mirror of
https://git.dev.opencascade.org/repos/occt.git
synced 2025-04-26 10:19:45 +03:00
Automatic upgrade of OCCT code by command "occt_upgrade . -nocdl": - WOK-generated header files from inc and sources from drv are moved to src - CDL files removed - All packages are converted to nocdlpack
99 lines
3.1 KiB
C++
99 lines
3.1 KiB
C++
// Created on: 1994-04-05
|
|
// Created by: Yves FRICAUD
|
|
// Copyright (c) 1994-1999 Matra Datavision
|
|
// Copyright (c) 1999-2014 OPEN CASCADE SAS
|
|
//
|
|
// This file is part of Open CASCADE Technology software library.
|
|
//
|
|
// This library is free software; you can redistribute it and/or modify it under
|
|
// the terms of the GNU Lesser General Public License version 2.1 as published
|
|
// by the Free Software Foundation, with special exception defined in the file
|
|
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
|
|
// distribution for complete text of the license and disclaimer of any warranty.
|
|
//
|
|
// Alternatively, this file may be used under the terms of Open CASCADE
|
|
// commercial license or contractual agreement.
|
|
|
|
|
|
#include <Bisector_FunctionH.hxx>
|
|
#include <Geom2d_Curve.hxx>
|
|
#include <gp_Pnt2d.hxx>
|
|
#include <gp_Vec2d.hxx>
|
|
|
|
//=============================================================================
|
|
//function :
|
|
// purpose :
|
|
//=============================================================================
|
|
Bisector_FunctionH::Bisector_FunctionH (const Handle(Geom2d_Curve)& C2,
|
|
const gp_Pnt2d& P1,
|
|
const gp_Vec2d& T1)
|
|
:p1(P1),t1(T1)
|
|
{
|
|
t1.Normalize();
|
|
curve2 = C2;
|
|
}
|
|
|
|
//=============================================================================
|
|
//function : Value
|
|
// purpose :
|
|
// F = P1P2.(||T2||T1 + T2)
|
|
//=============================================================================
|
|
Standard_Boolean Bisector_FunctionH::Value (const Standard_Real X,
|
|
Standard_Real& F)
|
|
{
|
|
gp_Pnt2d P2 ; // point sur C2.
|
|
gp_Vec2d T2 ; // tangente a C2 en V.
|
|
curve2->D1(X,P2,T2);
|
|
|
|
Standard_Real NormT2 = T2.Magnitude();
|
|
Standard_Real Ax = NormT2*t1.X() - T2.X();
|
|
Standard_Real Ay = NormT2*t1.Y() - T2.Y();
|
|
|
|
F = (p1.X() - P2.X())*Ax + (p1.Y() - P2.Y())*Ay;
|
|
|
|
return Standard_True;
|
|
}
|
|
|
|
//=============================================================================
|
|
//function : Derivative
|
|
// purpose :
|
|
//=============================================================================
|
|
Standard_Boolean Bisector_FunctionH::Derivative(const Standard_Real X,
|
|
Standard_Real& D)
|
|
{
|
|
Standard_Real F;
|
|
return Values (X,F,D);
|
|
}
|
|
|
|
//=============================================================================
|
|
//function : Values
|
|
// purpose :
|
|
//=============================================================================
|
|
Standard_Boolean Bisector_FunctionH::Values (const Standard_Real X,
|
|
Standard_Real& F,
|
|
Standard_Real& D)
|
|
{
|
|
gp_Pnt2d P2 ; // point sur C2.
|
|
gp_Vec2d T2 ; // tangente a C2 en V.
|
|
gp_Vec2d T2v ; // derivee seconde a C2 en V.
|
|
|
|
curve2->D2(X,P2,T2,T2v);
|
|
|
|
Standard_Real NormT2 = T2.Magnitude();
|
|
Standard_Real Ax = NormT2*t1.X() - T2.X();
|
|
Standard_Real Ay = NormT2*t1.Y() - T2.Y();
|
|
|
|
F = (p1.X() - P2.X())*Ax + (p1.Y() - P2.Y())*Ay;
|
|
|
|
Standard_Real Scal = T2.Dot(T2v)/NormT2;
|
|
Standard_Real dAx = Scal*t1.X() - T2v.X();
|
|
Standard_Real dAy = Scal*t1.Y() - T2v.Y();
|
|
|
|
D = - T2.X()*Ax - T2.Y()*Ay + (p1.X() - P2.X())*dAx + (p1.Y() - P2.Y())*dAy;
|
|
|
|
|
|
return Standard_True;
|
|
|
|
}
|
|
|