mirror of
https://git.dev.opencascade.org/repos/occt.git
synced 2025-07-30 13:05:50 +03:00
1. Disable recalculation of B-spline cache when the parameter is out of surface boundary but near the cached span. 2. Rebuild cache each time a curve/surface is loaded into adaptor (B-spline knots may be re-parametrized outside adaptor without changing base curve) 3. Test cases.
424 lines
18 KiB
C++
424 lines
18 KiB
C++
// Copyright (c) 2014 OPEN CASCADE SAS
|
|
//
|
|
// This file is part of Open CASCADE Technology software library.
|
|
//
|
|
// This library is free software; you can redistribute it and/or modify it under
|
|
// the terms of the GNU Lesser General Public License version 2.1 as published
|
|
// by the Free Software Foundation, with special exception defined in the file
|
|
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
|
|
// distribution for complete text of the license and disclaimer of any warranty.
|
|
//
|
|
// Alternatively, this file may be used under the terms of Open CASCADE
|
|
// commercial license or contractual agreement.
|
|
|
|
#include <BSplSLib_Cache.hxx>
|
|
#include <BSplSLib.hxx>
|
|
|
|
#include <NCollection_LocalArray.hxx>
|
|
|
|
#include <TColgp_HArray2OfPnt.hxx>
|
|
#include <TColStd_HArray1OfInteger.hxx>
|
|
#include <TColStd_HArray1OfReal.hxx>
|
|
#include <TColStd_HArray2OfReal.hxx>
|
|
|
|
|
|
IMPLEMENT_STANDARD_RTTIEXT(BSplSLib_Cache,Standard_Transient)
|
|
|
|
//! Converts handle of array of Standard_Real into the pointer to Standard_Real
|
|
static Standard_Real* ConvertArray(const Handle(TColStd_HArray2OfReal)& theHArray)
|
|
{
|
|
const TColStd_Array2OfReal& anArray = theHArray->Array2();
|
|
return (Standard_Real*) &(anArray(anArray.LowerRow(), anArray.LowerCol()));
|
|
}
|
|
|
|
|
|
BSplSLib_Cache::BSplSLib_Cache()
|
|
{
|
|
myPolesWeights.Nullify();
|
|
myIsRational = Standard_False;
|
|
mySpanStart[0] = mySpanStart[1] = 0.0;
|
|
mySpanLength[0] = mySpanLength[1] = 0.0;
|
|
mySpanIndex[0] = mySpanIndex[1] = 0;
|
|
myDegree[0] = myDegree[1] = 0;
|
|
myFlatKnots[0].Nullify();
|
|
myFlatKnots[1].Nullify();
|
|
}
|
|
|
|
BSplSLib_Cache::BSplSLib_Cache(const Standard_Integer& theDegreeU,
|
|
const Standard_Boolean& thePeriodicU,
|
|
const TColStd_Array1OfReal& theFlatKnotsU,
|
|
const Standard_Integer& theDegreeV,
|
|
const Standard_Boolean& thePeriodicV,
|
|
const TColStd_Array1OfReal& theFlatKnotsV,
|
|
const TColgp_Array2OfPnt& thePoles,
|
|
const TColStd_Array2OfReal* theWeights)
|
|
{
|
|
Standard_Real aU = theFlatKnotsU.Value(theFlatKnotsU.Lower() + theDegreeU);
|
|
Standard_Real aV = theFlatKnotsV.Value(theFlatKnotsV.Lower() + theDegreeV);
|
|
|
|
BuildCache(aU, aV,
|
|
theDegreeU, thePeriodicU, theFlatKnotsU,
|
|
theDegreeV, thePeriodicV, theFlatKnotsV,
|
|
thePoles, theWeights);
|
|
}
|
|
|
|
|
|
Standard_Boolean BSplSLib_Cache::IsCacheValid(Standard_Real theParameterU,
|
|
Standard_Real theParameterV) const
|
|
{
|
|
Standard_Real aNewU = theParameterU;
|
|
Standard_Real aNewV = theParameterV;
|
|
if (!myFlatKnots[0].IsNull())
|
|
PeriodicNormalization(myDegree[0], myFlatKnots[0]->Array1(), aNewU);
|
|
if (!myFlatKnots[1].IsNull())
|
|
PeriodicNormalization(myDegree[1], myFlatKnots[1]->Array1(), aNewV);
|
|
|
|
Standard_Real aDelta0 = aNewU - mySpanStart[0];
|
|
Standard_Real aDelta1 = aNewV - mySpanStart[1];
|
|
return ((aDelta0 >= -mySpanLength[0] || mySpanIndex[0] == mySpanIndexMin[0]) &&
|
|
(aDelta0 < mySpanLength[0] || mySpanIndex[0] == mySpanIndexMax[0]) &&
|
|
(aDelta1 >= -mySpanLength[1] || mySpanIndex[1] == mySpanIndexMin[1]) &&
|
|
(aDelta1 < mySpanLength[1] || mySpanIndex[1] == mySpanIndexMax[1]));
|
|
}
|
|
|
|
void BSplSLib_Cache::PeriodicNormalization(const Standard_Integer& theDegree,
|
|
const TColStd_Array1OfReal& theFlatKnots,
|
|
Standard_Real& theParameter) const
|
|
{
|
|
Standard_Real aPeriod = theFlatKnots.Value(theFlatKnots.Upper() - theDegree) -
|
|
theFlatKnots.Value(theDegree + 1) ;
|
|
if (theParameter < theFlatKnots.Value(theDegree + 1))
|
|
{
|
|
Standard_Real aScale = IntegerPart(
|
|
(theFlatKnots.Value(theDegree + 1) - theParameter) / aPeriod);
|
|
theParameter += aPeriod * (aScale + 1.0);
|
|
}
|
|
if (theParameter > theFlatKnots.Value(theFlatKnots.Upper() - theDegree))
|
|
{
|
|
Standard_Real aScale = IntegerPart(
|
|
(theParameter - theFlatKnots.Value(theFlatKnots.Upper() - theDegree)) / aPeriod);
|
|
theParameter -= aPeriod * (aScale + 1.0);
|
|
}
|
|
}
|
|
|
|
|
|
void BSplSLib_Cache::BuildCache(const Standard_Real& theParameterU,
|
|
const Standard_Real& theParameterV,
|
|
const Standard_Integer& theDegreeU,
|
|
const Standard_Boolean& thePeriodicU,
|
|
const TColStd_Array1OfReal& theFlatKnotsU,
|
|
const Standard_Integer& theDegreeV,
|
|
const Standard_Boolean& thePeriodicV,
|
|
const TColStd_Array1OfReal& theFlatKnotsV,
|
|
const TColgp_Array2OfPnt& thePoles,
|
|
const TColStd_Array2OfReal* theWeights)
|
|
{
|
|
// Normalize the parameters for periodical B-splines
|
|
Standard_Real aNewParamU = theParameterU;
|
|
if (thePeriodicU)
|
|
{
|
|
PeriodicNormalization(theDegreeU, theFlatKnotsU, aNewParamU);
|
|
myFlatKnots[0] = new TColStd_HArray1OfReal(1, theFlatKnotsU.Length());
|
|
myFlatKnots[0]->ChangeArray1() = theFlatKnotsU;
|
|
}
|
|
else if (!myFlatKnots[0].IsNull()) // Periodical curve became non-periodical
|
|
myFlatKnots[0].Nullify();
|
|
|
|
Standard_Real aNewParamV = theParameterV;
|
|
if (thePeriodicV)
|
|
{
|
|
PeriodicNormalization(theDegreeV, theFlatKnotsV, aNewParamV);
|
|
myFlatKnots[1] = new TColStd_HArray1OfReal(1, theFlatKnotsV.Length());
|
|
myFlatKnots[1]->ChangeArray1() = theFlatKnotsV;
|
|
}
|
|
else if (!myFlatKnots[1].IsNull()) // Periodical curve became non-periodical
|
|
myFlatKnots[1].Nullify();
|
|
|
|
Standard_Integer aMinDegree = Min(theDegreeU, theDegreeV);
|
|
Standard_Integer aMaxDegree = Max(theDegreeU, theDegreeV);
|
|
|
|
// Change the size of cached data if needed
|
|
myIsRational = (theWeights != NULL);
|
|
Standard_Integer aPWColNumber = myIsRational ? 4 : 3;
|
|
if (theDegreeU > myDegree[0] || theDegreeV > myDegree[1])
|
|
myPolesWeights = new TColStd_HArray2OfReal(1, aMaxDegree + 1, 1, aPWColNumber * (aMinDegree + 1));
|
|
|
|
myDegree[0] = theDegreeU;
|
|
myDegree[1] = theDegreeV;
|
|
mySpanIndex[0] = mySpanIndex[1] = 0;
|
|
BSplCLib::LocateParameter(theDegreeU, theFlatKnotsU, BSplCLib::NoMults(), aNewParamU,
|
|
thePeriodicU, mySpanIndex[0], aNewParamU);
|
|
BSplCLib::LocateParameter(theDegreeV, theFlatKnotsV, BSplCLib::NoMults(), aNewParamV,
|
|
thePeriodicV, mySpanIndex[1], aNewParamV);
|
|
|
|
// Protection against Out of Range exception.
|
|
if (mySpanIndex[0] >= theFlatKnotsU.Length()) {
|
|
mySpanIndex[0] = theFlatKnotsU.Length() - 1;
|
|
}
|
|
|
|
mySpanLength[0] = (theFlatKnotsU.Value(mySpanIndex[0] + 1) - theFlatKnotsU.Value(mySpanIndex[0])) * 0.5;
|
|
mySpanStart[0] = theFlatKnotsU.Value(mySpanIndex[0]) + mySpanLength[0];
|
|
|
|
// Protection against Out of Range exception.
|
|
if (mySpanIndex[1] >= theFlatKnotsV.Length()) {
|
|
mySpanIndex[1] = theFlatKnotsV.Length() - 1;
|
|
}
|
|
|
|
mySpanLength[1] = (theFlatKnotsV.Value(mySpanIndex[1] + 1) - theFlatKnotsV.Value(mySpanIndex[1])) * 0.5;
|
|
mySpanStart[1] = theFlatKnotsV.Value(mySpanIndex[1]) + mySpanLength[1];
|
|
mySpanIndexMin[0] = thePeriodicU ? 0 : theDegreeU + 1;
|
|
mySpanIndexMax[0] = theFlatKnotsU.Length() - 1 - theDegreeU;
|
|
mySpanIndexMin[1] = thePeriodicV ? 0 : theDegreeV + 1;
|
|
mySpanIndexMax[1] = theFlatKnotsV.Length() - 1 - theDegreeV;
|
|
|
|
// Calculate new cache data
|
|
BSplSLib::BuildCache(mySpanStart[0], mySpanStart[1],
|
|
mySpanLength[0], mySpanLength[1],
|
|
thePeriodicU, thePeriodicV,
|
|
theDegreeU, theDegreeV,
|
|
mySpanIndex[0], mySpanIndex[1],
|
|
theFlatKnotsU, theFlatKnotsV,
|
|
thePoles, theWeights, myPolesWeights->ChangeArray2());
|
|
}
|
|
|
|
|
|
void BSplSLib_Cache::D0(const Standard_Real& theU,
|
|
const Standard_Real& theV,
|
|
gp_Pnt& thePoint) const
|
|
{
|
|
Standard_Real aNewU = theU;
|
|
Standard_Real aNewV = theV;
|
|
if (!myFlatKnots[0].IsNull()) // B-spline is U-periodical
|
|
PeriodicNormalization(myDegree[0], myFlatKnots[0]->Array1(), aNewU);
|
|
aNewU = (aNewU - mySpanStart[0]) / mySpanLength[0];
|
|
if (!myFlatKnots[1].IsNull()) // B-spline is V-periodical
|
|
PeriodicNormalization(myDegree[1], myFlatKnots[1]->Array1(), aNewV);
|
|
aNewV = (aNewV - mySpanStart[1]) / mySpanLength[1];
|
|
|
|
Standard_Real* aPolesArray = ConvertArray(myPolesWeights);
|
|
Standard_Real aPoint[4];
|
|
|
|
Standard_Integer aDimension = myIsRational ? 4 : 3;
|
|
Standard_Integer aCacheCols = myPolesWeights->RowLength();
|
|
Standard_Integer aMinMaxDegree[2] = {Min(myDegree[0], myDegree[1]),
|
|
Max(myDegree[0], myDegree[1])};
|
|
Standard_Real aParameters[2];
|
|
if (myDegree[0] > myDegree[1])
|
|
{
|
|
aParameters[0] = aNewV;
|
|
aParameters[1] = aNewU;
|
|
}
|
|
else
|
|
{
|
|
aParameters[0] = aNewU;
|
|
aParameters[1] = aNewV;
|
|
}
|
|
|
|
NCollection_LocalArray<Standard_Real> aTransientCoeffs(aCacheCols); // array for intermediate results
|
|
|
|
// Calculate intermediate value of cached polynomial along columns
|
|
PLib::NoDerivativeEvalPolynomial(aParameters[1], aMinMaxDegree[1],
|
|
aCacheCols, aMinMaxDegree[1] * aCacheCols,
|
|
aPolesArray[0], aTransientCoeffs[0]);
|
|
|
|
// Calculate total value
|
|
PLib::NoDerivativeEvalPolynomial(aParameters[0], aMinMaxDegree[0],
|
|
aDimension, aDimension * aMinMaxDegree[0],
|
|
aTransientCoeffs[0], aPoint[0]);
|
|
|
|
thePoint.SetCoord(aPoint[0], aPoint[1], aPoint[2]);
|
|
if (myIsRational)
|
|
thePoint.ChangeCoord().Divide(aPoint[3]);
|
|
}
|
|
|
|
|
|
void BSplSLib_Cache::D1(const Standard_Real& theU,
|
|
const Standard_Real& theV,
|
|
gp_Pnt& thePoint,
|
|
gp_Vec& theTangentU,
|
|
gp_Vec& theTangentV) const
|
|
{
|
|
Standard_Real aNewU = theU;
|
|
Standard_Real aNewV = theV;
|
|
Standard_Real anInvU = 1.0 / mySpanLength[0];
|
|
Standard_Real anInvV = 1.0 / mySpanLength[1];
|
|
if (!myFlatKnots[0].IsNull()) // B-spline is U-periodical
|
|
PeriodicNormalization(myDegree[0], myFlatKnots[0]->Array1(), aNewU);
|
|
aNewU = (aNewU - mySpanStart[0]) * anInvU;
|
|
if (!myFlatKnots[1].IsNull()) // B-spline is V-periodical
|
|
PeriodicNormalization(myDegree[1], myFlatKnots[1]->Array1(), aNewV);
|
|
aNewV = (aNewV - mySpanStart[1]) * anInvV;
|
|
|
|
Standard_Real* aPolesArray = ConvertArray(myPolesWeights);
|
|
Standard_Real aPntDeriv[16]; // result storage (point and derivative coordinates)
|
|
for (Standard_Integer i = 0; i< 16; i++) aPntDeriv[i] = 0.0;
|
|
|
|
Standard_Integer aDimension = myIsRational ? 4 : 3;
|
|
Standard_Integer aCacheCols = myPolesWeights->RowLength();
|
|
Standard_Integer aMinMaxDegree[2] = {Min(myDegree[0], myDegree[1]),
|
|
Max(myDegree[0], myDegree[1])};
|
|
|
|
Standard_Real aParameters[2];
|
|
if (myDegree[0] > myDegree[1])
|
|
{
|
|
aParameters[0] = aNewV;
|
|
aParameters[1] = aNewU;
|
|
}
|
|
else
|
|
{
|
|
aParameters[0] = aNewU;
|
|
aParameters[1] = aNewV;
|
|
}
|
|
|
|
NCollection_LocalArray<Standard_Real> aTransientCoeffs(aCacheCols<<1); // array for intermediate results
|
|
|
|
// Calculate intermediate values and derivatives of bivariate polynomial along variable with maximal degree
|
|
PLib::EvalPolynomial(aParameters[1], 1, aMinMaxDegree[1], aCacheCols, aPolesArray[0], aTransientCoeffs[0]);
|
|
|
|
// Calculate a point on surface and a derivative along variable with minimal degree
|
|
PLib::EvalPolynomial(aParameters[0], 1, aMinMaxDegree[0], aDimension, aTransientCoeffs[0], aPntDeriv[0]);
|
|
|
|
// Calculate derivative along variable with maximal degree
|
|
PLib::NoDerivativeEvalPolynomial(aParameters[0], aMinMaxDegree[0], aDimension,
|
|
aMinMaxDegree[0] * aDimension, aTransientCoeffs[aCacheCols],
|
|
aPntDeriv[aDimension<<1]);
|
|
|
|
Standard_Real* aResult = aPntDeriv;
|
|
Standard_Real aTempStorage[12];
|
|
if (myIsRational) // calculate derivatives divided by weight's derivatives
|
|
{
|
|
BSplSLib::RationalDerivative(1, 1, 1, 1, aPntDeriv[0], aTempStorage[0]);
|
|
aResult = aTempStorage;
|
|
aDimension--;
|
|
}
|
|
|
|
thePoint.SetCoord(aResult[0], aResult[1], aResult[2]);
|
|
if (myDegree[0] > myDegree[1])
|
|
{
|
|
theTangentV.SetCoord(aResult[aDimension], aResult[aDimension + 1], aResult[aDimension + 2]);
|
|
Standard_Integer aShift = aDimension<<1;
|
|
theTangentU.SetCoord(aResult[aShift], aResult[aShift + 1], aResult[aShift + 2]);
|
|
}
|
|
else
|
|
{
|
|
theTangentU.SetCoord(aResult[aDimension], aResult[aDimension + 1], aResult[aDimension + 2]);
|
|
Standard_Integer aShift = aDimension<<1;
|
|
theTangentV.SetCoord(aResult[aShift], aResult[aShift + 1], aResult[aShift + 2]);
|
|
}
|
|
theTangentU.Multiply(anInvU);
|
|
theTangentV.Multiply(anInvV);
|
|
}
|
|
|
|
|
|
void BSplSLib_Cache::D2(const Standard_Real& theU,
|
|
const Standard_Real& theV,
|
|
gp_Pnt& thePoint,
|
|
gp_Vec& theTangentU,
|
|
gp_Vec& theTangentV,
|
|
gp_Vec& theCurvatureU,
|
|
gp_Vec& theCurvatureV,
|
|
gp_Vec& theCurvatureUV) const
|
|
{
|
|
Standard_Real aNewU = theU;
|
|
Standard_Real aNewV = theV;
|
|
Standard_Real anInvU = 1.0 / mySpanLength[0];
|
|
Standard_Real anInvV = 1.0 / mySpanLength[1];
|
|
if (!myFlatKnots[0].IsNull()) // B-spline is U-periodical
|
|
PeriodicNormalization(myDegree[0], myFlatKnots[0]->Array1(), aNewU);
|
|
aNewU = (aNewU - mySpanStart[0]) * anInvU;
|
|
if (!myFlatKnots[1].IsNull()) // B-spline is V-periodical
|
|
PeriodicNormalization(myDegree[1], myFlatKnots[1]->Array1(), aNewV);
|
|
aNewV = (aNewV - mySpanStart[1]) * anInvV;
|
|
|
|
Standard_Real* aPolesArray = ConvertArray(myPolesWeights);
|
|
Standard_Real aPntDeriv[36]; // result storage (point and derivative coordinates)
|
|
for (Standard_Integer i = 0; i < 36; i++) aPntDeriv[i] = 0.0;
|
|
|
|
Standard_Integer aDimension = myIsRational ? 4 : 3;
|
|
Standard_Integer aCacheCols = myPolesWeights->RowLength();
|
|
Standard_Integer aMinMaxDegree[2] = {Min(myDegree[0], myDegree[1]),
|
|
Max(myDegree[0], myDegree[1])};
|
|
|
|
Standard_Real aParameters[2];
|
|
if (myDegree[0] > myDegree[1])
|
|
{
|
|
aParameters[0] = aNewV;
|
|
aParameters[1] = aNewU;
|
|
}
|
|
else
|
|
{
|
|
aParameters[0] = aNewU;
|
|
aParameters[1] = aNewV;
|
|
}
|
|
|
|
NCollection_LocalArray<Standard_Real> aTransientCoeffs(3 * aCacheCols); // array for intermediate results
|
|
// Calculating derivative to be evaluate and
|
|
// nulling transient coefficients when max or min derivative is less than 2
|
|
Standard_Integer aMinMaxDeriv[2] = {Min(2, aMinMaxDegree[0]),
|
|
Min(2, aMinMaxDegree[1])};
|
|
for (Standard_Integer i = aMinMaxDeriv[1] + 1; i < 3; i++)
|
|
{
|
|
Standard_Integer index = i * aCacheCols;
|
|
for (Standard_Integer j = 0; j < aCacheCols; j++)
|
|
aTransientCoeffs[index++] = 0.0;
|
|
}
|
|
|
|
// Calculate intermediate values and derivatives of bivariate polynomial along variable with maximal degree
|
|
PLib::EvalPolynomial(aParameters[1], aMinMaxDeriv[1], aMinMaxDegree[1],
|
|
aCacheCols, aPolesArray[0], aTransientCoeffs[0]);
|
|
|
|
// Calculate a point on surface and a derivatives along variable with minimal degree
|
|
PLib::EvalPolynomial(aParameters[0], aMinMaxDeriv[0], aMinMaxDegree[0],
|
|
aDimension, aTransientCoeffs[0], aPntDeriv[0]);
|
|
|
|
// Calculate derivative along variable with maximal degree and mixed derivative
|
|
PLib::EvalPolynomial(aParameters[0], 1, aMinMaxDegree[0], aDimension,
|
|
aTransientCoeffs[aCacheCols], aPntDeriv[3 * aDimension]);
|
|
|
|
// Calculate second derivative along variable with maximal degree
|
|
PLib::NoDerivativeEvalPolynomial(aParameters[0], aMinMaxDegree[0], aDimension,
|
|
aMinMaxDegree[0] * aDimension, aTransientCoeffs[aCacheCols<<1],
|
|
aPntDeriv[6 * aDimension]);
|
|
|
|
Standard_Real* aResult = aPntDeriv;
|
|
Standard_Real aTempStorage[36];
|
|
if (myIsRational) // calculate derivatives divided by weight's derivatives
|
|
{
|
|
BSplSLib::RationalDerivative(2, 2, 2, 2, aPntDeriv[0], aTempStorage[0]);
|
|
aResult = aTempStorage;
|
|
aDimension--;
|
|
}
|
|
|
|
thePoint.SetCoord(aResult[0], aResult[1], aResult[2]);
|
|
if (myDegree[0] > myDegree[1])
|
|
{
|
|
theTangentV.SetCoord(aResult[aDimension], aResult[aDimension + 1], aResult[aDimension + 2]);
|
|
Standard_Integer aShift = aDimension<<1;
|
|
theCurvatureV.SetCoord(aResult[aShift], aResult[aShift + 1], aResult[aShift + 2]);
|
|
aShift += aDimension;
|
|
theTangentU.SetCoord(aResult[aShift], aResult[aShift + 1], aResult[aShift + 2]);
|
|
aShift += aDimension;
|
|
theCurvatureUV.SetCoord(aResult[aShift], aResult[aShift + 1], aResult[aShift + 2]);
|
|
aShift += (aDimension << 1);
|
|
theCurvatureU.SetCoord(aResult[aShift], aResult[aShift + 1], aResult[aShift + 2]);
|
|
}
|
|
else
|
|
{
|
|
theTangentU.SetCoord(aResult[aDimension], aResult[aDimension + 1], aResult[aDimension + 2]);
|
|
Standard_Integer aShift = aDimension<<1;
|
|
theCurvatureU.SetCoord(aResult[aShift], aResult[aShift + 1], aResult[aShift + 2]);
|
|
aShift += aDimension;
|
|
theTangentV.SetCoord(aResult[aShift], aResult[aShift + 1], aResult[aShift + 2]);
|
|
aShift += aDimension;
|
|
theCurvatureUV.SetCoord(aResult[aShift], aResult[aShift + 1], aResult[aShift + 2]);
|
|
aShift += (aDimension << 1);
|
|
theCurvatureV.SetCoord(aResult[aShift], aResult[aShift + 1], aResult[aShift + 2]);
|
|
}
|
|
theTangentU.Multiply(anInvU);
|
|
theTangentV.Multiply(anInvV);
|
|
theCurvatureU.Multiply(anInvU * anInvU);
|
|
theCurvatureV.Multiply(anInvV * anInvV);
|
|
theCurvatureUV.Multiply(anInvU * anInvV);
|
|
}
|
|
|