS2_uv,
|
|
DS1_v*DS1_v + Ort*DS2_v);
|
|
|
|
Standard_Real det = dE_du.X()*dE_dv.Y() - dE_du.Y()*dE_dv.X();
|
|
if (fabs(det) < gp::Resolution()) Standard_ConstructionError::Raise();
|
|
|
|
gp_Mat2d M(gp_XY(dE_dv.Y()/det, -dE_du.Y()/det),
|
|
gp_XY(-dE_dv.X()/det, dE_du.X()/det));
|
|
|
|
// First derivative
|
|
V1 = - gp_Vec2d(gp_Vec2d(M.Row(1))*dE_dt, gp_Vec2d(M.Row(2))*dE_dt);
|
|
|
|
/* Second derivative */
|
|
|
|
// Computation of d2E_dt2 = S1
|
|
gp_Vec2d d2E_dt(-DC2_t*DS1_u, -DC2_t*DS1_v);
|
|
|
|
// Computation of 2*(d2E/dtdX)(dX/dt) = S2
|
|
gp_Vec2d d2E1_dtdX(-DC1_t*DS2_u,
|
|
-DC1_t*DS2_uv);
|
|
gp_Vec2d d2E2_dtdX(-DC1_t*DS2_uv,
|
|
-DC1_t*DS2_v);
|
|
gp_Vec2d S2 = 2*gp_Vec2d(d2E1_dtdX*V1, d2E2_dtdX*V1);
|
|
|
|
// Computation of (d2E/dX2)*(dX/dt)2 = S3
|
|
|
|
// Row11 = (d2E1/du2, d2E1/dudv)
|
|
Standard_Real tmp;
|
|
gp_Vec2d Row11(3*DS1_u*DS2_u + Ort*DS3_u,
|
|
tmp = 2*DS1_u*DS2_uv +
|
|
DS1_v*DS2_u + Ort*DS3_uuv);
|
|
|
|
// Row12 = (d2E1/dudv, d2E1/dv2)
|
|
gp_Vec2d Row12(tmp, DS2_v*DS1_u + 2*DS1_v*DS2_uv +
|
|
Ort*DS3_uvv);
|
|
|
|
// Row21 = (d2E2/du2, d2E2/dudv)
|
|
gp_Vec2d Row21(DS2_u*DS1_v + 2*DS1_u*DS2_uv + Ort*DS3_uuv,
|
|
tmp = 2*DS2_uv*DS1_v + DS1_u*DS2_v + Ort*DS3_uvv);
|
|
|
|
// Row22 = (d2E2/duv, d2E2/dvdv)
|
|
gp_Vec2d Row22(tmp, 3*DS1_v*DS2_v + Ort*DS3_v);
|
|
|
|
gp_Vec2d S3(V1*gp_Vec2d(Row11*V1, Row12*V1),
|
|
V1*gp_Vec2d(Row21*V1, Row22*V1));
|
|
|
|
gp_Vec2d Sum = d2E_dt + S2 + S3;
|
|
|
|
V2 = - gp_Vec2d(gp_Vec2d(M.Row(1))*Sum, gp_Vec2d(M.Row(2))*Sum);
|
|
}
|
|
//=======================================================================
|
|
//function : d1CurveOnSurf
|
|
//purpose : computes first derivative of the 3d projected curve
|
|
//=======================================================================
|
|
|
|
#if 0
|
|
static void d1CurvOnSurf(const Standard_Real t,
|
|
const Standard_Real u,
|
|
const Standard_Real v,
|
|
gp_Vec& V,
|
|
const Handle(Adaptor3d_HCurve)& Curve,
|
|
const Handle(Adaptor3d_HSurface)& Surface)
|
|
{
|
|
gp_Pnt S, C;
|
|
gp_Vec2d V2d;
|
|
gp_Vec DS1_u, DS1_v, DS2_u, DS2_uv, DS2_v, DC1_t;
|
|
Surface->D2(u, v, S, DS1_u, DS1_v, DS2_u, DS2_v, DS2_uv);
|
|
Curve->D1(t, C, DC1_t);
|
|
gp_Vec Ort(C, S);// Ort = S - C
|
|
|
|
gp_Vec2d dE_dt(-DC1_t*DS1_u, -DC1_t*DS1_v);
|
|
gp_XY dE_du(DS1_u*DS1_u + Ort*DS2_u,
|
|
DS1_u*DS1_v + Ort*DS2_uv);
|
|
gp_XY dE_dv(DS1_v*DS1_u + Ort*DS2_uv,
|
|
DS1_v*DS1_v + Ort*DS2_v);
|
|
|
|
Standard_Real det = dE_du.X()*dE_dv.Y() - dE_du.Y()*dE_dv.X();
|
|
if (fabs(det) < gp::Resolution()) Standard_ConstructionError::Raise();
|
|
|
|
gp_Mat2d M(gp_XY(dE_dv.Y()/det, -dE_du.Y()/det),
|
|
gp_XY(-dE_dv.X()/det, dE_du.X()/det));
|
|
|
|
V2d = - gp_Vec2d(gp_Vec2d(M.Row(1))*dE_dt, gp_Vec2d(M.Row(2))*dE_dt);
|
|
|
|
V = DS1_u * V2d.X() + DS1_v * V2d.Y();
|
|
|
|
}
|
|
#endif
|
|
|
|
//=======================================================================
|
|
//function : d2CurveOnSurf
|
|
//purpose : computes second derivative of the 3D projected curve
|
|
//=======================================================================
|
|
|
|
static void d2CurvOnSurf(const Standard_Real t,
|
|
const Standard_Real u,
|
|
const Standard_Real v,
|
|
gp_Vec& V1 , gp_Vec& V2 ,
|
|
const Handle(Adaptor3d_HCurve)& Curve,
|
|
const Handle(Adaptor3d_HSurface)& Surface)
|
|
{
|
|
gp_Pnt S, C;
|
|
gp_Vec2d V12d,V22d;
|
|
gp_Vec DS1_u, DS1_v, DS2_u, DS2_uv, DS2_v,
|
|
DS3_u, DS3_v, DS3_uuv, DS3_uvv,
|
|
DC1_t, DC2_t;
|
|
Surface->D3(u, v, S, DS1_u, DS1_v, DS2_u, DS2_v, DS2_uv,
|
|
DS3_u, DS3_v, DS3_uuv, DS3_uvv);
|
|
Curve->D2(t, C, DC1_t, DC2_t);
|
|
gp_Vec Ort(C, S);
|
|
|
|
gp_Vec2d dE_dt(-DC1_t*DS1_u, -DC1_t*DS1_v);
|
|
gp_XY dE_du(DS1_u*DS1_u + Ort*DS2_u,
|
|
DS1_u*DS1_v + Ort*DS2_uv);
|
|
gp_XY dE_dv(DS1_v*DS1_u + Ort*DS2_uv,
|
|
DS1_v*DS1_v + Ort*DS2_v);
|
|
|
|
Standard_Real det = dE_du.X()*dE_dv.Y() - dE_du.Y()*dE_dv.X();
|
|
if (fabs(det) < gp::Resolution()) Standard_ConstructionError::Raise();
|
|
|
|
gp_Mat2d M(gp_XY(dE_dv.Y()/det, -dE_du.Y()/det),
|
|
gp_XY(-dE_dv.X()/det, dE_du.X()/det));
|
|
|
|
// First derivative
|
|
V12d = - gp_Vec2d(gp_Vec2d(M.Row(1))*dE_dt, gp_Vec2d(M.Row(2))*dE_dt);
|
|
|
|
/* Second derivative */
|
|
|
|
// Computation of d2E_dt2 = S1
|
|
gp_Vec2d d2E_dt(-DC2_t*DS1_u, -DC2_t*DS1_v);
|
|
|
|
// Computation of 2*(d2E/dtdX)(dX/dt) = S2
|
|
gp_Vec2d d2E1_dtdX(-DC1_t*DS2_u,
|
|
-DC1_t*DS2_uv);
|
|
gp_Vec2d d2E2_dtdX(-DC1_t*DS2_uv,
|
|
-DC1_t*DS2_v);
|
|
gp_Vec2d S2 = 2*gp_Vec2d(d2E1_dtdX*V12d, d2E2_dtdX*V12d);
|
|
|
|
// Computation of (d2E/dX2)*(dX/dt)2 = S3
|
|
|
|
// Row11 = (d2E1/du2, d2E1/dudv)
|
|
Standard_Real tmp;
|
|
gp_Vec2d Row11(3*DS1_u*DS2_u + Ort*DS3_u,
|
|
tmp = 2*DS1_u*DS2_uv +
|
|
DS1_v*DS2_u + Ort*DS3_uuv);
|
|
|
|
// Row12 = (d2E1/dudv, d2E1/dv2)
|
|
gp_Vec2d Row12(tmp, DS2_v*DS1_u + 2*DS1_v*DS2_uv +
|
|
Ort*DS3_uvv);
|
|
|
|
// Row21 = (d2E2/du2, d2E2/dudv)
|
|
gp_Vec2d Row21(DS2_u*DS1_v + 2*DS1_u*DS2_uv + Ort*DS3_uuv,
|
|
tmp = 2*DS2_uv*DS1_v + DS1_u*DS2_v + Ort*DS3_uvv);
|
|
|
|
// Row22 = (d2E2/duv, d2E2/dvdv)
|
|
gp_Vec2d Row22(tmp, 3*DS1_v*DS2_v + Ort*DS3_v);
|
|
|
|
gp_Vec2d S3(V12d*gp_Vec2d(Row11*V12d, Row12*V12d),
|
|
V12d*gp_Vec2d(Row21*V12d, Row22*V12d));
|
|
|
|
gp_Vec2d Sum = d2E_dt + S2 + S3;
|
|
|
|
V22d = - gp_Vec2d(gp_Vec2d(M.Row(1))*Sum, gp_Vec2d(M.Row(2))*Sum);
|
|
|
|
V1 = DS1_u * V12d.X() + DS1_v * V12d.Y();
|
|
V2 = DS2_u * V12d.X() *V12d.X()
|
|
+ DS1_u * V22d.X()
|
|
+ 2 * DS2_uv * V12d.X() *V12d.Y()
|
|
+ DS2_v * V12d.Y() * V12d.Y()
|
|
+ DS1_v * V22d.Y();
|
|
}
|
|
|
|
//=======================================================================
|
|
//function : ExactBound
|
|
//purpose : computes exact boundary point
|
|
//=======================================================================
|
|
|
|
static Standard_Boolean ExactBound(gp_Pnt& Sol,
|
|
const Standard_Real NotSol,
|
|
const Standard_Real Tol,
|
|
const Standard_Real TolU,
|
|
const Standard_Real TolV,
|
|
const Handle(Adaptor3d_HCurve)& Curve,
|
|
const Handle(Adaptor3d_HSurface)& Surface)
|
|
{
|
|
Standard_Real U0, V0, t, t1, t2, FirstU, LastU, FirstV, LastV;
|
|
gp_Pnt2d POnS;
|
|
U0 = Sol.Y();
|
|
V0 = Sol.Z();
|
|
FirstU = Surface->FirstUParameter();
|
|
LastU = Surface->LastUParameter();
|
|
FirstV = Surface->FirstVParameter();
|
|
LastV = Surface->LastVParameter();
|
|
// Here we have to compute the boundary that projection is going to intersect
|
|
gp_Vec2d D2d;
|
|
//these variables are to estimate which boundary has more apportunity
|
|
//to be intersected
|
|
Standard_Real RU1, RU2, RV1, RV2;
|
|
d1(Sol.X(), U0, V0, D2d, Curve, Surface);
|
|
// Here we assume that D2d != (0, 0)
|
|
if(Abs(D2d.X()) < gp::Resolution())
|
|
{
|
|
RU1 = Precision::Infinite();
|
|
RU2 = Precision::Infinite();
|
|
RV1 = V0 - FirstV;
|
|
RV2 = LastV - V0;
|
|
}
|
|
else if(Abs(D2d.Y()) < gp::Resolution())
|
|
{
|
|
RU1 = U0 - FirstU;
|
|
RU2 = LastU - U0;
|
|
RV1 = Precision::Infinite();
|
|
RV2 = Precision::Infinite();
|
|
}
|
|
else
|
|
{
|
|
RU1 = gp_Pnt2d(U0, V0).
|
|
Distance(gp_Pnt2d(FirstU, V0 + (FirstU - U0)*D2d.Y()/D2d.X()));
|
|
RU2 = gp_Pnt2d(U0, V0).
|
|
Distance(gp_Pnt2d(LastU, V0 + (LastU - U0)*D2d.Y()/D2d.X()));
|
|
RV1 = gp_Pnt2d(U0, V0).
|
|
Distance(gp_Pnt2d(U0 + (FirstV - V0)*D2d.X()/D2d.Y(), FirstV));
|
|
RV2 = gp_Pnt2d(U0, V0).
|
|
Distance(gp_Pnt2d(U0 + (LastV - V0)*D2d.X()/D2d.Y(), LastV));
|
|
}
|
|
TColgp_SequenceOfPnt Seq;
|
|
Seq.Append(gp_Pnt(FirstU, RU1, 2));
|
|
Seq.Append(gp_Pnt(LastU, RU2, 2));
|
|
Seq.Append(gp_Pnt(FirstV, RV1, 3));
|
|
Seq.Append(gp_Pnt(LastV, RV2, 3));
|
|
Standard_Integer i, j;
|
|
for(i = 1; i <= 3; i++)
|
|
for(j = 1; j <= 4-i; j++)
|
|
if(Seq(j).Y() < Seq(j+1).Y())
|
|
{
|
|
gp_Pnt swp;
|
|
swp = Seq.Value(j+1);
|
|
Seq.ChangeValue(j+1) = Seq.Value(j);
|
|
Seq.ChangeValue(j) = swp;
|
|
}
|
|
|
|
t = Sol.X();
|
|
t1 = Min(Sol.X(), NotSol);
|
|
t2 = Max(Sol.X(), NotSol);
|
|
|
|
Standard_Boolean isDone = Standard_False;
|
|
while (!Seq.IsEmpty())
|
|
{
|
|
gp_Pnt P;
|
|
P = Seq.Last();
|
|
Seq.Remove(Seq.Length());
|
|
ProjLib_PrjResolve aPrjPS(Curve->Curve(),
|
|
Surface->Surface(),
|
|
Standard_Integer(P.Z()));
|
|
if(Standard_Integer(P.Z()) == 2)
|
|
{
|
|
aPrjPS.Perform(t, P.X(), V0, gp_Pnt2d(Tol, TolV),
|
|
gp_Pnt2d(t1, Surface->FirstVParameter()),
|
|
gp_Pnt2d(t2, Surface->LastVParameter()), FuncTol);
|
|
if(!aPrjPS.IsDone()) continue;
|
|
POnS = aPrjPS.Solution();
|
|
Sol = gp_Pnt(POnS.X(), P.X(), POnS.Y());
|
|
isDone = Standard_True;
|
|
break;
|
|
}
|
|
else
|
|
{
|
|
aPrjPS.Perform(t, U0, P.X(), gp_Pnt2d(Tol, TolU),
|
|
gp_Pnt2d(t1, Surface->FirstUParameter()),
|
|
gp_Pnt2d(t2, Surface->LastUParameter()), FuncTol);
|
|
if(!aPrjPS.IsDone()) continue;
|
|
POnS = aPrjPS.Solution();
|
|
Sol = gp_Pnt(POnS.X(), POnS.Y(), P.X());
|
|
isDone = Standard_True;
|
|
break;
|
|
}
|
|
}
|
|
|
|
return isDone;
|
|
}
|
|
|
|
//=======================================================================
|
|
//function : DichExactBound
|
|
//purpose : computes exact boundary point
|
|
//=======================================================================
|
|
|
|
static void DichExactBound(gp_Pnt& Sol,
|
|
const Standard_Real NotSol,
|
|
const Standard_Real Tol,
|
|
const Standard_Real TolU,
|
|
const Standard_Real TolV,
|
|
const Handle(Adaptor3d_HCurve)& Curve,
|
|
const Handle(Adaptor3d_HSurface)& Surface)
|
|
{
|
|
#ifdef OCCT_DEBUG_CHRONO
|
|
InitChron(chr_dicho_bound);
|
|
#endif
|
|
|
|
Standard_Real U0, V0, t;
|
|
gp_Pnt2d POnS;
|
|
U0 = Sol.Y();
|
|
V0 = Sol.Z();
|
|
ProjLib_PrjResolve aPrjPS(Curve->Curve(), Surface->Surface(), 1);
|
|
|
|
Standard_Real aNotSol = NotSol;
|
|
while (fabs(Sol.X() - aNotSol) > Tol)
|
|
{
|
|
t = (Sol.X() + aNotSol)/2;
|
|
aPrjPS.Perform(t, U0, V0, gp_Pnt2d(TolU, TolV),
|
|
gp_Pnt2d(Surface->FirstUParameter(),Surface->FirstVParameter()),
|
|
gp_Pnt2d(Surface->LastUParameter(),Surface->LastVParameter()),
|
|
FuncTol, Standard_True);
|
|
|
|
if (aPrjPS.IsDone())
|
|
{
|
|
POnS = aPrjPS.Solution();
|
|
Sol = gp_Pnt(t, POnS.X(), POnS.Y());
|
|
U0=Sol.Y();
|
|
V0=Sol.Z();
|
|
}
|
|
else aNotSol = t;
|
|
}
|
|
#ifdef OCCT_DEBUG_CHRONO
|
|
ResultChron(chr_dicho_bound,t_dicho_bound);
|
|
dicho_bound_count++;
|
|
#endif
|
|
}
|
|
|
|
//=======================================================================
|
|
//function : InitialPoint
|
|
//purpose :
|
|
//=======================================================================
|
|
|
|
static Standard_Boolean InitialPoint(const gp_Pnt& Point,
|
|
const Standard_Real t,
|
|
const Handle(Adaptor3d_HCurve)& C,
|
|
const Handle(Adaptor3d_HSurface)& S,
|
|
const Standard_Real TolU,
|
|
const Standard_Real TolV,
|
|
Standard_Real& U,
|
|
Standard_Real& V)
|
|
{
|
|
|
|
ProjLib_PrjResolve aPrjPS(C->Curve(), S->Surface(), 1);
|
|
Standard_Real ParU,ParV;
|
|
Extrema_ExtPS aExtPS;
|
|
aExtPS.Initialize(S->Surface(), S->FirstUParameter(),
|
|
S->LastUParameter(), S->FirstVParameter(),
|
|
S->LastVParameter(), TolU, TolV);
|
|
|
|
aExtPS.Perform(Point);
|
|
Standard_Integer argmin = 0;
|
|
if (aExtPS.IsDone() && aExtPS.NbExt())
|
|
{
|
|
Standard_Integer i, Nend;
|
|
// Search for the nearest solution which is also a normal projection
|
|
Nend = aExtPS.NbExt();
|
|
for(i = 1; i <= Nend; i++)
|
|
{
|
|
Extrema_POnSurf POnS = aExtPS.Point(i);
|
|
POnS.Parameter(ParU, ParV);
|
|
aPrjPS.Perform(t, ParU, ParV, gp_Pnt2d(TolU, TolV),
|
|
gp_Pnt2d(S->FirstUParameter(), S->FirstVParameter()),
|
|
gp_Pnt2d(S->LastUParameter(), S->LastVParameter()),
|
|
FuncTol, Standard_True);
|
|
if(aPrjPS.IsDone() )
|
|
if (argmin == 0 || aExtPS.SquareDistance(i) < aExtPS.SquareDistance(argmin)) argmin = i;
|
|
}
|
|
}
|
|
if( argmin == 0 ) return Standard_False;
|
|
else
|
|
{
|
|
Extrema_POnSurf POnS = aExtPS.Point(argmin);
|
|
POnS.Parameter(U, V);
|
|
return Standard_True;
|
|
}
|
|
}
|
|
|
|
//=======================================================================
|
|
//function : ProjLib_CompProjectedCurve
|
|
//purpose :
|
|
//=======================================================================
|
|
|
|
ProjLib_CompProjectedCurve::ProjLib_CompProjectedCurve()
|
|
: myNbCurves(0),
|
|
myTolU (0.0),
|
|
myTolV (0.0),
|
|
myMaxDist (0.0)
|
|
{
|
|
}
|
|
|
|
//=======================================================================
|
|
//function : ProjLib_CompProjectedCurve
|
|
//purpose :
|
|
//=======================================================================
|
|
|
|
ProjLib_CompProjectedCurve::ProjLib_CompProjectedCurve
|
|
(const Handle(Adaptor3d_HSurface)& theSurface,
|
|
const Handle(Adaptor3d_HCurve)& theCurve,
|
|
const Standard_Real theTolU,
|
|
const Standard_Real theTolV)
|
|
: mySurface (theSurface),
|
|
myCurve (theCurve),
|
|
myNbCurves(0),
|
|
mySequence(new ProjLib_HSequenceOfHSequenceOfPnt()),
|
|
myTolU (theTolU),
|
|
myTolV (theTolV),
|
|
myMaxDist (-1.0)
|
|
{
|
|
Init();
|
|
}
|
|
|
|
//=======================================================================
|
|
//function : ProjLib_CompProjectedCurve
|
|
//purpose :
|
|
//=======================================================================
|
|
|
|
ProjLib_CompProjectedCurve::ProjLib_CompProjectedCurve
|
|
(const Handle(Adaptor3d_HSurface)& theSurface,
|
|
const Handle(Adaptor3d_HCurve)& theCurve,
|
|
const Standard_Real theTolU,
|
|
const Standard_Real theTolV,
|
|
const Standard_Real theMaxDist)
|
|
: mySurface (theSurface),
|
|
myCurve (theCurve),
|
|
myNbCurves(0),
|
|
mySequence(new ProjLib_HSequenceOfHSequenceOfPnt()),
|
|
myTolU (theTolU),
|
|
myTolV (theTolV),
|
|
myMaxDist (theMaxDist)
|
|
{
|
|
Init();
|
|
}
|
|
|
|
//=======================================================================
|
|
//function : Init
|
|
//purpose :
|
|
//=======================================================================
|
|
|
|
void ProjLib_CompProjectedCurve::Init()
|
|
{
|
|
myTabInt.Nullify();
|
|
NCollection_Vector<Standard_Real> aSplits;
|
|
aSplits.Clear();
|
|
|
|
Standard_Real Tol;// Tolerance for ExactBound
|
|
Standard_Integer i, Nend = 0, aSplitIdx = 0;
|
|
Standard_Boolean FromLastU = Standard_False,
|
|
isSplitsComputed = Standard_False;
|
|
|
|
const Standard_Real aTol3D = Precision::Confusion();
|
|
Extrema_ExtCS CExt(myCurve->Curve(), mySurface->Surface(), aTol3D, aTol3D);
|
|
if (CExt.IsDone() && CExt.NbExt())
|
|
{
|
|
// Search for the minimum solution.
|
|
// Avoid usage of extrema result that can be wrong for extrusion.
|
|
if(myMaxDist > 0 &&
|
|
|
|
mySurface->GetType() != GeomAbs_SurfaceOfExtrusion)
|
|
{
|
|
Standard_Real min_val2;
|
|
min_val2 = CExt.SquareDistance(1);
|
|
|
|
Nend = CExt.NbExt();
|
|
for(i = 2; i <= Nend; i++)
|
|
{
|
|
if (CExt.SquareDistance(i) < min_val2)
|
|
min_val2 = CExt.SquareDistance(i);
|
|
}
|
|
if (min_val2 > myMaxDist * myMaxDist)
|
|
return; // No near solution -> exit.
|
|
}
|
|
}
|
|
|
|
Standard_Real FirstU, LastU, Step, SearchStep, WalkStep, t;
|
|
|
|
FirstU = myCurve->FirstParameter();
|
|
LastU = myCurve->LastParameter();
|
|
const Standard_Real GlobalMinStep = 1.e-4;
|
|
//<GlobalMinStep> is sufficiently small to provide solving from initial point
|
|
//and, on the other hand, it is sufficiently large to avoid too close solutions.
|
|
const Standard_Real MinStep = 0.01*(LastU - FirstU),
|
|
MaxStep = 0.1*(LastU - FirstU);
|
|
SearchStep = 10*MinStep;
|
|
Step = SearchStep;
|
|
|
|
gp_Pnt2d aLowBorder(mySurface->FirstUParameter(),mySurface->FirstVParameter());
|
|
gp_Pnt2d aUppBorder(mySurface->LastUParameter(), mySurface->LastVParameter());
|
|
gp_Pnt2d aTol(myTolU, myTolV);
|
|
ProjLib_PrjResolve aPrjPS(myCurve->Curve(), mySurface->Surface(), 1);
|
|
|
|
t = FirstU;
|
|
Standard_Boolean new_part;
|
|
Standard_Real prevDeb=0.;
|
|
Standard_Boolean SameDeb=Standard_False;
|
|
|
|
|
|
gp_Pnt Triple, prevTriple;
|
|
|
|
//Basic loop
|
|
while(t <= LastU)
|
|
{
|
|
// Search for the beginning of a new continuous part
|
|
// to avoid infinite computation in some difficult cases.
|
|
new_part = Standard_False;
|
|
if(t > FirstU && Abs(t-prevDeb) <= Precision::PConfusion()) SameDeb=Standard_True;
|
|
while(t <= LastU && !new_part && !FromLastU && !SameDeb)
|
|
{
|
|
prevDeb=t;
|
|
if (t == LastU) FromLastU=Standard_True;
|
|
Standard_Boolean initpoint=Standard_False;
|
|
Standard_Real U = 0., V = 0.;
|
|
gp_Pnt CPoint;
|
|
Standard_Real ParT,ParU,ParV;
|
|
|
|
// Search an initial point in the list of Extrema Curve-Surface
|
|
if(Nend != 0 && !CExt.IsParallel())
|
|
{
|
|
for (i=1;i<=Nend;i++)
|
|
{
|
|
Extrema_POnCurv P1;
|
|
Extrema_POnSurf P2;
|
|
CExt.Points(i,P1,P2);
|
|
ParT=P1.Parameter();
|
|
P2.Parameter(ParU, ParV);
|
|
|
|
aPrjPS.Perform(ParT, ParU, ParV, aTol, aLowBorder, aUppBorder, FuncTol, Standard_True);
|
|
|
|
if ( aPrjPS.IsDone() && P1.Parameter() > Max(FirstU,t-Step+Precision::PConfusion())
|
|
&& P1.Parameter() <= t)
|
|
{
|
|
t=ParT;
|
|
U=ParU;
|
|
V=ParV;
|
|
CPoint=P1.Value();
|
|
initpoint = Standard_True;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
if (!initpoint)
|
|
{
|
|
myCurve->D0(t,CPoint);
|
|
#ifdef OCCT_DEBUG_CHRONO
|
|
InitChron(chr_init_point);
|
|
#endif
|
|
// PConfusion - use geometric tolerances in extrema / optimization.
|
|
initpoint=InitialPoint(CPoint, t,myCurve,mySurface, Precision::PConfusion(), Precision::PConfusion(), U, V);
|
|
#ifdef OCCT_DEBUG_CHRONO
|
|
ResultChron(chr_init_point,t_init_point);
|
|
init_point_count++;
|
|
#endif
|
|
}
|
|
if(initpoint)
|
|
{
|
|
// When U or V lie on surface joint in some cases we cannot use them
|
|
// as initial point for aPrjPS, so we switch them
|
|
gp_Vec2d D;
|
|
|
|
if ((mySurface->IsUPeriodic() &&
|
|
Abs(aUppBorder.X() - aLowBorder.X() - mySurface->UPeriod()) < Precision::Confusion()) ||
|
|
(mySurface->IsVPeriodic() &&
|
|
Abs(aUppBorder.Y() - aLowBorder.Y() - mySurface->VPeriod()) < Precision::Confusion()))
|
|
{
|
|
if((Abs(U - aLowBorder.X()) < mySurface->UResolution(Precision::PConfusion())) &&
|
|
mySurface->IsUPeriodic())
|
|
{
|
|
d1(t, U, V, D, myCurve, mySurface);
|
|
if (D.X() < 0 ) U = aUppBorder.X();
|
|
}
|
|
else if((Abs(U - aUppBorder.X()) < mySurface->UResolution(Precision::PConfusion())) &&
|
|
mySurface->IsUPeriodic())
|
|
{
|
|
d1(t, U, V, D, myCurve, mySurface);
|
|
if (D.X() > 0) U = aLowBorder.X();
|
|
}
|
|
|
|
if((Abs(V - aLowBorder.Y()) < mySurface->VResolution(Precision::PConfusion())) &&
|
|
mySurface->IsVPeriodic())
|
|
{
|
|
d1(t, U, V, D, myCurve, mySurface);
|
|
if (D.Y() < 0) V = aUppBorder.Y();
|
|
}
|
|
else if((Abs(V - aUppBorder.Y()) <= mySurface->VResolution(Precision::PConfusion())) &&
|
|
mySurface->IsVPeriodic())
|
|
{
|
|
d1(t, U, V, D, myCurve, mySurface);
|
|
if (D.Y() > 0) V = aLowBorder.Y();
|
|
}
|
|
}
|
|
|
|
if (myMaxDist > 0)
|
|
{
|
|
// Here we are going to stop if the distance between projection and
|
|
// corresponding curve point is greater than myMaxDist
|
|
gp_Pnt POnS;
|
|
Standard_Real d;
|
|
mySurface->D0(U, V, POnS);
|
|
d = CPoint.Distance(POnS);
|
|
if (d > myMaxDist)
|
|
{
|
|
mySequence->Clear();
|
|
myNbCurves = 0;
|
|
return;
|
|
}
|
|
}
|
|
Triple = gp_Pnt(t, U, V);
|
|
if (t != FirstU)
|
|
{
|
|
//Search for exact boundary point
|
|
Tol = Min(myTolU, myTolV);
|
|
gp_Vec2d aD;
|
|
d1(Triple.X(), Triple.Y(), Triple.Z(), aD, myCurve, mySurface);
|
|
Tol /= Max(Abs(aD.X()), Abs(aD.Y()));
|
|
|
|
if(!ExactBound(Triple, t - Step, Tol,
|
|
myTolU, myTolV, myCurve, mySurface))
|
|
{
|
|
#ifdef OCCT_DEBUG
|
|
cout<<"There is a problem with ExactBound computation"<<endl;
|
|
#endif
|
|
DichExactBound(Triple, t - Step, Tol, myTolU, myTolV,
|
|
myCurve, mySurface);
|
|
}
|
|
}
|
|
new_part = Standard_True;
|
|
}
|
|
else
|
|
{
|
|
if(t == LastU) break;
|
|
t += Step;
|
|
if(t>LastU)
|
|
{
|
|
Step =Step+LastU-t;
|
|
t=LastU;
|
|
}
|
|
}
|
|
}
|
|
if (!new_part) break;
|
|
|
|
//We have found a new continuous part
|
|
Handle(TColgp_HSequenceOfPnt) hSeq = new TColgp_HSequenceOfPnt();
|
|
mySequence->Append(hSeq);
|
|
myNbCurves++;
|
|
mySequence->Value(myNbCurves)->Append(Triple);
|
|
prevTriple = Triple;
|
|
|
|
if (Triple.X() == LastU) break;//return;
|
|
|
|
//Computation of WalkStep
|
|
gp_Vec D1, D2;
|
|
Standard_Real MagnD1, MagnD2;
|
|
d2CurvOnSurf(Triple.X(), Triple.Y(), Triple.Z(), D1, D2, myCurve, mySurface);
|
|
MagnD1 = D1.Magnitude();
|
|
MagnD2 = D2.Magnitude();
|
|
if(MagnD2 < Precision::Confusion()) WalkStep = MaxStep;
|
|
else WalkStep = Min(MaxStep, Max(MinStep, 0.1*MagnD1/MagnD2));
|
|
|
|
Step = WalkStep;
|
|
|
|
t = Triple.X() + Step;
|
|
if (t > LastU) t = LastU;
|
|
Standard_Real prevStep = Step;
|
|
Standard_Real U0, V0;
|
|
|
|
//Here we are trying to prolong continuous part
|
|
while (t <= LastU && new_part)
|
|
{
|
|
|
|
U0 = Triple.Y() + (Step / prevStep) * (Triple.Y() - prevTriple.Y());
|
|
V0 = Triple.Z() + (Step / prevStep) * (Triple.Z() - prevTriple.Z());
|
|
// adjust U0 to be in [mySurface->FirstUParameter(),mySurface->LastUParameter()]
|
|
U0 = Min(Max(U0, aLowBorder.X()), aUppBorder.X());
|
|
// adjust V0 to be in [mySurface->FirstVParameter(),mySurface->LastVParameter()]
|
|
V0 = Min(Max(V0, aLowBorder.Y()), aUppBorder.Y());
|
|
|
|
|
|
aPrjPS.Perform(t, U0, V0, aTol,
|
|
aLowBorder, aUppBorder, FuncTol, Standard_True);
|
|
if(!aPrjPS.IsDone())
|
|
{
|
|
if (Step <= GlobalMinStep)
|
|
{
|
|
//Search for exact boundary point
|
|
Tol = Min(myTolU, myTolV);
|
|
gp_Vec2d D;
|
|
d1(Triple.X(), Triple.Y(), Triple.Z(), D, myCurve, mySurface);
|
|
Tol /= Max(Abs(D.X()), Abs(D.Y()));
|
|
|
|
if(!ExactBound(Triple, t, Tol, myTolU, myTolV,
|
|
myCurve, mySurface))
|
|
{
|
|
#ifdef OCCT_DEBUG
|
|
cout<<"There is a problem with ExactBound computation"<<endl;
|
|
#endif
|
|
DichExactBound(Triple, t, Tol, myTolU, myTolV,
|
|
myCurve, mySurface);
|
|
}
|
|
|
|
if((Triple.X() - mySequence->Value(myNbCurves)->Value(mySequence->Value(myNbCurves)->Length()).X()) > 1.e-10)
|
|
mySequence->Value(myNbCurves)->Append(Triple);
|
|
if((LastU - Triple.X()) < Tol) {t = LastU + 1; break;}//return;
|
|
|
|
Step = SearchStep;
|
|
t = Triple.X() + Step;
|
|
if (t > (LastU-MinStep/2) )
|
|
{
|
|
Step =Step+LastU-t;
|
|
t = LastU;
|
|
}
|
|
new_part = Standard_False;
|
|
}
|
|
else
|
|
{
|
|
// decrease step
|
|
Standard_Real SaveStep = Step;
|
|
Step /= 2.;
|
|
t = Triple .X() + Step;
|
|
if (t > (LastU-MinStep/4) )
|
|
{
|
|
Step =Step+LastU-t;
|
|
if (Abs(Step - SaveStep) <= Precision::PConfusion())
|
|
Step = GlobalMinStep; //to avoid looping
|
|
t = LastU;
|
|
}
|
|
}
|
|
}
|
|
// Go further
|
|
else
|
|
{
|
|
prevTriple = Triple;
|
|
prevStep = Step;
|
|
Triple = gp_Pnt(t, aPrjPS.Solution().X(), aPrjPS.Solution().Y());
|
|
|
|
// Check for possible local traps.
|
|
UpdateTripleByTrapCriteria(Triple);
|
|
|
|
// Protection from case when the whole curve lies on a seam.
|
|
if (!isSplitsComputed)
|
|
{
|
|
Standard_Boolean isUPossible = Standard_False;
|
|
if (mySurface->IsUPeriodic() &&
|
|
(Abs(Triple.Y() - mySurface->FirstUParameter() ) > Precision::PConfusion() &&
|
|
Abs(Triple.Y() - mySurface->LastUParameter() ) > Precision::PConfusion()))
|
|
{
|
|
isUPossible = Standard_True;
|
|
}
|
|
|
|
Standard_Boolean isVPossible = Standard_False;
|
|
if (mySurface->IsVPeriodic() &&
|
|
(Abs(Triple.Z() - mySurface->FirstVParameter() ) > Precision::PConfusion() &&
|
|
Abs(Triple.Z() - mySurface->LastVParameter() ) > Precision::PConfusion()))
|
|
{
|
|
isVPossible = Standard_True;
|
|
}
|
|
|
|
if (isUPossible || isVPossible)
|
|
{
|
|
// When point is good conditioned.
|
|
BuildCurveSplits(myCurve, mySurface, myTolU, myTolV, aSplits);
|
|
isSplitsComputed = Standard_True;
|
|
}
|
|
}
|
|
|
|
if((Triple.X() - mySequence->Value(myNbCurves)->Value(mySequence->Value(myNbCurves)->Length()).X()) > 1.e-10)
|
|
mySequence->Value(myNbCurves)->Append(Triple);
|
|
if (t == LastU) {t = LastU + 1; break;}//return;
|
|
//Computation of WalkStep
|
|
d2CurvOnSurf(Triple.X(), Triple.Y(), Triple.Z(), D1, D2, myCurve, mySurface);
|
|
MagnD1 = D1.Magnitude();
|
|
MagnD2 = D2.Magnitude();
|
|
if(MagnD2 < Precision::Confusion() ) WalkStep = MaxStep;
|
|
else WalkStep = Min(MaxStep, Max(MinStep, 0.1*MagnD1/MagnD2));
|
|
|
|
Step = WalkStep;
|
|
t += Step;
|
|
if (t > (LastU-MinStep/2))
|
|
{
|
|
Step = Step + LastU - t;
|
|
t = LastU;
|
|
}
|
|
|
|
// We assume at least one point of cache inside of a split.
|
|
const Standard_Integer aSize = aSplits.Size();
|
|
for(Standard_Integer anIdx = aSplitIdx; anIdx < aSize; ++anIdx)
|
|
{
|
|
const Standard_Real aParam = aSplits(anIdx);
|
|
if (Abs(aParam - Triple.X() ) < Precision::PConfusion())
|
|
{
|
|
// The current point is equal to a split point.
|
|
new_part = Standard_False;
|
|
|
|
// Move split index to avoid check of the whole list.
|
|
++aSplitIdx;
|
|
break;
|
|
}
|
|
else if (aParam < t + Precision::PConfusion() )
|
|
{
|
|
// The next point crosses the split point.
|
|
t = aParam;
|
|
Step = t - prevTriple.X();
|
|
}
|
|
} // for(Standard_Integer anIdx = aSplitIdx; anIdx < aSize; ++anIdx)
|
|
}
|
|
}
|
|
}
|
|
|
|
// Sequence post-proceeding.
|
|
Standard_Integer j;
|
|
|
|
// 1. Removing poor parts
|
|
Standard_Integer NbPart=myNbCurves;
|
|
Standard_Integer ipart=1;
|
|
for(i = 1; i <= NbPart; i++) {
|
|
// Standard_Integer NbPoints = mySequence->Value(i)->Length();
|
|
if(mySequence->Value(ipart)->Length() < 2) {
|
|
mySequence->Remove(ipart);
|
|
myNbCurves--;
|
|
}
|
|
else ipart++;
|
|
}
|
|
|
|
if(myNbCurves == 0) return;
|
|
|
|
// 2. Removing common parts of bounds
|
|
for(i = 1; i < myNbCurves; i++)
|
|
{
|
|
if(mySequence->Value(i)->Value(mySequence->Value(i)->Length()).X() >=
|
|
mySequence->Value(i+1)->Value(1).X())
|
|
mySequence->ChangeValue(i+1)->ChangeValue(1).SetX(mySequence->Value(i)->Value(mySequence->Value(i)->Length()).X() + 1.e-12);
|
|
}
|
|
|
|
// 3. Computation of the maximum distance from each part of curve to surface
|
|
|
|
myMaxDistance = new TColStd_HArray1OfReal(1, myNbCurves);
|
|
myMaxDistance->Init(0);
|
|
for(i = 1; i <= myNbCurves; i++)
|
|
for(j = 1; j <= mySequence->Value(i)->Length(); j++)
|
|
{
|
|
gp_Pnt POnC, POnS, aTriple;
|
|
Standard_Real Distance;
|
|
aTriple = mySequence->Value(i)->Value(j);
|
|
myCurve->D0(aTriple.X(), POnC);
|
|
mySurface->D0(aTriple.Y(), aTriple.Z(), POnS);
|
|
Distance = POnC.Distance(POnS);
|
|
if (myMaxDistance->Value(i) < Distance)
|
|
myMaxDistance->ChangeValue(i) = Distance;
|
|
}
|
|
|
|
|
|
// 4. Check the projection to be a single point
|
|
|
|
gp_Pnt2d Pmoy, Pcurr, P;
|
|
Standard_Real AveU, AveV;
|
|
mySnglPnts = new TColStd_HArray1OfBoolean(1, myNbCurves);
|
|
for(i = 1; i <= myNbCurves; i++) mySnglPnts->SetValue(i, Standard_True);
|
|
|
|
for(i = 1; i <= myNbCurves; i++)
|
|
{
|
|
//compute an average U and V
|
|
|
|
for(j = 1, AveU = 0., AveV = 0.; j <= mySequence->Value(i)->Length(); j++)
|
|
{
|
|
AveU += mySequence->Value(i)->Value(j).Y();
|
|
AveV += mySequence->Value(i)->Value(j).Z();
|
|
}
|
|
AveU /= mySequence->Value(i)->Length();
|
|
AveV /= mySequence->Value(i)->Length();
|
|
|
|
Pmoy.SetCoord(AveU,AveV);
|
|
for(j = 1; j <= mySequence->Value(i)->Length(); j++)
|
|
{
|
|
Pcurr =
|
|
gp_Pnt2d(mySequence->Value(i)->Value(j).Y(), mySequence->Value(i)->Value(j).Z());
|
|
if (Pcurr.Distance(Pmoy) > ((myTolU < myTolV) ? myTolV : myTolU))
|
|
{
|
|
mySnglPnts->SetValue(i, Standard_False);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// 5. Check the projection to be an isoparametric curve of the surface
|
|
|
|
myUIso = new TColStd_HArray1OfBoolean(1, myNbCurves);
|
|
for(i = 1; i <= myNbCurves; i++) myUIso->SetValue(i, Standard_True);
|
|
|
|
myVIso = new TColStd_HArray1OfBoolean(1, myNbCurves);
|
|
for(i = 1; i <= myNbCurves; i++) myVIso->SetValue(i, Standard_True);
|
|
|
|
for(i = 1; i <= myNbCurves; i++) {
|
|
if (IsSinglePnt(i, P)|| mySequence->Value(i)->Length() <=2) {
|
|
myUIso->SetValue(i, Standard_False);
|
|
myVIso->SetValue(i, Standard_False);
|
|
continue;
|
|
}
|
|
|
|
// new test for isoparametrics
|
|
|
|
if ( mySequence->Value(i)->Length() > 2) {
|
|
//compute an average U and V
|
|
|
|
for(j = 1, AveU = 0., AveV = 0.; j <= mySequence->Value(i)->Length(); j++) {
|
|
AveU += mySequence->Value(i)->Value(j).Y();
|
|
AveV += mySequence->Value(i)->Value(j).Z();
|
|
}
|
|
AveU /= mySequence->Value(i)->Length();
|
|
AveV /= mySequence->Value(i)->Length();
|
|
|
|
// is i-part U-isoparametric ?
|
|
for(j = 1; j <= mySequence->Value(i)->Length(); j++)
|
|
{
|
|
if(Abs(mySequence->Value(i)->Value(j).Y() - AveU) > myTolU)
|
|
{
|
|
myUIso->SetValue(i, Standard_False);
|
|
break;
|
|
}
|
|
}
|
|
|
|
// is i-part V-isoparametric ?
|
|
for(j = 1; j <= mySequence->Value(i)->Length(); j++)
|
|
{
|
|
if(Abs(mySequence->Value(i)->Value(j).Z() - AveV) > myTolV)
|
|
{
|
|
myVIso->SetValue(i, Standard_False);
|
|
break;
|
|
}
|
|
}
|
|
//
|
|
}
|
|
}
|
|
}
|
|
//=======================================================================
|
|
//function : Load
|
|
//purpose :
|
|
//=======================================================================
|
|
|
|
void ProjLib_CompProjectedCurve::Load(const Handle(Adaptor3d_HSurface)& S)
|
|
{
|
|
mySurface = S;
|
|
}
|
|
|
|
//=======================================================================
|
|
//function : Load
|
|
//purpose :
|
|
//=======================================================================
|
|
|
|
void ProjLib_CompProjectedCurve::Load(const Handle(Adaptor3d_HCurve)& C)
|
|
{
|
|
myCurve = C;
|
|
}
|
|
|
|
//=======================================================================
|
|
//function : GetSurface
|
|
//purpose :
|
|
//=======================================================================
|
|
|
|
const Handle(Adaptor3d_HSurface)& ProjLib_CompProjectedCurve::GetSurface() const
|
|
{
|
|
return mySurface;
|
|
}
|
|
|
|
|
|
//=======================================================================
|
|
//function : GetCurve
|
|
//purpose :
|
|
//=======================================================================
|
|
|
|
const Handle(Adaptor3d_HCurve)& ProjLib_CompProjectedCurve::GetCurve() const
|
|
{
|
|
return myCurve;
|
|
}
|
|
|
|
//=======================================================================
|
|
//function : GetTolerance
|
|
//purpose :
|
|
//=======================================================================
|
|
|
|
void ProjLib_CompProjectedCurve::GetTolerance(Standard_Real& TolU,
|
|
Standard_Real& TolV) const
|
|
{
|
|
TolU = myTolU;
|
|
TolV = myTolV;
|
|
}
|
|
|
|
//=======================================================================
|
|
//function : NbCurves
|
|
//purpose :
|
|
//=======================================================================
|
|
|
|
Standard_Integer ProjLib_CompProjectedCurve::NbCurves() const
|
|
{
|
|
return myNbCurves;
|
|
}
|
|
//=======================================================================
|
|
//function : Bounds
|
|
//purpose :
|
|
//=======================================================================
|
|
|
|
void ProjLib_CompProjectedCurve::Bounds(const Standard_Integer Index,
|
|
Standard_Real& Udeb,
|
|
Standard_Real& Ufin) const
|
|
{
|
|
if(Index < 1 || Index > myNbCurves) Standard_NoSuchObject::Raise();
|
|
Udeb = mySequence->Value(Index)->Value(1).X();
|
|
Ufin = mySequence->Value(Index)->Value(mySequence->Value(Index)->Length()).X();
|
|
}
|
|
//=======================================================================
|
|
//function : IsSinglePnt
|
|
//purpose :
|
|
//=======================================================================
|
|
|
|
Standard_Boolean ProjLib_CompProjectedCurve::IsSinglePnt(const Standard_Integer Index, gp_Pnt2d& P) const
|
|
{
|
|
if(Index < 1 || Index > myNbCurves) Standard_NoSuchObject::Raise();
|
|
P = gp_Pnt2d(mySequence->Value(Index)->Value(1).Y(), mySequence->Value(Index)->Value(1).Z());
|
|
return mySnglPnts->Value(Index);
|
|
}
|
|
|
|
//=======================================================================
|
|
//function : IsUIso
|
|
//purpose :
|
|
//=======================================================================
|
|
|
|
Standard_Boolean ProjLib_CompProjectedCurve::IsUIso(const Standard_Integer Index, Standard_Real& U) const
|
|
{
|
|
if(Index < 1 || Index > myNbCurves) Standard_NoSuchObject::Raise();
|
|
U = mySequence->Value(Index)->Value(1).Y();
|
|
return myUIso->Value(Index);
|
|
}
|
|
//=======================================================================
|
|
//function : IsVIso
|
|
//purpose :
|
|
//=======================================================================
|
|
|
|
Standard_Boolean ProjLib_CompProjectedCurve::IsVIso(const Standard_Integer Index, Standard_Real& V) const
|
|
{
|
|
if(Index < 1 || Index > myNbCurves) Standard_NoSuchObject::Raise();
|
|
V = mySequence->Value(Index)->Value(1).Z();
|
|
return myVIso->Value(Index);
|
|
}
|
|
//=======================================================================
|
|
//function : Value
|
|
//purpose :
|
|
//=======================================================================
|
|
|
|
gp_Pnt2d ProjLib_CompProjectedCurve::Value(const Standard_Real t) const
|
|
{
|
|
gp_Pnt2d P;
|
|
D0(t, P);
|
|
return P;
|
|
}
|
|
//=======================================================================
|
|
//function : D0
|
|
//purpose :
|
|
//=======================================================================
|
|
|
|
void ProjLib_CompProjectedCurve::D0(const Standard_Real U,gp_Pnt2d& P) const
|
|
{
|
|
Standard_Integer i, j;
|
|
Standard_Real Udeb, Ufin;
|
|
Standard_Boolean found = Standard_False;
|
|
|
|
for(i = 1; i <= myNbCurves; i++)
|
|
{
|
|
Bounds(i, Udeb, Ufin);
|
|
if (U >= Udeb && U <= Ufin)
|
|
{
|
|
found = Standard_True;
|
|
break;
|
|
}
|
|
}
|
|
if (!found) Standard_DomainError::Raise("ProjLib_CompProjectedCurve::D0");
|
|
|
|
Standard_Real U0, V0;
|
|
|
|
Standard_Integer End = mySequence->Value(i)->Length();
|
|
for(j = 1; j < End; j++)
|
|
if ((U >= mySequence->Value(i)->Value(j).X()) && (U <= mySequence->Value(i)->Value(j + 1).X())) break;
|
|
|
|
// U0 = mySequence->Value(i)->Value(j).Y();
|
|
// V0 = mySequence->Value(i)->Value(j).Z();
|
|
|
|
// Cubic Interpolation
|
|
if(mySequence->Value(i)->Length() < 4 ||
|
|
(Abs(U-mySequence->Value(i)->Value(j).X()) <= Precision::PConfusion()) )
|
|
{
|
|
U0 = mySequence->Value(i)->Value(j).Y();
|
|
V0 = mySequence->Value(i)->Value(j).Z();
|
|
}
|
|
else if (Abs(U-mySequence->Value(i)->Value(j+1).X())
|
|
<= Precision::PConfusion())
|
|
{
|
|
U0 = mySequence->Value(i)->Value(j+1).Y();
|
|
V0 = mySequence->Value(i)->Value(j+1).Z();
|
|
}
|
|
else
|
|
{
|
|
if (j == 1) j = 2;
|
|
if (j > mySequence->Value(i)->Length() - 2)
|
|
j = mySequence->Value(i)->Length() - 2;
|
|
|
|
gp_Vec2d I1, I2, I3, I21, I22, I31, Y1, Y2, Y3, Y4, Res;
|
|
Standard_Real X1, X2, X3, X4;
|
|
|
|
X1 = mySequence->Value(i)->Value(j - 1).X();
|
|
X2 = mySequence->Value(i)->Value(j).X();
|
|
X3 = mySequence->Value(i)->Value(j + 1).X();
|
|
X4 = mySequence->Value(i)->Value(j + 2).X();
|
|
|
|
Y1 = gp_Vec2d(mySequence->Value(i)->Value(j - 1).Y(),
|
|
mySequence->Value(i)->Value(j - 1).Z());
|
|
Y2 = gp_Vec2d(mySequence->Value(i)->Value(j).Y(),
|
|
mySequence->Value(i)->Value(j).Z());
|
|
Y3 = gp_Vec2d(mySequence->Value(i)->Value(j + 1).Y(),
|
|
mySequence->Value(i)->Value(j + 1).Z());
|
|
Y4 = gp_Vec2d(mySequence->Value(i)->Value(j + 2).Y(),
|
|
mySequence->Value(i)->Value(j + 2).Z());
|
|
|
|
I1 = (Y1 - Y2)/(X1 - X2);
|
|
I2 = (Y2 - Y3)/(X2 - X3);
|
|
I3 = (Y3 - Y4)/(X3 - X4);
|
|
|
|
I21 = (I1 - I2)/(X1 - X3);
|
|
I22 = (I2 - I3)/(X2 - X4);
|
|
|
|
I31 = (I21 - I22)/(X1 - X4);
|
|
|
|
Res = Y1 + (U - X1)*(I1 + (U - X2)*(I21 + (U - X3)*I31));
|
|
|
|
U0 = Res.X();
|
|
V0 = Res.Y();
|
|
|
|
if(U0 < mySurface->FirstUParameter()) U0 = mySurface->FirstUParameter();
|
|
else if(U0 > mySurface->LastUParameter()) U0 = mySurface->LastUParameter();
|
|
|
|
if(V0 < mySurface->FirstVParameter()) V0 = mySurface->FirstVParameter();
|
|
else if(V0 > mySurface->LastVParameter()) V0 = mySurface->LastVParameter();
|
|
}
|
|
//End of cubic interpolation
|
|
|
|
ProjLib_PrjResolve aPrjPS(myCurve->Curve(), mySurface->Surface(), 1);
|
|
aPrjPS.Perform(U, U0, V0, gp_Pnt2d(myTolU, myTolV),
|
|
gp_Pnt2d(mySurface->FirstUParameter(), mySurface->FirstVParameter()),
|
|
gp_Pnt2d(mySurface->LastUParameter(), mySurface->LastVParameter()));
|
|
if (aPrjPS.IsDone())
|
|
P = aPrjPS.Solution();
|
|
else
|
|
{
|
|
gp_Pnt thePoint = myCurve->Value(U);
|
|
Extrema_ExtPS aExtPS(thePoint, mySurface->Surface(), myTolU, myTolV);
|
|
if (aExtPS.IsDone() && aExtPS.NbExt())
|
|
{
|
|
Standard_Integer k, Nend, imin = 1;
|
|
// Search for the nearest solution which is also a normal projection
|
|
Nend = aExtPS.NbExt();
|
|
for(k = 2; k <= Nend; k++)
|
|
if (aExtPS.SquareDistance(k) < aExtPS.SquareDistance(imin))
|
|
imin = k;
|
|
const Extrema_POnSurf& POnS = aExtPS.Point(imin);
|
|
Standard_Real ParU,ParV;
|
|
POnS.Parameter(ParU, ParV);
|
|
P.SetCoord(ParU, ParV);
|
|
}
|
|
else
|
|
P.SetCoord(U0,V0);
|
|
}
|
|
}
|
|
//=======================================================================
|
|
//function : D1
|
|
//purpose :
|
|
//=======================================================================
|
|
|
|
void ProjLib_CompProjectedCurve::D1(const Standard_Real t,
|
|
gp_Pnt2d& P,
|
|
gp_Vec2d& V) const
|
|
{
|
|
Standard_Real u, v;
|
|
D0(t, P);
|
|
u = P.X();
|
|
v = P.Y();
|
|
d1(t, u, v, V, myCurve, mySurface);
|
|
}
|
|
//=======================================================================
|
|
//function : D2
|
|
//purpose :
|
|
//=======================================================================
|
|
|
|
void ProjLib_CompProjectedCurve::D2(const Standard_Real t,
|
|
gp_Pnt2d& P,
|
|
gp_Vec2d& V1,
|
|
gp_Vec2d& V2) const
|
|
{
|
|
Standard_Real u, v;
|
|
D0(t, P);
|
|
u = P.X();
|
|
v = P.Y();
|
|
d2(t, u, v, V1, V2, myCurve, mySurface);
|
|
}
|
|
//=======================================================================
|
|
//function : DN
|
|
//purpose :
|
|
//=======================================================================
|
|
|
|
gp_Vec2d ProjLib_CompProjectedCurve::DN(const Standard_Real t,
|
|
const Standard_Integer N) const
|
|
{
|
|
if (N < 1 ) Standard_OutOfRange::Raise("ProjLib_CompProjectedCurve : N must be greater than 0");
|
|
else if (N ==1)
|
|
{
|
|
gp_Pnt2d P;
|
|
gp_Vec2d V;
|
|
D1(t,P,V);
|
|
return V;
|
|
}
|
|
else if ( N==2)
|
|
{
|
|
gp_Pnt2d P;
|
|
gp_Vec2d V1,V2;
|
|
D2(t,P,V1,V2);
|
|
return V2;
|
|
}
|
|
else if (N > 2 )
|
|
Standard_NotImplemented::Raise("ProjLib_CompProjectedCurve::DN");
|
|
return gp_Vec2d();
|
|
}
|
|
|
|
//=======================================================================
|
|
//function : GetSequence
|
|
//purpose :
|
|
//=======================================================================
|
|
|
|
const Handle(ProjLib_HSequenceOfHSequenceOfPnt)& ProjLib_CompProjectedCurve::GetSequence() const
|
|
{
|
|
return mySequence;
|
|
}
|
|
//=======================================================================
|
|
//function : FirstParameter
|
|
//purpose :
|
|
//=======================================================================
|
|
|
|
Standard_Real ProjLib_CompProjectedCurve::FirstParameter() const
|
|
{
|
|
return myCurve->FirstParameter();
|
|
}
|
|
|
|
//=======================================================================
|
|
//function : LastParameter
|
|
//purpose :
|
|
//=======================================================================
|
|
|
|
Standard_Real ProjLib_CompProjectedCurve::LastParameter() const
|
|
{
|
|
return myCurve->LastParameter();
|
|
}
|
|
|
|
//=======================================================================
|
|
//function : MaxDistance
|
|
//purpose :
|
|
//=======================================================================
|
|
|
|
Standard_Real ProjLib_CompProjectedCurve::MaxDistance(const Standard_Integer Index) const
|
|
{
|
|
if(Index < 1 || Index > myNbCurves) Standard_NoSuchObject::Raise();
|
|
return myMaxDistance->Value(Index);
|
|
}
|
|
|
|
//=======================================================================
|
|
//function : NbIntervals
|
|
//purpose :
|
|
//=======================================================================
|
|
|
|
Standard_Integer ProjLib_CompProjectedCurve::NbIntervals(const GeomAbs_Shape S) const
|
|
{
|
|
const_cast<ProjLib_CompProjectedCurve*>(this)->myTabInt.Nullify();
|
|
BuildIntervals(S);
|
|
return myTabInt->Length() - 1;
|
|
}
|
|
|
|
//=======================================================================
|
|
//function : Intervals
|
|
//purpose :
|
|
//=======================================================================
|
|
|
|
void ProjLib_CompProjectedCurve::Intervals(TColStd_Array1OfReal& T,const GeomAbs_Shape S) const
|
|
{
|
|
if (myTabInt.IsNull()) BuildIntervals (S);
|
|
T = myTabInt->Array1();
|
|
}
|
|
|
|
//=======================================================================
|
|
//function : BuildIntervals
|
|
//purpose :
|
|
//=======================================================================
|
|
|
|
void ProjLib_CompProjectedCurve::BuildIntervals(const GeomAbs_Shape S) const
|
|
{
|
|
GeomAbs_Shape SforS = GeomAbs_CN;
|
|
switch(S) {
|
|
case GeomAbs_C0:
|
|
SforS = GeomAbs_C1;
|
|
break;
|
|
case GeomAbs_C1:
|
|
SforS = GeomAbs_C2;
|
|
break;
|
|
case GeomAbs_C2:
|
|
SforS = GeomAbs_C3;
|
|
break;
|
|
case GeomAbs_C3:
|
|
SforS = GeomAbs_CN;
|
|
break;
|
|
case GeomAbs_CN:
|
|
SforS = GeomAbs_CN;
|
|
break;
|
|
default:
|
|
Standard_OutOfRange::Raise();
|
|
}
|
|
Standard_Integer i, j, k;
|
|
Standard_Integer NbIntCur = myCurve->NbIntervals(S);
|
|
Standard_Integer NbIntSurU = mySurface->NbUIntervals(SforS);
|
|
Standard_Integer NbIntSurV = mySurface->NbVIntervals(SforS);
|
|
|
|
TColStd_Array1OfReal CutPntsT(1, NbIntCur+1);
|
|
TColStd_Array1OfReal CutPntsU(1, NbIntSurU+1);
|
|
TColStd_Array1OfReal CutPntsV(1, NbIntSurV+1);
|
|
|
|
myCurve->Intervals(CutPntsT, S);
|
|
mySurface->UIntervals(CutPntsU, SforS);
|
|
mySurface->VIntervals(CutPntsV, SforS);
|
|
|
|
Standard_Real Tl, Tr, Ul, Ur, Vl, Vr, Tol;
|
|
|
|
Handle(TColStd_HArray1OfReal) BArr = NULL,
|
|
CArr = NULL,
|
|
UArr = NULL,
|
|
VArr = NULL;
|
|
|
|
// proccessing projection bounds
|
|
BArr = new TColStd_HArray1OfReal(1, 2*myNbCurves);
|
|
for(i = 1; i <= myNbCurves; i++)
|
|
Bounds(i, BArr->ChangeValue(2*i - 1), BArr->ChangeValue(2*i));
|
|
|
|
// proccessing curve discontinuities
|
|
if(NbIntCur > 1) {
|
|
CArr = new TColStd_HArray1OfReal(1, NbIntCur - 1);
|
|
for(i = 1; i <= CArr->Length(); i++)
|
|
CArr->ChangeValue(i) = CutPntsT(i + 1);
|
|
}
|
|
|
|
// proccessing U-surface discontinuities
|
|
TColStd_SequenceOfReal TUdisc;
|
|
|
|
for(k = 2; k <= NbIntSurU; k++) {
|
|
// cout<<"CutPntsU("<<k<<") = "<<CutPntsU(k)<<endl;
|
|
for(i = 1; i <= myNbCurves; i++)
|
|
for(j = 1; j < mySequence->Value(i)->Length(); j++) {
|
|
Ul = mySequence->Value(i)->Value(j).Y();
|
|
Ur = mySequence->Value(i)->Value(j + 1).Y();
|
|
|
|
if(Abs(Ul - CutPntsU(k)) <= myTolU)
|
|
TUdisc.Append(mySequence->Value(i)->Value(j).X());
|
|
else if(Abs(Ur - CutPntsU(k)) <= myTolU)
|
|
TUdisc.Append(mySequence->Value(i)->Value(j + 1).X());
|
|
else if((Ul < CutPntsU(k) && CutPntsU(k) < Ur) ||
|
|
(Ur < CutPntsU(k) && CutPntsU(k) < Ul))
|
|
{
|
|
Standard_Real V;
|
|
V = (mySequence->Value(i)->Value(j).Z()
|
|
+ mySequence->Value(i)->Value(j +1).Z())/2;
|
|
ProjLib_PrjResolve Solver(myCurve->Curve(), mySurface->Surface(), 2);
|
|
|
|
gp_Vec2d D;
|
|
gp_Pnt Triple;
|
|
Triple = mySequence->Value(i)->Value(j);
|
|
d1(Triple.X(), Triple.Y(), Triple.Z(), D, myCurve, mySurface);
|
|
if (Abs(D.X()) < Precision::Confusion())
|
|
Tol = myTolU;
|
|
else
|
|
Tol = Min(myTolU, myTolU / Abs(D.X()));
|
|
|
|
Tl = mySequence->Value(i)->Value(j).X();
|
|
Tr = mySequence->Value(i)->Value(j + 1).X();
|
|
|
|
Solver.Perform((Tl + Tr)/2, CutPntsU(k), V,
|
|
gp_Pnt2d(Tol, myTolV),
|
|
gp_Pnt2d(Tl, mySurface->FirstVParameter()),
|
|
gp_Pnt2d(Tr, mySurface->LastVParameter()));
|
|
//
|
|
if(Solver.IsDone())
|
|
{
|
|
TUdisc.Append(Solver.Solution().X());
|
|
}
|
|
}
|
|
}
|
|
}
|
|
for(i = 2; i <= TUdisc.Length(); i++)
|
|
if(TUdisc(i) - TUdisc(i-1) < Precision::PConfusion())
|
|
TUdisc.Remove(i--);
|
|
|
|
if(TUdisc.Length())
|
|
{
|
|
UArr = new TColStd_HArray1OfReal(1, TUdisc.Length());
|
|
for(i = 1; i <= UArr->Length(); i++)
|
|
UArr->ChangeValue(i) = TUdisc(i);
|
|
}
|
|
// proccessing V-surface discontinuities
|
|
TColStd_SequenceOfReal TVdisc;
|
|
|
|
for(k = 2; k <= NbIntSurV; k++)
|
|
for(i = 1; i <= myNbCurves; i++)
|
|
{
|
|
// cout<<"CutPntsV("<<k<<") = "<<CutPntsV(k)<<endl;
|
|
for(j = 1; j < mySequence->Value(i)->Length(); j++) {
|
|
|
|
Vl = mySequence->Value(i)->Value(j).Z();
|
|
Vr = mySequence->Value(i)->Value(j + 1).Z();
|
|
|
|
if(Abs(Vl - CutPntsV(k)) <= myTolV)
|
|
TVdisc.Append(mySequence->Value(i)->Value(j).X());
|
|
else if (Abs(Vr - CutPntsV(k)) <= myTolV)
|
|
TVdisc.Append(mySequence->Value(i)->Value(j + 1).X());
|
|
else if((Vl < CutPntsV(k) && CutPntsV(k) < Vr) ||
|
|
(Vr < CutPntsV(k) && CutPntsV(k) < Vl))
|
|
{
|
|
Standard_Real U;
|
|
U = (mySequence->Value(i)->Value(j).Y()
|
|
+ mySequence->Value(i)->Value(j +1).Y())/2;
|
|
ProjLib_PrjResolve Solver(myCurve->Curve(), mySurface->Surface(), 3);
|
|
|
|
gp_Vec2d D;
|
|
gp_Pnt Triple;
|
|
Triple = mySequence->Value(i)->Value(j);
|
|
d1(Triple.X(), Triple.Y(), Triple.Z(), D, myCurve, mySurface);
|
|
if (Abs(D.Y()) < Precision::Confusion())
|
|
Tol = myTolV;
|
|
else
|
|
Tol = Min(myTolV, myTolV / Abs(D.Y()));
|
|
|
|
Tl = mySequence->Value(i)->Value(j).X();
|
|
Tr = mySequence->Value(i)->Value(j + 1).X();
|
|
|
|
Solver.Perform((Tl + Tr)/2, U, CutPntsV(k),
|
|
gp_Pnt2d(Tol, myTolV),
|
|
gp_Pnt2d(Tl, mySurface->FirstUParameter()),
|
|
gp_Pnt2d(Tr, mySurface->LastUParameter()));
|
|
//
|
|
if(Solver.IsDone())
|
|
{
|
|
TVdisc.Append(Solver.Solution().X());
|
|
}
|
|
}
|
|
}
|
|
}
|
|
for(i = 2; i <= TVdisc.Length(); i++)
|
|
if(TVdisc(i) - TVdisc(i-1) < Precision::PConfusion())
|
|
TVdisc.Remove(i--);
|
|
|
|
if(TVdisc.Length())
|
|
{
|
|
VArr = new TColStd_HArray1OfReal(1, TVdisc.Length());
|
|
for(i = 1; i <= VArr->Length(); i++)
|
|
VArr->ChangeValue(i) = TVdisc(i);
|
|
}
|
|
|
|
// fusion
|
|
TColStd_SequenceOfReal Fusion;
|
|
if(!CArr.IsNull())
|
|
{
|
|
GeomLib::FuseIntervals(BArr->ChangeArray1(),
|
|
CArr->ChangeArray1(),
|
|
Fusion, Precision::PConfusion());
|
|
BArr = new TColStd_HArray1OfReal(1, Fusion.Length());
|
|
for(i = 1; i <= BArr->Length(); i++)
|
|
BArr->ChangeValue(i) = Fusion(i);
|
|
Fusion.Clear();
|
|
}
|
|
|
|
if(!UArr.IsNull())
|
|
{
|
|
GeomLib::FuseIntervals(BArr->ChangeArray1(),
|
|
UArr->ChangeArray1(),
|
|
Fusion, Precision::PConfusion());
|
|
BArr = new TColStd_HArray1OfReal(1, Fusion.Length());
|
|
for(i = 1; i <= BArr->Length(); i++)
|
|
BArr->ChangeValue(i) = Fusion(i);
|
|
Fusion.Clear();
|
|
}
|
|
|
|
if(!VArr.IsNull())
|
|
{
|
|
GeomLib::FuseIntervals(BArr->ChangeArray1(),
|
|
VArr->ChangeArray1(),
|
|
Fusion, Precision::PConfusion());
|
|
BArr = new TColStd_HArray1OfReal(1, Fusion.Length());
|
|
for(i = 1; i <= BArr->Length(); i++)
|
|
BArr->ChangeValue(i) = Fusion(i);
|
|
}
|
|
|
|
const_cast<ProjLib_CompProjectedCurve*>(this)->myTabInt = new TColStd_HArray1OfReal(1, BArr->Length());
|
|
for(i = 1; i <= BArr->Length(); i++)
|
|
myTabInt->ChangeValue(i) = BArr->Value(i);
|
|
|
|
}
|
|
|
|
//=======================================================================
|
|
//function : Trim
|
|
//purpose :
|
|
//=======================================================================
|
|
|
|
Handle(Adaptor2d_HCurve2d) ProjLib_CompProjectedCurve::Trim
|
|
(const Standard_Real First,
|
|
const Standard_Real Last,
|
|
const Standard_Real Tol) const
|
|
{
|
|
Handle(ProjLib_HCompProjectedCurve) HCS =
|
|
new ProjLib_HCompProjectedCurve(*this);
|
|
HCS->ChangeCurve2d().Load(mySurface);
|
|
HCS->ChangeCurve2d().Load(myCurve->Trim(First,Last,Tol));
|
|
return HCS;
|
|
}
|
|
|
|
//=======================================================================
|
|
//function : GetType
|
|
//purpose :
|
|
//=======================================================================
|
|
|
|
GeomAbs_CurveType ProjLib_CompProjectedCurve::GetType() const
|
|
{
|
|
return GeomAbs_OtherCurve;
|
|
}
|
|
|
|
//=======================================================================
|
|
//function : UpdateTripleByTrapCriteria
|
|
//purpose :
|
|
//=======================================================================
|
|
void ProjLib_CompProjectedCurve::UpdateTripleByTrapCriteria(gp_Pnt &thePoint) const
|
|
{
|
|
Standard_Boolean isProblemsPossible = Standard_False;
|
|
// Check possible traps cases:
|
|
|
|
// 25892 bug.
|
|
if (mySurface->GetType() == GeomAbs_SurfaceOfRevolution)
|
|
{
|
|
// Compute maximal deviation from 3D and choose the biggest one.
|
|
Standard_Real aVRes = mySurface->VResolution(Precision::Confusion());
|
|
Standard_Real aMaxTol = Max(Precision::PConfusion(), aVRes);
|
|
|
|
if (Abs (thePoint.Z() - mySurface->FirstVParameter()) < aMaxTol ||
|
|
Abs (thePoint.Z() - mySurface->LastVParameter() ) < aMaxTol )
|
|
{
|
|
isProblemsPossible = Standard_True;
|
|
}
|
|
}
|
|
|
|
// 27135 bug. Trap on degenerated edge.
|
|
if (mySurface->GetType() == GeomAbs_Sphere &&
|
|
(Abs (thePoint.Z() - mySurface->FirstVParameter()) < Precision::PConfusion() ||
|
|
Abs (thePoint.Z() - mySurface->LastVParameter() ) < Precision::PConfusion() ||
|
|
Abs (thePoint.Y() - mySurface->FirstUParameter()) < Precision::PConfusion() ||
|
|
Abs (thePoint.Y() - mySurface->LastUParameter() ) < Precision::PConfusion() ))
|
|
{
|
|
isProblemsPossible = Standard_True;
|
|
}
|
|
|
|
if (!isProblemsPossible)
|
|
return;
|
|
|
|
Standard_Real U,V;
|
|
Standard_Boolean isDone =
|
|
InitialPoint(myCurve->Value(thePoint.X()), thePoint.X(), myCurve, mySurface,
|
|
Precision::PConfusion(), Precision::PConfusion(), U, V);
|
|
|
|
if (!isDone)
|
|
return;
|
|
|
|
// Restore original position in case of period jump.
|
|
if (mySurface->IsUPeriodic() &&
|
|
Abs (Abs(U - thePoint.Y()) - mySurface->UPeriod()) < Precision::PConfusion())
|
|
{
|
|
U = thePoint.Y();
|
|
}
|
|
if (mySurface->IsVPeriodic() &&
|
|
Abs (Abs(V - thePoint.Z()) - mySurface->VPeriod()) < Precision::PConfusion())
|
|
{
|
|
V = thePoint.Z();
|
|
}
|
|
thePoint.SetY(U);
|
|
thePoint.SetZ(V);
|
|
}
|
|
|
|
//=======================================================================
|
|
//function : BuildCurveSplits
|
|
//purpose :
|
|
//=======================================================================
|
|
void BuildCurveSplits(const Handle(Adaptor3d_HCurve) &theCurve,
|
|
const Handle(Adaptor3d_HSurface) &theSurface,
|
|
const Standard_Real theTolU,
|
|
const Standard_Real theTolV,
|
|
NCollection_Vector<Standard_Real> &theSplits)
|
|
{
|
|
SplitDS aDS(theCurve, theSurface, theSplits);
|
|
|
|
Extrema_ExtPS anExtPS;
|
|
anExtPS.Initialize(theSurface->Surface(),
|
|
theSurface->FirstUParameter(), theSurface->LastUParameter(),
|
|
theSurface->FirstVParameter(), theSurface->LastVParameter(),
|
|
theTolU, theTolV);
|
|
aDS.myExtPS = &anExtPS;
|
|
|
|
if (theSurface->IsUPeriodic())
|
|
{
|
|
aDS.myPeriodicDir = 0;
|
|
SplitOnDirection(aDS);
|
|
}
|
|
if (theSurface->IsVPeriodic())
|
|
{
|
|
aDS.myPeriodicDir = 1;
|
|
SplitOnDirection(aDS);
|
|
}
|
|
|
|
std::sort(aDS.mySplits.begin(), aDS.mySplits.end(), Comparator);
|
|
}
|
|
|
|
//=======================================================================
|
|
//function : SplitOnDirection
|
|
//purpose : This method compute points in the parameter space of the curve
|
|
// on which curve should be split since period jump is happen.
|
|
//=======================================================================
|
|
void SplitOnDirection(SplitDS & theSplitDS)
|
|
{
|
|
// Algorithm:
|
|
// Create 3D curve which is correspond to the periodic bound in 2d space.
|
|
// Run curve / curve extrema and run extrema point / surface to check that
|
|
// the point will be projected to the periodic bound.
|
|
// In this method assumed that the points cannot be closer to each other that 1% of the parameter space.
|
|
|
|
gp_Pnt2d aStartPnt(theSplitDS.mySurface->FirstUParameter(), theSplitDS.mySurface->FirstVParameter());
|
|
gp_Dir2d aDir(theSplitDS.myPeriodicDir, (Standard_Integer)!theSplitDS.myPeriodicDir);
|
|
|
|
theSplitDS.myPerMinParam = !theSplitDS.myPeriodicDir ? theSplitDS.mySurface->FirstUParameter():
|
|
theSplitDS.mySurface->FirstVParameter();
|
|
theSplitDS.myPerMaxParam = !theSplitDS.myPeriodicDir ? theSplitDS.mySurface->LastUParameter():
|
|
theSplitDS.mySurface->LastVParameter();
|
|
Standard_Real aLast2DParam = theSplitDS.myPeriodicDir ?
|
|
theSplitDS.mySurface->LastUParameter() - theSplitDS.mySurface->FirstUParameter():
|
|
theSplitDS.mySurface->LastVParameter() - theSplitDS.mySurface->FirstVParameter();
|
|
|
|
// Create line which is represent periodic border.
|
|
Handle(Geom2d_Curve) aC2GC = new Geom2d_Line(aStartPnt, aDir);
|
|
Handle(Geom2dAdaptor_HCurve) aC = new Geom2dAdaptor_HCurve(aC2GC, 0, aLast2DParam);
|
|
Adaptor3d_CurveOnSurface aCOnS(aC, theSplitDS.mySurface);
|
|
|
|
Extrema_ExtCC anExtCC;
|
|
anExtCC.SetCurve(1, aCOnS);
|
|
anExtCC.SetCurve(2, theSplitDS.myCurve->Curve());
|
|
anExtCC.SetSingleSolutionFlag(Standard_True); // Search only one solution since multiple invocations are needed.
|
|
anExtCC.SetRange(1, 0, aLast2DParam);
|
|
theSplitDS.myExtCC = &anExtCC;
|
|
|
|
FindSplitPoint(theSplitDS,
|
|
theSplitDS.myCurve->FirstParameter(), // Initial curve range.
|
|
theSplitDS.myCurve->LastParameter());
|
|
}
|
|
|
|
|
|
//=======================================================================
|
|
//function : FindSplitPoint
|
|
//purpose :
|
|
//=======================================================================
|
|
void FindSplitPoint(SplitDS &theSplitDS,
|
|
const Standard_Real theMinParam,
|
|
const Standard_Real theMaxParam)
|
|
{
|
|
// Make extrema copy to avoid dependencies between different levels of the recursion.
|
|
Extrema_ExtCC anExtCC(*theSplitDS.myExtCC);
|
|
anExtCC.SetRange(2, theMinParam, theMaxParam);
|
|
anExtCC.Perform();
|
|
|
|
if (anExtCC.IsDone())
|
|
{
|
|
const Standard_Integer aNbExt = anExtCC.NbExt();
|
|
for (Standard_Integer anIdx = 1; anIdx <= aNbExt; ++anIdx)
|
|
{
|
|
Extrema_POnCurv aPOnC1, aPOnC2;
|
|
anExtCC.Points(anIdx, aPOnC1, aPOnC2);
|
|
|
|
theSplitDS.myExtPS->Perform(aPOnC2.Value());
|
|
if (!theSplitDS.myExtPS->IsDone())
|
|
return;
|
|
|
|
// Find point with the minimal Euclidean distance to avoid
|
|
// false positive points detection.
|
|
Standard_Integer aMinIdx = -1;
|
|
Standard_Real aMinSqDist = RealLast();
|
|
const Standard_Integer aNbPext = theSplitDS.myExtPS->NbExt();
|
|
for(Standard_Integer aPIdx = 1; aPIdx <= aNbPext; ++aPIdx)
|
|
{
|
|
const Standard_Real aCurrSqDist = theSplitDS.myExtPS->SquareDistance(aPIdx);
|
|
|
|
if (aCurrSqDist < aMinSqDist)
|
|
{
|
|
aMinSqDist = aCurrSqDist;
|
|
aMinIdx = aPIdx;
|
|
}
|
|
}
|
|
|
|
// Check that is point will be projected to the periodic border.
|
|
const Extrema_POnSurf &aPOnS = theSplitDS.myExtPS->Point(aMinIdx);
|
|
Standard_Real U, V, aProjParam;
|
|
aPOnS.Parameter(U, V);
|
|
aProjParam = theSplitDS.myPeriodicDir ? V : U;
|
|
|
|
|
|
if (Abs(aProjParam - theSplitDS.myPerMinParam) < Precision::PConfusion() ||
|
|
Abs(aProjParam - theSplitDS.myPerMaxParam) < Precision::PConfusion() )
|
|
{
|
|
const Standard_Real aParam = aPOnC2.Parameter();
|
|
const Standard_Real aCFParam = theSplitDS.myCurve->FirstParameter();
|
|
const Standard_Real aCLParam = theSplitDS.myCurve->LastParameter();
|
|
|
|
if (aParam > aCFParam + Precision::PConfusion() &&
|
|
aParam < aCLParam - Precision::PConfusion() )
|
|
{
|
|
// Add only inner points.
|
|
theSplitDS.mySplits.Append(aParam);
|
|
}
|
|
|
|
const Standard_Real aDeltaCoeff = 0.01;
|
|
const Standard_Real aDelta = (theMaxParam - theMinParam +
|
|
aCLParam - aCFParam) * aDeltaCoeff;
|
|
|
|
if (aParam - aDelta > theMinParam + Precision::PConfusion())
|
|
{
|
|
FindSplitPoint(theSplitDS,
|
|
theMinParam, aParam - aDelta); // Curve parameters.
|
|
}
|
|
|
|
if (aParam + aDelta < theMaxParam - Precision::PConfusion())
|
|
{
|
|
FindSplitPoint(theSplitDS,
|
|
aParam + aDelta, theMaxParam); // Curve parameters.
|
|
}
|
|
}
|
|
} // for (Standard_Integer anIdx = 1; anIdx <= aNbExt; ++anIdx)
|
|
}
|
|
}
|