1
0
mirror of https://git.dev.opencascade.org/repos/occt.git synced 2025-04-05 18:16:23 +03:00
occt/src/ProjLib/ProjLib_CompProjectedCurve.cxx
aml 5333268def 0027299: Incorrect result of the normal projection algorithm
Curve splitting is added to handle seam passing by initial curve.
test cases are added.

Minor corrections.
2016-04-08 11:50:43 +03:00

1931 lines
62 KiB
C++

// Created on: 1997-09-23
// Created by: Roman BORISOV
// Copyright (c) 1997-1999 Matra Datavision
// Copyright (c) 1999-2014 OPEN CASCADE SAS
//
// This file is part of Open CASCADE Technology software library.
//
// This library is free software; you can redistribute it and/or modify it under
// the terms of the GNU Lesser General Public License version 2.1 as published
// by the Free Software Foundation, with special exception defined in the file
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
// distribution for complete text of the license and disclaimer of any warranty.
//
// Alternatively, this file may be used under the terms of Open CASCADE
// commercial license or contractual agreement.
#include <algorithm>
#include <Adaptor2d_HCurve2d.hxx>
#include <Adaptor3d_HCurve.hxx>
#include <Adaptor3d_HSurface.hxx>
#include <Extrema_ExtCS.hxx>
#include <Extrema_ExtPS.hxx>
#include <Extrema_GenLocateExtPS.hxx>
#include <Extrema_POnCurv.hxx>
#include <Extrema_POnSurf.hxx>
#include <GeomAbs_CurveType.hxx>
#include <GeomLib.hxx>
#include <gp_Mat2d.hxx>
#include <gp_Pnt2d.hxx>
#include <gp_Vec2d.hxx>
#include <gp_XY.hxx>
#include <Precision.hxx>
#include <ProjLib_CompProjectedCurve.hxx>
#include <ProjLib_HCompProjectedCurve.hxx>
#include <ProjLib_PrjResolve.hxx>
#include <Standard_DomainError.hxx>
#include <Standard_NoSuchObject.hxx>
#include <Standard_NotImplemented.hxx>
#include <Standard_OutOfRange.hxx>
#include <TColgp_HSequenceOfPnt.hxx>
#include <Adaptor3d_CurveOnSurface.hxx>
#include <Geom2d_Line.hxx>
#include <Geom2dAdaptor_HCurve.hxx>
#include <Extrema_ExtCC.hxx>
#include <NCollection_Vector.hxx>
#define FuncTol 1.e-10
#ifdef OCCT_DEBUG_CHRONO
#include <OSD_Timer.hxx>
static OSD_Chronometer chr_init_point, chr_dicho_bound;
Standard_EXPORT Standard_Real t_init_point, t_dicho_bound;
Standard_EXPORT Standard_Integer init_point_count, dicho_bound_count;
static void InitChron(OSD_Chronometer& ch)
{
ch.Reset();
ch.Start();
}
static void ResultChron( OSD_Chronometer & ch, Standard_Real & time)
{
Standard_Real tch ;
ch.Stop();
ch.Show(tch);
time=time +tch;
}
#endif
// Structure to perform splits computation.
// This structure is not thread-safe since operations under mySplits should be performed in a critical section.
// myPeriodicDir - 0 for U periodicity and 1 for V periodicity.
struct SplitDS
{
SplitDS(const Handle(Adaptor3d_HCurve) &theCurve,
const Handle(Adaptor3d_HSurface) &theSurface,
NCollection_Vector<Standard_Real> &theSplits)
: myCurve(theCurve),
mySurface(theSurface),
mySplits(theSplits)
{ }
// Assignment operator is forbidden.
void operator=(const SplitDS &theSplitDS);
const Handle(Adaptor3d_HCurve) myCurve;
const Handle(Adaptor3d_HSurface) mySurface;
NCollection_Vector<Standard_Real> &mySplits;
Standard_Real myPerMinParam;
Standard_Real myPerMaxParam;
Standard_Integer myPeriodicDir;
Extrema_ExtCC *myExtCC;
Extrema_ExtPS *myExtPS;
};
//! Compute split points in the parameter space of the curve.
static void BuildCurveSplits(const Handle(Adaptor3d_HCurve) &theCurve,
const Handle(Adaptor3d_HSurface) &theSurface,
const Standard_Real theTolU,
const Standard_Real theTolV,
NCollection_Vector<Standard_Real> &theSplits);
//! Perform splitting on a specified direction. Sub-method in BuildCurveSplits.
static void SplitOnDirection(SplitDS & theSplitDS);
//! Perform recursive search of the split points.
static void FindSplitPoint(SplitDS & theSplitDS,
const Standard_Real theMinParam,
const Standard_Real theMaxParam);
//=======================================================================
//function : Comparator
//purpose : used in sort algorithm
//=======================================================================
inline Standard_Boolean Comparator(const Standard_Real theA,
const Standard_Real theB)
{
return theA < theB;
}
//=======================================================================
//function : d1
//purpose : computes first derivative of the projected curve
//=======================================================================
static void d1(const Standard_Real t,
const Standard_Real u,
const Standard_Real v,
gp_Vec2d& V,
const Handle(Adaptor3d_HCurve)& Curve,
const Handle(Adaptor3d_HSurface)& Surface)
{
gp_Pnt S, C;
gp_Vec DS1_u, DS1_v, DS2_u, DS2_uv, DS2_v, DC1_t;
Surface->D2(u, v, S, DS1_u, DS1_v, DS2_u, DS2_v, DS2_uv);
Curve->D1(t, C, DC1_t);
gp_Vec Ort(C, S);// Ort = S - C
gp_Vec2d dE_dt(-DC1_t*DS1_u, -DC1_t*DS1_v);
gp_XY dE_du(DS1_u*DS1_u + Ort*DS2_u,
DS1_u*DS1_v + Ort*DS2_uv);
gp_XY dE_dv(DS1_v*DS1_u + Ort*DS2_uv,
DS1_v*DS1_v + Ort*DS2_v);
Standard_Real det = dE_du.X()*dE_dv.Y() - dE_du.Y()*dE_dv.X();
if (fabs(det) < gp::Resolution()) Standard_ConstructionError::Raise();
gp_Mat2d M(gp_XY(dE_dv.Y()/det, -dE_du.Y()/det),
gp_XY(-dE_dv.X()/det, dE_du.X()/det));
V = - gp_Vec2d(gp_Vec2d(M.Row(1))*dE_dt, gp_Vec2d(M.Row(2))*dE_dt);
}
//=======================================================================
//function : d2
//purpose : computes second derivative of the projected curve
//=======================================================================
static void d2(const Standard_Real t,
const Standard_Real u,
const Standard_Real v,
gp_Vec2d& V1, gp_Vec2d& V2,
const Handle(Adaptor3d_HCurve)& Curve,
const Handle(Adaptor3d_HSurface)& Surface)
{
gp_Pnt S, C;
gp_Vec DS1_u, DS1_v, DS2_u, DS2_uv, DS2_v,
DS3_u, DS3_v, DS3_uuv, DS3_uvv,
DC1_t, DC2_t;
Surface->D3(u, v, S, DS1_u, DS1_v, DS2_u, DS2_v, DS2_uv,
DS3_u, DS3_v, DS3_uuv, DS3_uvv);
Curve->D2(t, C, DC1_t, DC2_t);
gp_Vec Ort(C, S);
gp_Vec2d dE_dt(-DC1_t*DS1_u, -DC1_t*DS1_v);
gp_XY dE_du(DS1_u*DS1_u + Ort*DS2_u,
DS1_u*DS1_v + Ort*DS2_uv);
gp_XY dE_dv(DS1_v*DS1_u + Ort*DS2_uv,
DS1_v*DS1_v + Ort*DS2_v);
Standard_Real det = dE_du.X()*dE_dv.Y() - dE_du.Y()*dE_dv.X();
if (fabs(det) < gp::Resolution()) Standard_ConstructionError::Raise();
gp_Mat2d M(gp_XY(dE_dv.Y()/det, -dE_du.Y()/det),
gp_XY(-dE_dv.X()/det, dE_du.X()/det));
// First derivative
V1 = - gp_Vec2d(gp_Vec2d(M.Row(1))*dE_dt, gp_Vec2d(M.Row(2))*dE_dt);
/* Second derivative */
// Computation of d2E_dt2 = S1
gp_Vec2d d2E_dt(-DC2_t*DS1_u, -DC2_t*DS1_v);
// Computation of 2*(d2E/dtdX)(dX/dt) = S2
gp_Vec2d d2E1_dtdX(-DC1_t*DS2_u,
-DC1_t*DS2_uv);
gp_Vec2d d2E2_dtdX(-DC1_t*DS2_uv,
-DC1_t*DS2_v);
gp_Vec2d S2 = 2*gp_Vec2d(d2E1_dtdX*V1, d2E2_dtdX*V1);
// Computation of (d2E/dX2)*(dX/dt)2 = S3
// Row11 = (d2E1/du2, d2E1/dudv)
Standard_Real tmp;
gp_Vec2d Row11(3*DS1_u*DS2_u + Ort*DS3_u,
tmp = 2*DS1_u*DS2_uv +
DS1_v*DS2_u + Ort*DS3_uuv);
// Row12 = (d2E1/dudv, d2E1/dv2)
gp_Vec2d Row12(tmp, DS2_v*DS1_u + 2*DS1_v*DS2_uv +
Ort*DS3_uvv);
// Row21 = (d2E2/du2, d2E2/dudv)
gp_Vec2d Row21(DS2_u*DS1_v + 2*DS1_u*DS2_uv + Ort*DS3_uuv,
tmp = 2*DS2_uv*DS1_v + DS1_u*DS2_v + Ort*DS3_uvv);
// Row22 = (d2E2/duv, d2E2/dvdv)
gp_Vec2d Row22(tmp, 3*DS1_v*DS2_v + Ort*DS3_v);
gp_Vec2d S3(V1*gp_Vec2d(Row11*V1, Row12*V1),
V1*gp_Vec2d(Row21*V1, Row22*V1));
gp_Vec2d Sum = d2E_dt + S2 + S3;
V2 = - gp_Vec2d(gp_Vec2d(M.Row(1))*Sum, gp_Vec2d(M.Row(2))*Sum);
}
//=======================================================================
//function : d1CurveOnSurf
//purpose : computes first derivative of the 3d projected curve
//=======================================================================
#if 0
static void d1CurvOnSurf(const Standard_Real t,
const Standard_Real u,
const Standard_Real v,
gp_Vec& V,
const Handle(Adaptor3d_HCurve)& Curve,
const Handle(Adaptor3d_HSurface)& Surface)
{
gp_Pnt S, C;
gp_Vec2d V2d;
gp_Vec DS1_u, DS1_v, DS2_u, DS2_uv, DS2_v, DC1_t;
Surface->D2(u, v, S, DS1_u, DS1_v, DS2_u, DS2_v, DS2_uv);
Curve->D1(t, C, DC1_t);
gp_Vec Ort(C, S);// Ort = S - C
gp_Vec2d dE_dt(-DC1_t*DS1_u, -DC1_t*DS1_v);
gp_XY dE_du(DS1_u*DS1_u + Ort*DS2_u,
DS1_u*DS1_v + Ort*DS2_uv);
gp_XY dE_dv(DS1_v*DS1_u + Ort*DS2_uv,
DS1_v*DS1_v + Ort*DS2_v);
Standard_Real det = dE_du.X()*dE_dv.Y() - dE_du.Y()*dE_dv.X();
if (fabs(det) < gp::Resolution()) Standard_ConstructionError::Raise();
gp_Mat2d M(gp_XY(dE_dv.Y()/det, -dE_du.Y()/det),
gp_XY(-dE_dv.X()/det, dE_du.X()/det));
V2d = - gp_Vec2d(gp_Vec2d(M.Row(1))*dE_dt, gp_Vec2d(M.Row(2))*dE_dt);
V = DS1_u * V2d.X() + DS1_v * V2d.Y();
}
#endif
//=======================================================================
//function : d2CurveOnSurf
//purpose : computes second derivative of the 3D projected curve
//=======================================================================
static void d2CurvOnSurf(const Standard_Real t,
const Standard_Real u,
const Standard_Real v,
gp_Vec& V1 , gp_Vec& V2 ,
const Handle(Adaptor3d_HCurve)& Curve,
const Handle(Adaptor3d_HSurface)& Surface)
{
gp_Pnt S, C;
gp_Vec2d V12d,V22d;
gp_Vec DS1_u, DS1_v, DS2_u, DS2_uv, DS2_v,
DS3_u, DS3_v, DS3_uuv, DS3_uvv,
DC1_t, DC2_t;
Surface->D3(u, v, S, DS1_u, DS1_v, DS2_u, DS2_v, DS2_uv,
DS3_u, DS3_v, DS3_uuv, DS3_uvv);
Curve->D2(t, C, DC1_t, DC2_t);
gp_Vec Ort(C, S);
gp_Vec2d dE_dt(-DC1_t*DS1_u, -DC1_t*DS1_v);
gp_XY dE_du(DS1_u*DS1_u + Ort*DS2_u,
DS1_u*DS1_v + Ort*DS2_uv);
gp_XY dE_dv(DS1_v*DS1_u + Ort*DS2_uv,
DS1_v*DS1_v + Ort*DS2_v);
Standard_Real det = dE_du.X()*dE_dv.Y() - dE_du.Y()*dE_dv.X();
if (fabs(det) < gp::Resolution()) Standard_ConstructionError::Raise();
gp_Mat2d M(gp_XY(dE_dv.Y()/det, -dE_du.Y()/det),
gp_XY(-dE_dv.X()/det, dE_du.X()/det));
// First derivative
V12d = - gp_Vec2d(gp_Vec2d(M.Row(1))*dE_dt, gp_Vec2d(M.Row(2))*dE_dt);
/* Second derivative */
// Computation of d2E_dt2 = S1
gp_Vec2d d2E_dt(-DC2_t*DS1_u, -DC2_t*DS1_v);
// Computation of 2*(d2E/dtdX)(dX/dt) = S2
gp_Vec2d d2E1_dtdX(-DC1_t*DS2_u,
-DC1_t*DS2_uv);
gp_Vec2d d2E2_dtdX(-DC1_t*DS2_uv,
-DC1_t*DS2_v);
gp_Vec2d S2 = 2*gp_Vec2d(d2E1_dtdX*V12d, d2E2_dtdX*V12d);
// Computation of (d2E/dX2)*(dX/dt)2 = S3
// Row11 = (d2E1/du2, d2E1/dudv)
Standard_Real tmp;
gp_Vec2d Row11(3*DS1_u*DS2_u + Ort*DS3_u,
tmp = 2*DS1_u*DS2_uv +
DS1_v*DS2_u + Ort*DS3_uuv);
// Row12 = (d2E1/dudv, d2E1/dv2)
gp_Vec2d Row12(tmp, DS2_v*DS1_u + 2*DS1_v*DS2_uv +
Ort*DS3_uvv);
// Row21 = (d2E2/du2, d2E2/dudv)
gp_Vec2d Row21(DS2_u*DS1_v + 2*DS1_u*DS2_uv + Ort*DS3_uuv,
tmp = 2*DS2_uv*DS1_v + DS1_u*DS2_v + Ort*DS3_uvv);
// Row22 = (d2E2/duv, d2E2/dvdv)
gp_Vec2d Row22(tmp, 3*DS1_v*DS2_v + Ort*DS3_v);
gp_Vec2d S3(V12d*gp_Vec2d(Row11*V12d, Row12*V12d),
V12d*gp_Vec2d(Row21*V12d, Row22*V12d));
gp_Vec2d Sum = d2E_dt + S2 + S3;
V22d = - gp_Vec2d(gp_Vec2d(M.Row(1))*Sum, gp_Vec2d(M.Row(2))*Sum);
V1 = DS1_u * V12d.X() + DS1_v * V12d.Y();
V2 = DS2_u * V12d.X() *V12d.X()
+ DS1_u * V22d.X()
+ 2 * DS2_uv * V12d.X() *V12d.Y()
+ DS2_v * V12d.Y() * V12d.Y()
+ DS1_v * V22d.Y();
}
//=======================================================================
//function : ExactBound
//purpose : computes exact boundary point
//=======================================================================
static Standard_Boolean ExactBound(gp_Pnt& Sol,
const Standard_Real NotSol,
const Standard_Real Tol,
const Standard_Real TolU,
const Standard_Real TolV,
const Handle(Adaptor3d_HCurve)& Curve,
const Handle(Adaptor3d_HSurface)& Surface)
{
Standard_Real U0, V0, t, t1, t2, FirstU, LastU, FirstV, LastV;
gp_Pnt2d POnS;
U0 = Sol.Y();
V0 = Sol.Z();
FirstU = Surface->FirstUParameter();
LastU = Surface->LastUParameter();
FirstV = Surface->FirstVParameter();
LastV = Surface->LastVParameter();
// Here we have to compute the boundary that projection is going to intersect
gp_Vec2d D2d;
//these variables are to estimate which boundary has more apportunity
//to be intersected
Standard_Real RU1, RU2, RV1, RV2;
d1(Sol.X(), U0, V0, D2d, Curve, Surface);
// Here we assume that D2d != (0, 0)
if(Abs(D2d.X()) < gp::Resolution())
{
RU1 = Precision::Infinite();
RU2 = Precision::Infinite();
RV1 = V0 - FirstV;
RV2 = LastV - V0;
}
else if(Abs(D2d.Y()) < gp::Resolution())
{
RU1 = U0 - FirstU;
RU2 = LastU - U0;
RV1 = Precision::Infinite();
RV2 = Precision::Infinite();
}
else
{
RU1 = gp_Pnt2d(U0, V0).
Distance(gp_Pnt2d(FirstU, V0 + (FirstU - U0)*D2d.Y()/D2d.X()));
RU2 = gp_Pnt2d(U0, V0).
Distance(gp_Pnt2d(LastU, V0 + (LastU - U0)*D2d.Y()/D2d.X()));
RV1 = gp_Pnt2d(U0, V0).
Distance(gp_Pnt2d(U0 + (FirstV - V0)*D2d.X()/D2d.Y(), FirstV));
RV2 = gp_Pnt2d(U0, V0).
Distance(gp_Pnt2d(U0 + (LastV - V0)*D2d.X()/D2d.Y(), LastV));
}
TColgp_SequenceOfPnt Seq;
Seq.Append(gp_Pnt(FirstU, RU1, 2));
Seq.Append(gp_Pnt(LastU, RU2, 2));
Seq.Append(gp_Pnt(FirstV, RV1, 3));
Seq.Append(gp_Pnt(LastV, RV2, 3));
Standard_Integer i, j;
for(i = 1; i <= 3; i++)
for(j = 1; j <= 4-i; j++)
if(Seq(j).Y() < Seq(j+1).Y())
{
gp_Pnt swp;
swp = Seq.Value(j+1);
Seq.ChangeValue(j+1) = Seq.Value(j);
Seq.ChangeValue(j) = swp;
}
t = Sol.X();
t1 = Min(Sol.X(), NotSol);
t2 = Max(Sol.X(), NotSol);
Standard_Boolean isDone = Standard_False;
while (!Seq.IsEmpty())
{
gp_Pnt P;
P = Seq.Last();
Seq.Remove(Seq.Length());
ProjLib_PrjResolve aPrjPS(Curve->Curve(),
Surface->Surface(),
Standard_Integer(P.Z()));
if(Standard_Integer(P.Z()) == 2)
{
aPrjPS.Perform(t, P.X(), V0, gp_Pnt2d(Tol, TolV),
gp_Pnt2d(t1, Surface->FirstVParameter()),
gp_Pnt2d(t2, Surface->LastVParameter()), FuncTol);
if(!aPrjPS.IsDone()) continue;
POnS = aPrjPS.Solution();
Sol = gp_Pnt(POnS.X(), P.X(), POnS.Y());
isDone = Standard_True;
break;
}
else
{
aPrjPS.Perform(t, U0, P.X(), gp_Pnt2d(Tol, TolU),
gp_Pnt2d(t1, Surface->FirstUParameter()),
gp_Pnt2d(t2, Surface->LastUParameter()), FuncTol);
if(!aPrjPS.IsDone()) continue;
POnS = aPrjPS.Solution();
Sol = gp_Pnt(POnS.X(), POnS.Y(), P.X());
isDone = Standard_True;
break;
}
}
return isDone;
}
//=======================================================================
//function : DichExactBound
//purpose : computes exact boundary point
//=======================================================================
static void DichExactBound(gp_Pnt& Sol,
const Standard_Real NotSol,
const Standard_Real Tol,
const Standard_Real TolU,
const Standard_Real TolV,
const Handle(Adaptor3d_HCurve)& Curve,
const Handle(Adaptor3d_HSurface)& Surface)
{
#ifdef OCCT_DEBUG_CHRONO
InitChron(chr_dicho_bound);
#endif
Standard_Real U0, V0, t;
gp_Pnt2d POnS;
U0 = Sol.Y();
V0 = Sol.Z();
ProjLib_PrjResolve aPrjPS(Curve->Curve(), Surface->Surface(), 1);
Standard_Real aNotSol = NotSol;
while (fabs(Sol.X() - aNotSol) > Tol)
{
t = (Sol.X() + aNotSol)/2;
aPrjPS.Perform(t, U0, V0, gp_Pnt2d(TolU, TolV),
gp_Pnt2d(Surface->FirstUParameter(),Surface->FirstVParameter()),
gp_Pnt2d(Surface->LastUParameter(),Surface->LastVParameter()),
FuncTol, Standard_True);
if (aPrjPS.IsDone())
{
POnS = aPrjPS.Solution();
Sol = gp_Pnt(t, POnS.X(), POnS.Y());
U0=Sol.Y();
V0=Sol.Z();
}
else aNotSol = t;
}
#ifdef OCCT_DEBUG_CHRONO
ResultChron(chr_dicho_bound,t_dicho_bound);
dicho_bound_count++;
#endif
}
//=======================================================================
//function : InitialPoint
//purpose :
//=======================================================================
static Standard_Boolean InitialPoint(const gp_Pnt& Point,
const Standard_Real t,
const Handle(Adaptor3d_HCurve)& C,
const Handle(Adaptor3d_HSurface)& S,
const Standard_Real TolU,
const Standard_Real TolV,
Standard_Real& U,
Standard_Real& V)
{
ProjLib_PrjResolve aPrjPS(C->Curve(), S->Surface(), 1);
Standard_Real ParU,ParV;
Extrema_ExtPS aExtPS;
aExtPS.Initialize(S->Surface(), S->FirstUParameter(),
S->LastUParameter(), S->FirstVParameter(),
S->LastVParameter(), TolU, TolV);
aExtPS.Perform(Point);
Standard_Integer argmin = 0;
if (aExtPS.IsDone() && aExtPS.NbExt())
{
Standard_Integer i, Nend;
// Search for the nearest solution which is also a normal projection
Nend = aExtPS.NbExt();
for(i = 1; i <= Nend; i++)
{
Extrema_POnSurf POnS = aExtPS.Point(i);
POnS.Parameter(ParU, ParV);
aPrjPS.Perform(t, ParU, ParV, gp_Pnt2d(TolU, TolV),
gp_Pnt2d(S->FirstUParameter(), S->FirstVParameter()),
gp_Pnt2d(S->LastUParameter(), S->LastVParameter()),
FuncTol, Standard_True);
if(aPrjPS.IsDone() )
if (argmin == 0 || aExtPS.SquareDistance(i) < aExtPS.SquareDistance(argmin)) argmin = i;
}
}
if( argmin == 0 ) return Standard_False;
else
{
Extrema_POnSurf POnS = aExtPS.Point(argmin);
POnS.Parameter(U, V);
return Standard_True;
}
}
//=======================================================================
//function : ProjLib_CompProjectedCurve
//purpose :
//=======================================================================
ProjLib_CompProjectedCurve::ProjLib_CompProjectedCurve()
: myNbCurves(0),
myTolU (0.0),
myTolV (0.0),
myMaxDist (0.0)
{
}
//=======================================================================
//function : ProjLib_CompProjectedCurve
//purpose :
//=======================================================================
ProjLib_CompProjectedCurve::ProjLib_CompProjectedCurve
(const Handle(Adaptor3d_HSurface)& theSurface,
const Handle(Adaptor3d_HCurve)& theCurve,
const Standard_Real theTolU,
const Standard_Real theTolV)
: mySurface (theSurface),
myCurve (theCurve),
myNbCurves(0),
mySequence(new ProjLib_HSequenceOfHSequenceOfPnt()),
myTolU (theTolU),
myTolV (theTolV),
myMaxDist (-1.0)
{
Init();
}
//=======================================================================
//function : ProjLib_CompProjectedCurve
//purpose :
//=======================================================================
ProjLib_CompProjectedCurve::ProjLib_CompProjectedCurve
(const Handle(Adaptor3d_HSurface)& theSurface,
const Handle(Adaptor3d_HCurve)& theCurve,
const Standard_Real theTolU,
const Standard_Real theTolV,
const Standard_Real theMaxDist)
: mySurface (theSurface),
myCurve (theCurve),
myNbCurves(0),
mySequence(new ProjLib_HSequenceOfHSequenceOfPnt()),
myTolU (theTolU),
myTolV (theTolV),
myMaxDist (theMaxDist)
{
Init();
}
//=======================================================================
//function : Init
//purpose :
//=======================================================================
void ProjLib_CompProjectedCurve::Init()
{
myTabInt.Nullify();
NCollection_Vector<Standard_Real> aSplits;
aSplits.Clear();
Standard_Real Tol;// Tolerance for ExactBound
Standard_Integer i, Nend = 0, aSplitIdx = 0;
Standard_Boolean FromLastU = Standard_False,
isSplitsComputed = Standard_False;
const Standard_Real aTol3D = Precision::Confusion();
Extrema_ExtCS CExt(myCurve->Curve(), mySurface->Surface(), aTol3D, aTol3D);
if (CExt.IsDone() && CExt.NbExt())
{
// Search for the minimum solution.
// Avoid usage of extrema result that can be wrong for extrusion.
if(myMaxDist > 0 &&
mySurface->GetType() != GeomAbs_SurfaceOfExtrusion)
{
Standard_Real min_val2;
min_val2 = CExt.SquareDistance(1);
Nend = CExt.NbExt();
for(i = 2; i <= Nend; i++)
{
if (CExt.SquareDistance(i) < min_val2)
min_val2 = CExt.SquareDistance(i);
}
if (min_val2 > myMaxDist * myMaxDist)
return; // No near solution -> exit.
}
}
Standard_Real FirstU, LastU, Step, SearchStep, WalkStep, t;
FirstU = myCurve->FirstParameter();
LastU = myCurve->LastParameter();
const Standard_Real GlobalMinStep = 1.e-4;
//<GlobalMinStep> is sufficiently small to provide solving from initial point
//and, on the other hand, it is sufficiently large to avoid too close solutions.
const Standard_Real MinStep = 0.01*(LastU - FirstU),
MaxStep = 0.1*(LastU - FirstU);
SearchStep = 10*MinStep;
Step = SearchStep;
gp_Pnt2d aLowBorder(mySurface->FirstUParameter(),mySurface->FirstVParameter());
gp_Pnt2d aUppBorder(mySurface->LastUParameter(), mySurface->LastVParameter());
gp_Pnt2d aTol(myTolU, myTolV);
ProjLib_PrjResolve aPrjPS(myCurve->Curve(), mySurface->Surface(), 1);
t = FirstU;
Standard_Boolean new_part;
Standard_Real prevDeb=0.;
Standard_Boolean SameDeb=Standard_False;
gp_Pnt Triple, prevTriple;
//Basic loop
while(t <= LastU)
{
// Search for the beginning of a new continuous part
// to avoid infinite computation in some difficult cases.
new_part = Standard_False;
if(t > FirstU && Abs(t-prevDeb) <= Precision::PConfusion()) SameDeb=Standard_True;
while(t <= LastU && !new_part && !FromLastU && !SameDeb)
{
prevDeb=t;
if (t == LastU) FromLastU=Standard_True;
Standard_Boolean initpoint=Standard_False;
Standard_Real U = 0., V = 0.;
gp_Pnt CPoint;
Standard_Real ParT,ParU,ParV;
// Search an initial point in the list of Extrema Curve-Surface
if(Nend != 0 && !CExt.IsParallel())
{
for (i=1;i<=Nend;i++)
{
Extrema_POnCurv P1;
Extrema_POnSurf P2;
CExt.Points(i,P1,P2);
ParT=P1.Parameter();
P2.Parameter(ParU, ParV);
aPrjPS.Perform(ParT, ParU, ParV, aTol, aLowBorder, aUppBorder, FuncTol, Standard_True);
if ( aPrjPS.IsDone() && P1.Parameter() > Max(FirstU,t-Step+Precision::PConfusion())
&& P1.Parameter() <= t)
{
t=ParT;
U=ParU;
V=ParV;
CPoint=P1.Value();
initpoint = Standard_True;
break;
}
}
}
if (!initpoint)
{
myCurve->D0(t,CPoint);
#ifdef OCCT_DEBUG_CHRONO
InitChron(chr_init_point);
#endif
// PConfusion - use geometric tolerances in extrema / optimization.
initpoint=InitialPoint(CPoint, t,myCurve,mySurface, Precision::PConfusion(), Precision::PConfusion(), U, V);
#ifdef OCCT_DEBUG_CHRONO
ResultChron(chr_init_point,t_init_point);
init_point_count++;
#endif
}
if(initpoint)
{
// When U or V lie on surface joint in some cases we cannot use them
// as initial point for aPrjPS, so we switch them
gp_Vec2d D;
if ((mySurface->IsUPeriodic() &&
Abs(aUppBorder.X() - aLowBorder.X() - mySurface->UPeriod()) < Precision::Confusion()) ||
(mySurface->IsVPeriodic() &&
Abs(aUppBorder.Y() - aLowBorder.Y() - mySurface->VPeriod()) < Precision::Confusion()))
{
if((Abs(U - aLowBorder.X()) < mySurface->UResolution(Precision::PConfusion())) &&
mySurface->IsUPeriodic())
{
d1(t, U, V, D, myCurve, mySurface);
if (D.X() < 0 ) U = aUppBorder.X();
}
else if((Abs(U - aUppBorder.X()) < mySurface->UResolution(Precision::PConfusion())) &&
mySurface->IsUPeriodic())
{
d1(t, U, V, D, myCurve, mySurface);
if (D.X() > 0) U = aLowBorder.X();
}
if((Abs(V - aLowBorder.Y()) < mySurface->VResolution(Precision::PConfusion())) &&
mySurface->IsVPeriodic())
{
d1(t, U, V, D, myCurve, mySurface);
if (D.Y() < 0) V = aUppBorder.Y();
}
else if((Abs(V - aUppBorder.Y()) <= mySurface->VResolution(Precision::PConfusion())) &&
mySurface->IsVPeriodic())
{
d1(t, U, V, D, myCurve, mySurface);
if (D.Y() > 0) V = aLowBorder.Y();
}
}
if (myMaxDist > 0)
{
// Here we are going to stop if the distance between projection and
// corresponding curve point is greater than myMaxDist
gp_Pnt POnS;
Standard_Real d;
mySurface->D0(U, V, POnS);
d = CPoint.Distance(POnS);
if (d > myMaxDist)
{
mySequence->Clear();
myNbCurves = 0;
return;
}
}
Triple = gp_Pnt(t, U, V);
if (t != FirstU)
{
//Search for exact boundary point
Tol = Min(myTolU, myTolV);
gp_Vec2d aD;
d1(Triple.X(), Triple.Y(), Triple.Z(), aD, myCurve, mySurface);
Tol /= Max(Abs(aD.X()), Abs(aD.Y()));
if(!ExactBound(Triple, t - Step, Tol,
myTolU, myTolV, myCurve, mySurface))
{
#ifdef OCCT_DEBUG
cout<<"There is a problem with ExactBound computation"<<endl;
#endif
DichExactBound(Triple, t - Step, Tol, myTolU, myTolV,
myCurve, mySurface);
}
}
new_part = Standard_True;
}
else
{
if(t == LastU) break;
t += Step;
if(t>LastU)
{
Step =Step+LastU-t;
t=LastU;
}
}
}
if (!new_part) break;
//We have found a new continuous part
Handle(TColgp_HSequenceOfPnt) hSeq = new TColgp_HSequenceOfPnt();
mySequence->Append(hSeq);
myNbCurves++;
mySequence->Value(myNbCurves)->Append(Triple);
prevTriple = Triple;
if (Triple.X() == LastU) break;//return;
//Computation of WalkStep
gp_Vec D1, D2;
Standard_Real MagnD1, MagnD2;
d2CurvOnSurf(Triple.X(), Triple.Y(), Triple.Z(), D1, D2, myCurve, mySurface);
MagnD1 = D1.Magnitude();
MagnD2 = D2.Magnitude();
if(MagnD2 < Precision::Confusion()) WalkStep = MaxStep;
else WalkStep = Min(MaxStep, Max(MinStep, 0.1*MagnD1/MagnD2));
Step = WalkStep;
t = Triple.X() + Step;
if (t > LastU) t = LastU;
Standard_Real prevStep = Step;
Standard_Real U0, V0;
//Here we are trying to prolong continuous part
while (t <= LastU && new_part)
{
U0 = Triple.Y() + (Step / prevStep) * (Triple.Y() - prevTriple.Y());
V0 = Triple.Z() + (Step / prevStep) * (Triple.Z() - prevTriple.Z());
// adjust U0 to be in [mySurface->FirstUParameter(),mySurface->LastUParameter()]
U0 = Min(Max(U0, aLowBorder.X()), aUppBorder.X());
// adjust V0 to be in [mySurface->FirstVParameter(),mySurface->LastVParameter()]
V0 = Min(Max(V0, aLowBorder.Y()), aUppBorder.Y());
aPrjPS.Perform(t, U0, V0, aTol,
aLowBorder, aUppBorder, FuncTol, Standard_True);
if(!aPrjPS.IsDone())
{
if (Step <= GlobalMinStep)
{
//Search for exact boundary point
Tol = Min(myTolU, myTolV);
gp_Vec2d D;
d1(Triple.X(), Triple.Y(), Triple.Z(), D, myCurve, mySurface);
Tol /= Max(Abs(D.X()), Abs(D.Y()));
if(!ExactBound(Triple, t, Tol, myTolU, myTolV,
myCurve, mySurface))
{
#ifdef OCCT_DEBUG
cout<<"There is a problem with ExactBound computation"<<endl;
#endif
DichExactBound(Triple, t, Tol, myTolU, myTolV,
myCurve, mySurface);
}
if((Triple.X() - mySequence->Value(myNbCurves)->Value(mySequence->Value(myNbCurves)->Length()).X()) > 1.e-10)
mySequence->Value(myNbCurves)->Append(Triple);
if((LastU - Triple.X()) < Tol) {t = LastU + 1; break;}//return;
Step = SearchStep;
t = Triple.X() + Step;
if (t > (LastU-MinStep/2) )
{
Step =Step+LastU-t;
t = LastU;
}
new_part = Standard_False;
}
else
{
// decrease step
Standard_Real SaveStep = Step;
Step /= 2.;
t = Triple .X() + Step;
if (t > (LastU-MinStep/4) )
{
Step =Step+LastU-t;
if (Abs(Step - SaveStep) <= Precision::PConfusion())
Step = GlobalMinStep; //to avoid looping
t = LastU;
}
}
}
// Go further
else
{
prevTriple = Triple;
prevStep = Step;
Triple = gp_Pnt(t, aPrjPS.Solution().X(), aPrjPS.Solution().Y());
// Check for possible local traps.
UpdateTripleByTrapCriteria(Triple);
// Protection from case when the whole curve lies on a seam.
if (!isSplitsComputed)
{
Standard_Boolean isUPossible = Standard_False;
if (mySurface->IsUPeriodic() &&
(Abs(Triple.Y() - mySurface->FirstUParameter() ) > Precision::PConfusion() &&
Abs(Triple.Y() - mySurface->LastUParameter() ) > Precision::PConfusion()))
{
isUPossible = Standard_True;
}
Standard_Boolean isVPossible = Standard_False;
if (mySurface->IsVPeriodic() &&
(Abs(Triple.Z() - mySurface->FirstVParameter() ) > Precision::PConfusion() &&
Abs(Triple.Z() - mySurface->LastVParameter() ) > Precision::PConfusion()))
{
isVPossible = Standard_True;
}
if (isUPossible || isVPossible)
{
// When point is good conditioned.
BuildCurveSplits(myCurve, mySurface, myTolU, myTolV, aSplits);
isSplitsComputed = Standard_True;
}
}
if((Triple.X() - mySequence->Value(myNbCurves)->Value(mySequence->Value(myNbCurves)->Length()).X()) > 1.e-10)
mySequence->Value(myNbCurves)->Append(Triple);
if (t == LastU) {t = LastU + 1; break;}//return;
//Computation of WalkStep
d2CurvOnSurf(Triple.X(), Triple.Y(), Triple.Z(), D1, D2, myCurve, mySurface);
MagnD1 = D1.Magnitude();
MagnD2 = D2.Magnitude();
if(MagnD2 < Precision::Confusion() ) WalkStep = MaxStep;
else WalkStep = Min(MaxStep, Max(MinStep, 0.1*MagnD1/MagnD2));
Step = WalkStep;
t += Step;
if (t > (LastU-MinStep/2))
{
Step = Step + LastU - t;
t = LastU;
}
// We assume at least one point of cache inside of a split.
const Standard_Integer aSize = aSplits.Size();
for(Standard_Integer anIdx = aSplitIdx; anIdx < aSize; ++anIdx)
{
const Standard_Real aParam = aSplits(anIdx);
if (Abs(aParam - Triple.X() ) < Precision::PConfusion())
{
// The current point is equal to a split point.
new_part = Standard_False;
// Move split index to avoid check of the whole list.
++aSplitIdx;
break;
}
else if (aParam < t + Precision::PConfusion() )
{
// The next point crosses the split point.
t = aParam;
Step = t - prevTriple.X();
}
} // for(Standard_Integer anIdx = aSplitIdx; anIdx < aSize; ++anIdx)
}
}
}
// Sequence post-proceeding.
Standard_Integer j;
// 1. Removing poor parts
Standard_Integer NbPart=myNbCurves;
Standard_Integer ipart=1;
for(i = 1; i <= NbPart; i++) {
// Standard_Integer NbPoints = mySequence->Value(i)->Length();
if(mySequence->Value(ipart)->Length() < 2) {
mySequence->Remove(ipart);
myNbCurves--;
}
else ipart++;
}
if(myNbCurves == 0) return;
// 2. Removing common parts of bounds
for(i = 1; i < myNbCurves; i++)
{
if(mySequence->Value(i)->Value(mySequence->Value(i)->Length()).X() >=
mySequence->Value(i+1)->Value(1).X())
mySequence->ChangeValue(i+1)->ChangeValue(1).SetX(mySequence->Value(i)->Value(mySequence->Value(i)->Length()).X() + 1.e-12);
}
// 3. Computation of the maximum distance from each part of curve to surface
myMaxDistance = new TColStd_HArray1OfReal(1, myNbCurves);
myMaxDistance->Init(0);
for(i = 1; i <= myNbCurves; i++)
for(j = 1; j <= mySequence->Value(i)->Length(); j++)
{
gp_Pnt POnC, POnS, aTriple;
Standard_Real Distance;
aTriple = mySequence->Value(i)->Value(j);
myCurve->D0(aTriple.X(), POnC);
mySurface->D0(aTriple.Y(), aTriple.Z(), POnS);
Distance = POnC.Distance(POnS);
if (myMaxDistance->Value(i) < Distance)
myMaxDistance->ChangeValue(i) = Distance;
}
// 4. Check the projection to be a single point
gp_Pnt2d Pmoy, Pcurr, P;
Standard_Real AveU, AveV;
mySnglPnts = new TColStd_HArray1OfBoolean(1, myNbCurves);
for(i = 1; i <= myNbCurves; i++) mySnglPnts->SetValue(i, Standard_True);
for(i = 1; i <= myNbCurves; i++)
{
//compute an average U and V
for(j = 1, AveU = 0., AveV = 0.; j <= mySequence->Value(i)->Length(); j++)
{
AveU += mySequence->Value(i)->Value(j).Y();
AveV += mySequence->Value(i)->Value(j).Z();
}
AveU /= mySequence->Value(i)->Length();
AveV /= mySequence->Value(i)->Length();
Pmoy.SetCoord(AveU,AveV);
for(j = 1; j <= mySequence->Value(i)->Length(); j++)
{
Pcurr =
gp_Pnt2d(mySequence->Value(i)->Value(j).Y(), mySequence->Value(i)->Value(j).Z());
if (Pcurr.Distance(Pmoy) > ((myTolU < myTolV) ? myTolV : myTolU))
{
mySnglPnts->SetValue(i, Standard_False);
break;
}
}
}
// 5. Check the projection to be an isoparametric curve of the surface
myUIso = new TColStd_HArray1OfBoolean(1, myNbCurves);
for(i = 1; i <= myNbCurves; i++) myUIso->SetValue(i, Standard_True);
myVIso = new TColStd_HArray1OfBoolean(1, myNbCurves);
for(i = 1; i <= myNbCurves; i++) myVIso->SetValue(i, Standard_True);
for(i = 1; i <= myNbCurves; i++) {
if (IsSinglePnt(i, P)|| mySequence->Value(i)->Length() <=2) {
myUIso->SetValue(i, Standard_False);
myVIso->SetValue(i, Standard_False);
continue;
}
// new test for isoparametrics
if ( mySequence->Value(i)->Length() > 2) {
//compute an average U and V
for(j = 1, AveU = 0., AveV = 0.; j <= mySequence->Value(i)->Length(); j++) {
AveU += mySequence->Value(i)->Value(j).Y();
AveV += mySequence->Value(i)->Value(j).Z();
}
AveU /= mySequence->Value(i)->Length();
AveV /= mySequence->Value(i)->Length();
// is i-part U-isoparametric ?
for(j = 1; j <= mySequence->Value(i)->Length(); j++)
{
if(Abs(mySequence->Value(i)->Value(j).Y() - AveU) > myTolU)
{
myUIso->SetValue(i, Standard_False);
break;
}
}
// is i-part V-isoparametric ?
for(j = 1; j <= mySequence->Value(i)->Length(); j++)
{
if(Abs(mySequence->Value(i)->Value(j).Z() - AveV) > myTolV)
{
myVIso->SetValue(i, Standard_False);
break;
}
}
//
}
}
}
//=======================================================================
//function : Load
//purpose :
//=======================================================================
void ProjLib_CompProjectedCurve::Load(const Handle(Adaptor3d_HSurface)& S)
{
mySurface = S;
}
//=======================================================================
//function : Load
//purpose :
//=======================================================================
void ProjLib_CompProjectedCurve::Load(const Handle(Adaptor3d_HCurve)& C)
{
myCurve = C;
}
//=======================================================================
//function : GetSurface
//purpose :
//=======================================================================
const Handle(Adaptor3d_HSurface)& ProjLib_CompProjectedCurve::GetSurface() const
{
return mySurface;
}
//=======================================================================
//function : GetCurve
//purpose :
//=======================================================================
const Handle(Adaptor3d_HCurve)& ProjLib_CompProjectedCurve::GetCurve() const
{
return myCurve;
}
//=======================================================================
//function : GetTolerance
//purpose :
//=======================================================================
void ProjLib_CompProjectedCurve::GetTolerance(Standard_Real& TolU,
Standard_Real& TolV) const
{
TolU = myTolU;
TolV = myTolV;
}
//=======================================================================
//function : NbCurves
//purpose :
//=======================================================================
Standard_Integer ProjLib_CompProjectedCurve::NbCurves() const
{
return myNbCurves;
}
//=======================================================================
//function : Bounds
//purpose :
//=======================================================================
void ProjLib_CompProjectedCurve::Bounds(const Standard_Integer Index,
Standard_Real& Udeb,
Standard_Real& Ufin) const
{
if(Index < 1 || Index > myNbCurves) Standard_NoSuchObject::Raise();
Udeb = mySequence->Value(Index)->Value(1).X();
Ufin = mySequence->Value(Index)->Value(mySequence->Value(Index)->Length()).X();
}
//=======================================================================
//function : IsSinglePnt
//purpose :
//=======================================================================
Standard_Boolean ProjLib_CompProjectedCurve::IsSinglePnt(const Standard_Integer Index, gp_Pnt2d& P) const
{
if(Index < 1 || Index > myNbCurves) Standard_NoSuchObject::Raise();
P = gp_Pnt2d(mySequence->Value(Index)->Value(1).Y(), mySequence->Value(Index)->Value(1).Z());
return mySnglPnts->Value(Index);
}
//=======================================================================
//function : IsUIso
//purpose :
//=======================================================================
Standard_Boolean ProjLib_CompProjectedCurve::IsUIso(const Standard_Integer Index, Standard_Real& U) const
{
if(Index < 1 || Index > myNbCurves) Standard_NoSuchObject::Raise();
U = mySequence->Value(Index)->Value(1).Y();
return myUIso->Value(Index);
}
//=======================================================================
//function : IsVIso
//purpose :
//=======================================================================
Standard_Boolean ProjLib_CompProjectedCurve::IsVIso(const Standard_Integer Index, Standard_Real& V) const
{
if(Index < 1 || Index > myNbCurves) Standard_NoSuchObject::Raise();
V = mySequence->Value(Index)->Value(1).Z();
return myVIso->Value(Index);
}
//=======================================================================
//function : Value
//purpose :
//=======================================================================
gp_Pnt2d ProjLib_CompProjectedCurve::Value(const Standard_Real t) const
{
gp_Pnt2d P;
D0(t, P);
return P;
}
//=======================================================================
//function : D0
//purpose :
//=======================================================================
void ProjLib_CompProjectedCurve::D0(const Standard_Real U,gp_Pnt2d& P) const
{
Standard_Integer i, j;
Standard_Real Udeb, Ufin;
Standard_Boolean found = Standard_False;
for(i = 1; i <= myNbCurves; i++)
{
Bounds(i, Udeb, Ufin);
if (U >= Udeb && U <= Ufin)
{
found = Standard_True;
break;
}
}
if (!found) Standard_DomainError::Raise("ProjLib_CompProjectedCurve::D0");
Standard_Real U0, V0;
Standard_Integer End = mySequence->Value(i)->Length();
for(j = 1; j < End; j++)
if ((U >= mySequence->Value(i)->Value(j).X()) && (U <= mySequence->Value(i)->Value(j + 1).X())) break;
// U0 = mySequence->Value(i)->Value(j).Y();
// V0 = mySequence->Value(i)->Value(j).Z();
// Cubic Interpolation
if(mySequence->Value(i)->Length() < 4 ||
(Abs(U-mySequence->Value(i)->Value(j).X()) <= Precision::PConfusion()) )
{
U0 = mySequence->Value(i)->Value(j).Y();
V0 = mySequence->Value(i)->Value(j).Z();
}
else if (Abs(U-mySequence->Value(i)->Value(j+1).X())
<= Precision::PConfusion())
{
U0 = mySequence->Value(i)->Value(j+1).Y();
V0 = mySequence->Value(i)->Value(j+1).Z();
}
else
{
if (j == 1) j = 2;
if (j > mySequence->Value(i)->Length() - 2)
j = mySequence->Value(i)->Length() - 2;
gp_Vec2d I1, I2, I3, I21, I22, I31, Y1, Y2, Y3, Y4, Res;
Standard_Real X1, X2, X3, X4;
X1 = mySequence->Value(i)->Value(j - 1).X();
X2 = mySequence->Value(i)->Value(j).X();
X3 = mySequence->Value(i)->Value(j + 1).X();
X4 = mySequence->Value(i)->Value(j + 2).X();
Y1 = gp_Vec2d(mySequence->Value(i)->Value(j - 1).Y(),
mySequence->Value(i)->Value(j - 1).Z());
Y2 = gp_Vec2d(mySequence->Value(i)->Value(j).Y(),
mySequence->Value(i)->Value(j).Z());
Y3 = gp_Vec2d(mySequence->Value(i)->Value(j + 1).Y(),
mySequence->Value(i)->Value(j + 1).Z());
Y4 = gp_Vec2d(mySequence->Value(i)->Value(j + 2).Y(),
mySequence->Value(i)->Value(j + 2).Z());
I1 = (Y1 - Y2)/(X1 - X2);
I2 = (Y2 - Y3)/(X2 - X3);
I3 = (Y3 - Y4)/(X3 - X4);
I21 = (I1 - I2)/(X1 - X3);
I22 = (I2 - I3)/(X2 - X4);
I31 = (I21 - I22)/(X1 - X4);
Res = Y1 + (U - X1)*(I1 + (U - X2)*(I21 + (U - X3)*I31));
U0 = Res.X();
V0 = Res.Y();
if(U0 < mySurface->FirstUParameter()) U0 = mySurface->FirstUParameter();
else if(U0 > mySurface->LastUParameter()) U0 = mySurface->LastUParameter();
if(V0 < mySurface->FirstVParameter()) V0 = mySurface->FirstVParameter();
else if(V0 > mySurface->LastVParameter()) V0 = mySurface->LastVParameter();
}
//End of cubic interpolation
ProjLib_PrjResolve aPrjPS(myCurve->Curve(), mySurface->Surface(), 1);
aPrjPS.Perform(U, U0, V0, gp_Pnt2d(myTolU, myTolV),
gp_Pnt2d(mySurface->FirstUParameter(), mySurface->FirstVParameter()),
gp_Pnt2d(mySurface->LastUParameter(), mySurface->LastVParameter()));
if (aPrjPS.IsDone())
P = aPrjPS.Solution();
else
{
gp_Pnt thePoint = myCurve->Value(U);
Extrema_ExtPS aExtPS(thePoint, mySurface->Surface(), myTolU, myTolV);
if (aExtPS.IsDone() && aExtPS.NbExt())
{
Standard_Integer k, Nend, imin = 1;
// Search for the nearest solution which is also a normal projection
Nend = aExtPS.NbExt();
for(k = 2; k <= Nend; k++)
if (aExtPS.SquareDistance(k) < aExtPS.SquareDistance(imin))
imin = k;
const Extrema_POnSurf& POnS = aExtPS.Point(imin);
Standard_Real ParU,ParV;
POnS.Parameter(ParU, ParV);
P.SetCoord(ParU, ParV);
}
else
P.SetCoord(U0,V0);
}
}
//=======================================================================
//function : D1
//purpose :
//=======================================================================
void ProjLib_CompProjectedCurve::D1(const Standard_Real t,
gp_Pnt2d& P,
gp_Vec2d& V) const
{
Standard_Real u, v;
D0(t, P);
u = P.X();
v = P.Y();
d1(t, u, v, V, myCurve, mySurface);
}
//=======================================================================
//function : D2
//purpose :
//=======================================================================
void ProjLib_CompProjectedCurve::D2(const Standard_Real t,
gp_Pnt2d& P,
gp_Vec2d& V1,
gp_Vec2d& V2) const
{
Standard_Real u, v;
D0(t, P);
u = P.X();
v = P.Y();
d2(t, u, v, V1, V2, myCurve, mySurface);
}
//=======================================================================
//function : DN
//purpose :
//=======================================================================
gp_Vec2d ProjLib_CompProjectedCurve::DN(const Standard_Real t,
const Standard_Integer N) const
{
if (N < 1 ) Standard_OutOfRange::Raise("ProjLib_CompProjectedCurve : N must be greater than 0");
else if (N ==1)
{
gp_Pnt2d P;
gp_Vec2d V;
D1(t,P,V);
return V;
}
else if ( N==2)
{
gp_Pnt2d P;
gp_Vec2d V1,V2;
D2(t,P,V1,V2);
return V2;
}
else if (N > 2 )
Standard_NotImplemented::Raise("ProjLib_CompProjectedCurve::DN");
return gp_Vec2d();
}
//=======================================================================
//function : GetSequence
//purpose :
//=======================================================================
const Handle(ProjLib_HSequenceOfHSequenceOfPnt)& ProjLib_CompProjectedCurve::GetSequence() const
{
return mySequence;
}
//=======================================================================
//function : FirstParameter
//purpose :
//=======================================================================
Standard_Real ProjLib_CompProjectedCurve::FirstParameter() const
{
return myCurve->FirstParameter();
}
//=======================================================================
//function : LastParameter
//purpose :
//=======================================================================
Standard_Real ProjLib_CompProjectedCurve::LastParameter() const
{
return myCurve->LastParameter();
}
//=======================================================================
//function : MaxDistance
//purpose :
//=======================================================================
Standard_Real ProjLib_CompProjectedCurve::MaxDistance(const Standard_Integer Index) const
{
if(Index < 1 || Index > myNbCurves) Standard_NoSuchObject::Raise();
return myMaxDistance->Value(Index);
}
//=======================================================================
//function : NbIntervals
//purpose :
//=======================================================================
Standard_Integer ProjLib_CompProjectedCurve::NbIntervals(const GeomAbs_Shape S) const
{
const_cast<ProjLib_CompProjectedCurve*>(this)->myTabInt.Nullify();
BuildIntervals(S);
return myTabInt->Length() - 1;
}
//=======================================================================
//function : Intervals
//purpose :
//=======================================================================
void ProjLib_CompProjectedCurve::Intervals(TColStd_Array1OfReal& T,const GeomAbs_Shape S) const
{
if (myTabInt.IsNull()) BuildIntervals (S);
T = myTabInt->Array1();
}
//=======================================================================
//function : BuildIntervals
//purpose :
//=======================================================================
void ProjLib_CompProjectedCurve::BuildIntervals(const GeomAbs_Shape S) const
{
GeomAbs_Shape SforS = GeomAbs_CN;
switch(S) {
case GeomAbs_C0:
SforS = GeomAbs_C1;
break;
case GeomAbs_C1:
SforS = GeomAbs_C2;
break;
case GeomAbs_C2:
SforS = GeomAbs_C3;
break;
case GeomAbs_C3:
SforS = GeomAbs_CN;
break;
case GeomAbs_CN:
SforS = GeomAbs_CN;
break;
default:
Standard_OutOfRange::Raise();
}
Standard_Integer i, j, k;
Standard_Integer NbIntCur = myCurve->NbIntervals(S);
Standard_Integer NbIntSurU = mySurface->NbUIntervals(SforS);
Standard_Integer NbIntSurV = mySurface->NbVIntervals(SforS);
TColStd_Array1OfReal CutPntsT(1, NbIntCur+1);
TColStd_Array1OfReal CutPntsU(1, NbIntSurU+1);
TColStd_Array1OfReal CutPntsV(1, NbIntSurV+1);
myCurve->Intervals(CutPntsT, S);
mySurface->UIntervals(CutPntsU, SforS);
mySurface->VIntervals(CutPntsV, SforS);
Standard_Real Tl, Tr, Ul, Ur, Vl, Vr, Tol;
Handle(TColStd_HArray1OfReal) BArr = NULL,
CArr = NULL,
UArr = NULL,
VArr = NULL;
// proccessing projection bounds
BArr = new TColStd_HArray1OfReal(1, 2*myNbCurves);
for(i = 1; i <= myNbCurves; i++)
Bounds(i, BArr->ChangeValue(2*i - 1), BArr->ChangeValue(2*i));
// proccessing curve discontinuities
if(NbIntCur > 1) {
CArr = new TColStd_HArray1OfReal(1, NbIntCur - 1);
for(i = 1; i <= CArr->Length(); i++)
CArr->ChangeValue(i) = CutPntsT(i + 1);
}
// proccessing U-surface discontinuities
TColStd_SequenceOfReal TUdisc;
for(k = 2; k <= NbIntSurU; k++) {
// cout<<"CutPntsU("<<k<<") = "<<CutPntsU(k)<<endl;
for(i = 1; i <= myNbCurves; i++)
for(j = 1; j < mySequence->Value(i)->Length(); j++) {
Ul = mySequence->Value(i)->Value(j).Y();
Ur = mySequence->Value(i)->Value(j + 1).Y();
if(Abs(Ul - CutPntsU(k)) <= myTolU)
TUdisc.Append(mySequence->Value(i)->Value(j).X());
else if(Abs(Ur - CutPntsU(k)) <= myTolU)
TUdisc.Append(mySequence->Value(i)->Value(j + 1).X());
else if((Ul < CutPntsU(k) && CutPntsU(k) < Ur) ||
(Ur < CutPntsU(k) && CutPntsU(k) < Ul))
{
Standard_Real V;
V = (mySequence->Value(i)->Value(j).Z()
+ mySequence->Value(i)->Value(j +1).Z())/2;
ProjLib_PrjResolve Solver(myCurve->Curve(), mySurface->Surface(), 2);
gp_Vec2d D;
gp_Pnt Triple;
Triple = mySequence->Value(i)->Value(j);
d1(Triple.X(), Triple.Y(), Triple.Z(), D, myCurve, mySurface);
if (Abs(D.X()) < Precision::Confusion())
Tol = myTolU;
else
Tol = Min(myTolU, myTolU / Abs(D.X()));
Tl = mySequence->Value(i)->Value(j).X();
Tr = mySequence->Value(i)->Value(j + 1).X();
Solver.Perform((Tl + Tr)/2, CutPntsU(k), V,
gp_Pnt2d(Tol, myTolV),
gp_Pnt2d(Tl, mySurface->FirstVParameter()),
gp_Pnt2d(Tr, mySurface->LastVParameter()));
//
if(Solver.IsDone())
{
TUdisc.Append(Solver.Solution().X());
}
}
}
}
for(i = 2; i <= TUdisc.Length(); i++)
if(TUdisc(i) - TUdisc(i-1) < Precision::PConfusion())
TUdisc.Remove(i--);
if(TUdisc.Length())
{
UArr = new TColStd_HArray1OfReal(1, TUdisc.Length());
for(i = 1; i <= UArr->Length(); i++)
UArr->ChangeValue(i) = TUdisc(i);
}
// proccessing V-surface discontinuities
TColStd_SequenceOfReal TVdisc;
for(k = 2; k <= NbIntSurV; k++)
for(i = 1; i <= myNbCurves; i++)
{
// cout<<"CutPntsV("<<k<<") = "<<CutPntsV(k)<<endl;
for(j = 1; j < mySequence->Value(i)->Length(); j++) {
Vl = mySequence->Value(i)->Value(j).Z();
Vr = mySequence->Value(i)->Value(j + 1).Z();
if(Abs(Vl - CutPntsV(k)) <= myTolV)
TVdisc.Append(mySequence->Value(i)->Value(j).X());
else if (Abs(Vr - CutPntsV(k)) <= myTolV)
TVdisc.Append(mySequence->Value(i)->Value(j + 1).X());
else if((Vl < CutPntsV(k) && CutPntsV(k) < Vr) ||
(Vr < CutPntsV(k) && CutPntsV(k) < Vl))
{
Standard_Real U;
U = (mySequence->Value(i)->Value(j).Y()
+ mySequence->Value(i)->Value(j +1).Y())/2;
ProjLib_PrjResolve Solver(myCurve->Curve(), mySurface->Surface(), 3);
gp_Vec2d D;
gp_Pnt Triple;
Triple = mySequence->Value(i)->Value(j);
d1(Triple.X(), Triple.Y(), Triple.Z(), D, myCurve, mySurface);
if (Abs(D.Y()) < Precision::Confusion())
Tol = myTolV;
else
Tol = Min(myTolV, myTolV / Abs(D.Y()));
Tl = mySequence->Value(i)->Value(j).X();
Tr = mySequence->Value(i)->Value(j + 1).X();
Solver.Perform((Tl + Tr)/2, U, CutPntsV(k),
gp_Pnt2d(Tol, myTolV),
gp_Pnt2d(Tl, mySurface->FirstUParameter()),
gp_Pnt2d(Tr, mySurface->LastUParameter()));
//
if(Solver.IsDone())
{
TVdisc.Append(Solver.Solution().X());
}
}
}
}
for(i = 2; i <= TVdisc.Length(); i++)
if(TVdisc(i) - TVdisc(i-1) < Precision::PConfusion())
TVdisc.Remove(i--);
if(TVdisc.Length())
{
VArr = new TColStd_HArray1OfReal(1, TVdisc.Length());
for(i = 1; i <= VArr->Length(); i++)
VArr->ChangeValue(i) = TVdisc(i);
}
// fusion
TColStd_SequenceOfReal Fusion;
if(!CArr.IsNull())
{
GeomLib::FuseIntervals(BArr->ChangeArray1(),
CArr->ChangeArray1(),
Fusion, Precision::PConfusion());
BArr = new TColStd_HArray1OfReal(1, Fusion.Length());
for(i = 1; i <= BArr->Length(); i++)
BArr->ChangeValue(i) = Fusion(i);
Fusion.Clear();
}
if(!UArr.IsNull())
{
GeomLib::FuseIntervals(BArr->ChangeArray1(),
UArr->ChangeArray1(),
Fusion, Precision::PConfusion());
BArr = new TColStd_HArray1OfReal(1, Fusion.Length());
for(i = 1; i <= BArr->Length(); i++)
BArr->ChangeValue(i) = Fusion(i);
Fusion.Clear();
}
if(!VArr.IsNull())
{
GeomLib::FuseIntervals(BArr->ChangeArray1(),
VArr->ChangeArray1(),
Fusion, Precision::PConfusion());
BArr = new TColStd_HArray1OfReal(1, Fusion.Length());
for(i = 1; i <= BArr->Length(); i++)
BArr->ChangeValue(i) = Fusion(i);
}
const_cast<ProjLib_CompProjectedCurve*>(this)->myTabInt = new TColStd_HArray1OfReal(1, BArr->Length());
for(i = 1; i <= BArr->Length(); i++)
myTabInt->ChangeValue(i) = BArr->Value(i);
}
//=======================================================================
//function : Trim
//purpose :
//=======================================================================
Handle(Adaptor2d_HCurve2d) ProjLib_CompProjectedCurve::Trim
(const Standard_Real First,
const Standard_Real Last,
const Standard_Real Tol) const
{
Handle(ProjLib_HCompProjectedCurve) HCS =
new ProjLib_HCompProjectedCurve(*this);
HCS->ChangeCurve2d().Load(mySurface);
HCS->ChangeCurve2d().Load(myCurve->Trim(First,Last,Tol));
return HCS;
}
//=======================================================================
//function : GetType
//purpose :
//=======================================================================
GeomAbs_CurveType ProjLib_CompProjectedCurve::GetType() const
{
return GeomAbs_OtherCurve;
}
//=======================================================================
//function : UpdateTripleByTrapCriteria
//purpose :
//=======================================================================
void ProjLib_CompProjectedCurve::UpdateTripleByTrapCriteria(gp_Pnt &thePoint) const
{
Standard_Boolean isProblemsPossible = Standard_False;
// Check possible traps cases:
// 25892 bug.
if (mySurface->GetType() == GeomAbs_SurfaceOfRevolution)
{
// Compute maximal deviation from 3D and choose the biggest one.
Standard_Real aVRes = mySurface->VResolution(Precision::Confusion());
Standard_Real aMaxTol = Max(Precision::PConfusion(), aVRes);
if (Abs (thePoint.Z() - mySurface->FirstVParameter()) < aMaxTol ||
Abs (thePoint.Z() - mySurface->LastVParameter() ) < aMaxTol )
{
isProblemsPossible = Standard_True;
}
}
// 27135 bug. Trap on degenerated edge.
if (mySurface->GetType() == GeomAbs_Sphere &&
(Abs (thePoint.Z() - mySurface->FirstVParameter()) < Precision::PConfusion() ||
Abs (thePoint.Z() - mySurface->LastVParameter() ) < Precision::PConfusion() ||
Abs (thePoint.Y() - mySurface->FirstUParameter()) < Precision::PConfusion() ||
Abs (thePoint.Y() - mySurface->LastUParameter() ) < Precision::PConfusion() ))
{
isProblemsPossible = Standard_True;
}
if (!isProblemsPossible)
return;
Standard_Real U,V;
Standard_Boolean isDone =
InitialPoint(myCurve->Value(thePoint.X()), thePoint.X(), myCurve, mySurface,
Precision::PConfusion(), Precision::PConfusion(), U, V);
if (!isDone)
return;
// Restore original position in case of period jump.
if (mySurface->IsUPeriodic() &&
Abs (Abs(U - thePoint.Y()) - mySurface->UPeriod()) < Precision::PConfusion())
{
U = thePoint.Y();
}
if (mySurface->IsVPeriodic() &&
Abs (Abs(V - thePoint.Z()) - mySurface->VPeriod()) < Precision::PConfusion())
{
V = thePoint.Z();
}
thePoint.SetY(U);
thePoint.SetZ(V);
}
//=======================================================================
//function : BuildCurveSplits
//purpose :
//=======================================================================
void BuildCurveSplits(const Handle(Adaptor3d_HCurve) &theCurve,
const Handle(Adaptor3d_HSurface) &theSurface,
const Standard_Real theTolU,
const Standard_Real theTolV,
NCollection_Vector<Standard_Real> &theSplits)
{
SplitDS aDS(theCurve, theSurface, theSplits);
Extrema_ExtPS anExtPS;
anExtPS.Initialize(theSurface->Surface(),
theSurface->FirstUParameter(), theSurface->LastUParameter(),
theSurface->FirstVParameter(), theSurface->LastVParameter(),
theTolU, theTolV);
aDS.myExtPS = &anExtPS;
if (theSurface->IsUPeriodic())
{
aDS.myPeriodicDir = 0;
SplitOnDirection(aDS);
}
if (theSurface->IsVPeriodic())
{
aDS.myPeriodicDir = 1;
SplitOnDirection(aDS);
}
std::sort(aDS.mySplits.begin(), aDS.mySplits.end(), Comparator);
}
//=======================================================================
//function : SplitOnDirection
//purpose : This method compute points in the parameter space of the curve
// on which curve should be split since period jump is happen.
//=======================================================================
void SplitOnDirection(SplitDS & theSplitDS)
{
// Algorithm:
// Create 3D curve which is correspond to the periodic bound in 2d space.
// Run curve / curve extrema and run extrema point / surface to check that
// the point will be projected to the periodic bound.
// In this method assumed that the points cannot be closer to each other that 1% of the parameter space.
gp_Pnt2d aStartPnt(theSplitDS.mySurface->FirstUParameter(), theSplitDS.mySurface->FirstVParameter());
gp_Dir2d aDir(theSplitDS.myPeriodicDir, (Standard_Integer)!theSplitDS.myPeriodicDir);
theSplitDS.myPerMinParam = !theSplitDS.myPeriodicDir ? theSplitDS.mySurface->FirstUParameter():
theSplitDS.mySurface->FirstVParameter();
theSplitDS.myPerMaxParam = !theSplitDS.myPeriodicDir ? theSplitDS.mySurface->LastUParameter():
theSplitDS.mySurface->LastVParameter();
Standard_Real aLast2DParam = theSplitDS.myPeriodicDir ?
theSplitDS.mySurface->LastUParameter() - theSplitDS.mySurface->FirstUParameter():
theSplitDS.mySurface->LastVParameter() - theSplitDS.mySurface->FirstVParameter();
// Create line which is represent periodic border.
Handle(Geom2d_Curve) aC2GC = new Geom2d_Line(aStartPnt, aDir);
Handle(Geom2dAdaptor_HCurve) aC = new Geom2dAdaptor_HCurve(aC2GC, 0, aLast2DParam);
Adaptor3d_CurveOnSurface aCOnS(aC, theSplitDS.mySurface);
Extrema_ExtCC anExtCC;
anExtCC.SetCurve(1, aCOnS);
anExtCC.SetCurve(2, theSplitDS.myCurve->Curve());
anExtCC.SetSingleSolutionFlag(Standard_True); // Search only one solution since multiple invocations are needed.
anExtCC.SetRange(1, 0, aLast2DParam);
theSplitDS.myExtCC = &anExtCC;
FindSplitPoint(theSplitDS,
theSplitDS.myCurve->FirstParameter(), // Initial curve range.
theSplitDS.myCurve->LastParameter());
}
//=======================================================================
//function : FindSplitPoint
//purpose :
//=======================================================================
void FindSplitPoint(SplitDS &theSplitDS,
const Standard_Real theMinParam,
const Standard_Real theMaxParam)
{
// Make extrema copy to avoid dependencies between different levels of the recursion.
Extrema_ExtCC anExtCC(*theSplitDS.myExtCC);
anExtCC.SetRange(2, theMinParam, theMaxParam);
anExtCC.Perform();
if (anExtCC.IsDone())
{
const Standard_Integer aNbExt = anExtCC.NbExt();
for (Standard_Integer anIdx = 1; anIdx <= aNbExt; ++anIdx)
{
Extrema_POnCurv aPOnC1, aPOnC2;
anExtCC.Points(anIdx, aPOnC1, aPOnC2);
theSplitDS.myExtPS->Perform(aPOnC2.Value());
if (!theSplitDS.myExtPS->IsDone())
return;
// Find point with the minimal Euclidean distance to avoid
// false positive points detection.
Standard_Integer aMinIdx = -1;
Standard_Real aMinSqDist = RealLast();
const Standard_Integer aNbPext = theSplitDS.myExtPS->NbExt();
for(Standard_Integer aPIdx = 1; aPIdx <= aNbPext; ++aPIdx)
{
const Standard_Real aCurrSqDist = theSplitDS.myExtPS->SquareDistance(aPIdx);
if (aCurrSqDist < aMinSqDist)
{
aMinSqDist = aCurrSqDist;
aMinIdx = aPIdx;
}
}
// Check that is point will be projected to the periodic border.
const Extrema_POnSurf &aPOnS = theSplitDS.myExtPS->Point(aMinIdx);
Standard_Real U, V, aProjParam;
aPOnS.Parameter(U, V);
aProjParam = theSplitDS.myPeriodicDir ? V : U;
if (Abs(aProjParam - theSplitDS.myPerMinParam) < Precision::PConfusion() ||
Abs(aProjParam - theSplitDS.myPerMaxParam) < Precision::PConfusion() )
{
const Standard_Real aParam = aPOnC2.Parameter();
const Standard_Real aCFParam = theSplitDS.myCurve->FirstParameter();
const Standard_Real aCLParam = theSplitDS.myCurve->LastParameter();
if (aParam > aCFParam + Precision::PConfusion() &&
aParam < aCLParam - Precision::PConfusion() )
{
// Add only inner points.
theSplitDS.mySplits.Append(aParam);
}
const Standard_Real aDeltaCoeff = 0.01;
const Standard_Real aDelta = (theMaxParam - theMinParam +
aCLParam - aCFParam) * aDeltaCoeff;
if (aParam - aDelta > theMinParam + Precision::PConfusion())
{
FindSplitPoint(theSplitDS,
theMinParam, aParam - aDelta); // Curve parameters.
}
if (aParam + aDelta < theMaxParam - Precision::PConfusion())
{
FindSplitPoint(theSplitDS,
aParam + aDelta, theMaxParam); // Curve parameters.
}
}
} // for (Standard_Integer anIdx = 1; anIdx <= aNbExt; ++anIdx)
}
}