1
0
mirror of https://git.dev.opencascade.org/repos/occt.git synced 2025-04-26 10:19:45 +03:00
occt/src/Bisector/Bisector_FunctionH.cxx
abv 42cf5bc1ca 0024002: Overall code and build procedure refactoring -- automatic
Automatic upgrade of OCCT code by command "occt_upgrade . -nocdl":
- WOK-generated header files from inc and sources from drv are moved to src
- CDL files removed
- All packages are converted to nocdlpack
2015-07-12 07:42:38 +03:00

99 lines
3.1 KiB
C++

// Created on: 1994-04-05
// Created by: Yves FRICAUD
// Copyright (c) 1994-1999 Matra Datavision
// Copyright (c) 1999-2014 OPEN CASCADE SAS
//
// This file is part of Open CASCADE Technology software library.
//
// This library is free software; you can redistribute it and/or modify it under
// the terms of the GNU Lesser General Public License version 2.1 as published
// by the Free Software Foundation, with special exception defined in the file
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
// distribution for complete text of the license and disclaimer of any warranty.
//
// Alternatively, this file may be used under the terms of Open CASCADE
// commercial license or contractual agreement.
#include <Bisector_FunctionH.hxx>
#include <Geom2d_Curve.hxx>
#include <gp_Pnt2d.hxx>
#include <gp_Vec2d.hxx>
//=============================================================================
//function :
// purpose :
//=============================================================================
Bisector_FunctionH::Bisector_FunctionH (const Handle(Geom2d_Curve)& C2,
const gp_Pnt2d& P1,
const gp_Vec2d& T1)
:p1(P1),t1(T1)
{
t1.Normalize();
curve2 = C2;
}
//=============================================================================
//function : Value
// purpose :
// F = P1P2.(||T2||T1 + T2)
//=============================================================================
Standard_Boolean Bisector_FunctionH::Value (const Standard_Real X,
Standard_Real& F)
{
gp_Pnt2d P2 ; // point sur C2.
gp_Vec2d T2 ; // tangente a C2 en V.
curve2->D1(X,P2,T2);
Standard_Real NormT2 = T2.Magnitude();
Standard_Real Ax = NormT2*t1.X() - T2.X();
Standard_Real Ay = NormT2*t1.Y() - T2.Y();
F = (p1.X() - P2.X())*Ax + (p1.Y() - P2.Y())*Ay;
return Standard_True;
}
//=============================================================================
//function : Derivative
// purpose :
//=============================================================================
Standard_Boolean Bisector_FunctionH::Derivative(const Standard_Real X,
Standard_Real& D)
{
Standard_Real F;
return Values (X,F,D);
}
//=============================================================================
//function : Values
// purpose :
//=============================================================================
Standard_Boolean Bisector_FunctionH::Values (const Standard_Real X,
Standard_Real& F,
Standard_Real& D)
{
gp_Pnt2d P2 ; // point sur C2.
gp_Vec2d T2 ; // tangente a C2 en V.
gp_Vec2d T2v ; // derivee seconde a C2 en V.
curve2->D2(X,P2,T2,T2v);
Standard_Real NormT2 = T2.Magnitude();
Standard_Real Ax = NormT2*t1.X() - T2.X();
Standard_Real Ay = NormT2*t1.Y() - T2.Y();
F = (p1.X() - P2.X())*Ax + (p1.Y() - P2.Y())*Ay;
Standard_Real Scal = T2.Dot(T2v)/NormT2;
Standard_Real dAx = Scal*t1.X() - T2v.X();
Standard_Real dAy = Scal*t1.Y() - T2v.Y();
D = - T2.X()*Ax - T2.Y()*Ay + (p1.X() - P2.X())*dAx + (p1.Y() - P2.Y())*dAy;
return Standard_True;
}