mirror of
https://git.dev.opencascade.org/repos/occt.git
synced 2025-04-07 18:30:55 +03:00
453 lines
15 KiB
C++
453 lines
15 KiB
C++
// Created on: 2015-09-21
|
|
// Copyright (c) 2015 OPEN CASCADE SAS
|
|
//
|
|
// This file is part of Open CASCADE Technology software library.
|
|
//
|
|
// This library is free software; you can redistribute it and/or modify it under
|
|
// the terms of the GNU Lesser General Public License version 2.1 as published
|
|
// by the Free Software Foundation, with special exception defined in the file
|
|
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
|
|
// distribution for complete text of the license and disclaimer of any warranty.
|
|
//
|
|
// Alternatively, this file may be used under the terms of Open CASCADE
|
|
// commercial license or contractual agreement.
|
|
|
|
#include <Geom2dEvaluator_OffsetCurve.hxx>
|
|
|
|
#include <Geom2dAdaptor_HCurve.hxx>
|
|
#include <Standard_NullValue.hxx>
|
|
|
|
|
|
IMPLEMENT_STANDARD_RTTIEXT(Geom2dEvaluator_OffsetCurve,Geom2dEvaluator_Curve)
|
|
|
|
Geom2dEvaluator_OffsetCurve::Geom2dEvaluator_OffsetCurve(
|
|
const Handle(Geom2d_Curve)& theBase,
|
|
const Standard_Real theOffset)
|
|
: Geom2dEvaluator_Curve(),
|
|
myBaseCurve(theBase),
|
|
myOffset(theOffset)
|
|
{
|
|
}
|
|
|
|
Geom2dEvaluator_OffsetCurve::Geom2dEvaluator_OffsetCurve(
|
|
const Handle(Geom2dAdaptor_HCurve)& theBase,
|
|
const Standard_Real theOffset)
|
|
: Geom2dEvaluator_Curve(),
|
|
myBaseAdaptor(theBase),
|
|
myOffset(theOffset)
|
|
{
|
|
}
|
|
|
|
void Geom2dEvaluator_OffsetCurve::D0(const Standard_Real theU,
|
|
gp_Pnt2d& theValue) const
|
|
{
|
|
gp_Vec2d aD1;
|
|
BaseD1(theU, theValue, aD1);
|
|
CalculateD0(theValue, aD1);
|
|
}
|
|
|
|
void Geom2dEvaluator_OffsetCurve::D1(const Standard_Real theU,
|
|
gp_Pnt2d& theValue,
|
|
gp_Vec2d& theD1) const
|
|
{
|
|
gp_Vec2d aD2;
|
|
BaseD2(theU, theValue, theD1, aD2);
|
|
CalculateD1(theValue, theD1, aD2);
|
|
}
|
|
|
|
void Geom2dEvaluator_OffsetCurve::D2(const Standard_Real theU,
|
|
gp_Pnt2d& theValue,
|
|
gp_Vec2d& theD1,
|
|
gp_Vec2d& theD2) const
|
|
{
|
|
gp_Vec2d aD3;
|
|
BaseD3(theU, theValue, theD1, theD2, aD3);
|
|
|
|
Standard_Boolean isDirectionChange = Standard_False;
|
|
if (theD1.SquareMagnitude() <= gp::Resolution())
|
|
{
|
|
gp_Vec2d aDummyD4;
|
|
isDirectionChange = AdjustDerivative(3, theU, theD1, theD2, aD3, aDummyD4);
|
|
}
|
|
|
|
CalculateD2(theValue, theD1, theD2, aD3, isDirectionChange);
|
|
}
|
|
|
|
void Geom2dEvaluator_OffsetCurve::D3(const Standard_Real theU,
|
|
gp_Pnt2d& theValue,
|
|
gp_Vec2d& theD1,
|
|
gp_Vec2d& theD2,
|
|
gp_Vec2d& theD3) const
|
|
{
|
|
gp_Vec2d aD4;
|
|
BaseD4(theU, theValue, theD1, theD2, theD3, aD4);
|
|
|
|
Standard_Boolean isDirectionChange = Standard_False;
|
|
if (theD1.SquareMagnitude() <= gp::Resolution())
|
|
isDirectionChange = AdjustDerivative(4, theU, theD1, theD2, theD3, aD4);
|
|
|
|
CalculateD3(theValue, theD1, theD2, theD3, aD4, isDirectionChange);
|
|
}
|
|
|
|
gp_Vec2d Geom2dEvaluator_OffsetCurve::DN(const Standard_Real theU,
|
|
const Standard_Integer theDeriv) const
|
|
{
|
|
Standard_RangeError_Raise_if(theDeriv < 1, "Geom2dEvaluator_OffsetCurve::DN(): theDeriv < 1");
|
|
|
|
gp_Pnt2d aPnt;
|
|
gp_Vec2d aDummy, aDN;
|
|
switch (theDeriv)
|
|
{
|
|
case 1:
|
|
D1(theU, aPnt, aDN);
|
|
break;
|
|
case 2:
|
|
D2(theU, aPnt, aDummy, aDN);
|
|
break;
|
|
case 3:
|
|
D3(theU, aPnt, aDummy, aDummy, aDN);
|
|
break;
|
|
default:
|
|
aDN = BaseDN(theU, theDeriv);
|
|
}
|
|
return aDN;
|
|
}
|
|
|
|
|
|
void Geom2dEvaluator_OffsetCurve::BaseD0(const Standard_Real theU,
|
|
gp_Pnt2d& theValue) const
|
|
{
|
|
if (!myBaseAdaptor.IsNull())
|
|
myBaseAdaptor->D0(theU, theValue);
|
|
else
|
|
myBaseCurve->D0(theU, theValue);
|
|
}
|
|
|
|
void Geom2dEvaluator_OffsetCurve::BaseD1(const Standard_Real theU,
|
|
gp_Pnt2d& theValue,
|
|
gp_Vec2d& theD1) const
|
|
{
|
|
if (!myBaseAdaptor.IsNull())
|
|
myBaseAdaptor->D1(theU, theValue, theD1);
|
|
else
|
|
myBaseCurve->D1(theU, theValue, theD1);
|
|
}
|
|
|
|
void Geom2dEvaluator_OffsetCurve::BaseD2(const Standard_Real theU,
|
|
gp_Pnt2d& theValue,
|
|
gp_Vec2d& theD1,
|
|
gp_Vec2d& theD2) const
|
|
{
|
|
if (!myBaseAdaptor.IsNull())
|
|
myBaseAdaptor->D2(theU, theValue, theD1, theD2);
|
|
else
|
|
myBaseCurve->D2(theU, theValue, theD1, theD2);
|
|
}
|
|
|
|
void Geom2dEvaluator_OffsetCurve::BaseD3(const Standard_Real theU,
|
|
gp_Pnt2d& theValue,
|
|
gp_Vec2d& theD1,
|
|
gp_Vec2d& theD2,
|
|
gp_Vec2d& theD3) const
|
|
{
|
|
if (!myBaseAdaptor.IsNull())
|
|
myBaseAdaptor->D3(theU, theValue, theD1, theD2, theD3);
|
|
else
|
|
myBaseCurve->D3(theU, theValue, theD1, theD2, theD3);
|
|
}
|
|
|
|
void Geom2dEvaluator_OffsetCurve::BaseD4(const Standard_Real theU,
|
|
gp_Pnt2d& theValue,
|
|
gp_Vec2d& theD1,
|
|
gp_Vec2d& theD2,
|
|
gp_Vec2d& theD3,
|
|
gp_Vec2d& theD4) const
|
|
{
|
|
if (!myBaseAdaptor.IsNull())
|
|
{
|
|
myBaseAdaptor->D3(theU, theValue, theD1, theD2, theD3);
|
|
theD4 = myBaseAdaptor->DN(theU, 4);
|
|
}
|
|
else
|
|
{
|
|
myBaseCurve->D3(theU, theValue, theD1, theD2, theD3);
|
|
theD4 = myBaseCurve->DN(theU, 4);
|
|
}
|
|
}
|
|
|
|
gp_Vec2d Geom2dEvaluator_OffsetCurve::BaseDN(const Standard_Real theU,
|
|
const Standard_Integer theDeriv) const
|
|
{
|
|
if (!myBaseAdaptor.IsNull())
|
|
return myBaseAdaptor->DN(theU, theDeriv);
|
|
return myBaseCurve->DN(theU, theDeriv);
|
|
}
|
|
|
|
|
|
void Geom2dEvaluator_OffsetCurve::CalculateD0( gp_Pnt2d& theValue,
|
|
const gp_Vec2d& theD1) const
|
|
{
|
|
if (theD1.SquareMagnitude() <= gp::Resolution())
|
|
Standard_NullValue::Raise("Geom2dEvaluator_OffsetCurve: Undefined normal vector "
|
|
"because tangent vector has zero-magnitude!");
|
|
|
|
gp_Dir2d aNormal(theD1.Y(), -theD1.X());
|
|
theValue.ChangeCoord().Add(aNormal.XY() * myOffset);
|
|
}
|
|
|
|
void Geom2dEvaluator_OffsetCurve::CalculateD1( gp_Pnt2d& theValue,
|
|
gp_Vec2d& theD1,
|
|
const gp_Vec2d& theD2) const
|
|
{
|
|
// P(u) = p(u) + Offset * Ndir / R
|
|
// with R = || p' ^ Z|| and Ndir = P' ^ Z
|
|
|
|
// P'(u) = p'(u) + (Offset / R**2) * (DNdir/DU * R - Ndir * (DR/R))
|
|
|
|
gp_XY Ndir(theD1.Y(), -theD1.X());
|
|
gp_XY DNdir(theD2.Y(), -theD2.X());
|
|
Standard_Real R2 = Ndir.SquareModulus();
|
|
Standard_Real R = Sqrt(R2);
|
|
Standard_Real R3 = R * R2;
|
|
Standard_Real Dr = Ndir.Dot(DNdir);
|
|
if (R3 <= gp::Resolution())
|
|
{
|
|
if (R2 <= gp::Resolution())
|
|
Standard_NullValue::Raise("Geom2dEvaluator_OffsetCurve: Null derivative");
|
|
//We try another computation but the stability is not very good.
|
|
DNdir.Multiply(R);
|
|
DNdir.Subtract(Ndir.Multiplied(Dr / R));
|
|
DNdir.Multiply(myOffset / R2);
|
|
}
|
|
else
|
|
{
|
|
// Same computation as IICURV in EUCLID-IS because the stability is better
|
|
DNdir.Multiply(myOffset / R);
|
|
DNdir.Subtract(Ndir.Multiplied(myOffset * Dr / R3));
|
|
}
|
|
|
|
Ndir.Multiply(myOffset / R);
|
|
// P(u)
|
|
theValue.ChangeCoord().Add(Ndir);
|
|
// P'(u)
|
|
theD1.Add(gp_Vec2d(DNdir));
|
|
}
|
|
|
|
void Geom2dEvaluator_OffsetCurve::CalculateD2( gp_Pnt2d& theValue,
|
|
gp_Vec2d& theD1,
|
|
gp_Vec2d& theD2,
|
|
const gp_Vec2d& theD3,
|
|
const Standard_Boolean theIsDirChange) const
|
|
{
|
|
// P(u) = p(u) + Offset * Ndir / R
|
|
// with R = || p' ^ Z|| and Ndir = P' ^ Z
|
|
|
|
// P'(u) = p'(u) + (Offset / R**2) * (DNdir/DU * R - Ndir * (DR/R))
|
|
|
|
// P"(u) = p"(u) + (Offset / R) * (D2Ndir/DU - DNdir * (2.0 * Dr/ R**2) +
|
|
// Ndir * ( (3.0 * Dr**2 / R**4) - (D2r / R**2)))
|
|
|
|
gp_XY Ndir(theD1.Y(), -theD1.X());
|
|
gp_XY DNdir(theD2.Y(), -theD2.X());
|
|
gp_XY D2Ndir(theD3.Y(), -theD3.X());
|
|
Standard_Real R2 = Ndir.SquareModulus();
|
|
Standard_Real R = Sqrt(R2);
|
|
Standard_Real R3 = R2 * R;
|
|
Standard_Real R4 = R2 * R2;
|
|
Standard_Real R5 = R3 * R2;
|
|
Standard_Real Dr = Ndir.Dot(DNdir);
|
|
Standard_Real D2r = Ndir.Dot(D2Ndir) + DNdir.Dot(DNdir);
|
|
if (R5 <= gp::Resolution())
|
|
{
|
|
if (R4 <= gp::Resolution())
|
|
Standard_NullValue::Raise("Geom2dEvaluator_OffsetCurve: Null derivative");
|
|
//We try another computation but the stability is not very good dixit ISG.
|
|
// V2 = P" (U) :
|
|
D2Ndir.Subtract(DNdir.Multiplied(2.0 * Dr / R2));
|
|
D2Ndir.Add(Ndir.Multiplied(((3.0 * Dr * Dr) / R4) - (D2r / R2)));
|
|
D2Ndir.Multiply(myOffset / R);
|
|
|
|
// V1 = P' (U) :
|
|
DNdir.Multiply(R);
|
|
DNdir.Subtract(Ndir.Multiplied(Dr / R));
|
|
DNdir.Multiply(myOffset / R2);
|
|
}
|
|
else
|
|
{
|
|
// Same computation as IICURV in EUCLID-IS because the stability is better.
|
|
// V2 = P" (U) :
|
|
D2Ndir.Multiply(myOffset / R);
|
|
D2Ndir.Subtract(DNdir.Multiplied(2.0 * myOffset * Dr / R3));
|
|
D2Ndir.Add(Ndir.Multiplied(myOffset * (((3.0 * Dr * Dr) / R5) - (D2r / R3))));
|
|
|
|
// V1 = P' (U)
|
|
DNdir.Multiply(myOffset / R);
|
|
DNdir.Subtract(Ndir.Multiplied(myOffset * Dr / R3));
|
|
}
|
|
|
|
Ndir.Multiply(myOffset / R);
|
|
// P(u)
|
|
theValue.ChangeCoord().Add(Ndir);
|
|
// P'(u) :
|
|
theD1.Add(gp_Vec2d(DNdir));
|
|
// P"(u) :
|
|
if (theIsDirChange)
|
|
theD2.Reverse();
|
|
theD2.Add(gp_Vec2d(D2Ndir));
|
|
}
|
|
|
|
void Geom2dEvaluator_OffsetCurve::CalculateD3( gp_Pnt2d& theValue,
|
|
gp_Vec2d& theD1,
|
|
gp_Vec2d& theD2,
|
|
gp_Vec2d& theD3,
|
|
const gp_Vec2d& theD4,
|
|
const Standard_Boolean theIsDirChange) const
|
|
{
|
|
// P(u) = p(u) + Offset * Ndir / R
|
|
// with R = || p' ^ Z|| and Ndir = P' ^ Z
|
|
|
|
// P'(u) = p'(u) + (Offset / R**2) * (DNdir/DU * R - Ndir * (DR/R))
|
|
|
|
// P"(u) = p"(u) + (Offset / R) * (D2Ndir/DU - DNdir * (2.0 * Dr/ R**2) +
|
|
// Ndir * ( (3.0 * Dr**2 / R**4) - (D2r / R**2)))
|
|
|
|
// P"'(u) = p"'(u) + (Offset / R) * (D3Ndir - (3.0 * Dr/R**2 ) * D2Ndir -
|
|
// (3.0 * D2r / R2) * DNdir) + (3.0 * Dr * Dr / R4) * DNdir -
|
|
// (D3r/R2) * Ndir + (6.0 * Dr * Dr / R4) * Ndir +
|
|
// (6.0 * Dr * D2r / R4) * Ndir - (15.0 * Dr* Dr* Dr /R6) * Ndir
|
|
|
|
gp_XY Ndir(theD1.Y(), -theD1.X());
|
|
gp_XY DNdir(theD2.Y(), -theD2.X());
|
|
gp_XY D2Ndir(theD3.Y(), -theD3.X());
|
|
gp_XY D3Ndir(theD4.Y(), -theD4.X());
|
|
Standard_Real R2 = Ndir.SquareModulus();
|
|
Standard_Real R = Sqrt(R2);
|
|
Standard_Real R3 = R2 * R;
|
|
Standard_Real R4 = R2 * R2;
|
|
Standard_Real R5 = R3 * R2;
|
|
Standard_Real R6 = R3 * R3;
|
|
Standard_Real R7 = R5 * R2;
|
|
Standard_Real Dr = Ndir.Dot(DNdir);
|
|
Standard_Real D2r = Ndir.Dot(D2Ndir) + DNdir.Dot(DNdir);
|
|
Standard_Real D3r = Ndir.Dot(D3Ndir) + 3.0 * DNdir.Dot(D2Ndir);
|
|
|
|
if (R7 <= gp::Resolution())
|
|
{
|
|
if (R6 <= gp::Resolution())
|
|
Standard_NullValue::Raise("Geom2dEvaluator_OffsetCurve: Null derivative");
|
|
//We try another computation but the stability is not very good dixit ISG.
|
|
// V3 = P"' (U) :
|
|
D3Ndir.Subtract(D2Ndir.Multiplied(3.0 * myOffset * Dr / R2));
|
|
D3Ndir.Subtract(
|
|
(DNdir.Multiplied((3.0 * myOffset) * ((D2r / R2) + (Dr*Dr) / R4))));
|
|
D3Ndir.Add(Ndir.Multiplied(
|
|
(myOffset * (6.0*Dr*Dr / R4 + 6.0*Dr*D2r / R4 - 15.0*Dr*Dr*Dr / R6 - D3r))));
|
|
D3Ndir.Multiply(myOffset / R);
|
|
// V2 = P" (U) :
|
|
R4 = R2 * R2;
|
|
D2Ndir.Subtract(DNdir.Multiplied(2.0 * Dr / R2));
|
|
D2Ndir.Subtract(Ndir.Multiplied(((3.0 * Dr * Dr) / R4) - (D2r / R2)));
|
|
D2Ndir.Multiply(myOffset / R);
|
|
// V1 = P' (U) :
|
|
DNdir.Multiply(R);
|
|
DNdir.Subtract(Ndir.Multiplied(Dr / R));
|
|
DNdir.Multiply(myOffset / R2);
|
|
}
|
|
else
|
|
{
|
|
// Same computation as IICURV in EUCLID-IS because the stability is better.
|
|
// V3 = P"' (U) :
|
|
D3Ndir.Multiply(myOffset / R);
|
|
D3Ndir.Subtract(D2Ndir.Multiplied(3.0 * myOffset * Dr / R3));
|
|
D3Ndir.Subtract(DNdir.Multiplied(
|
|
((3.0 * myOffset) * ((D2r / R3) + (Dr*Dr) / R5))));
|
|
D3Ndir.Add(Ndir.Multiplied(
|
|
(myOffset * (6.0*Dr*Dr / R5 + 6.0*Dr*D2r / R5 - 15.0*Dr*Dr*Dr / R7 - D3r))));
|
|
// V2 = P" (U) :
|
|
D2Ndir.Multiply(myOffset / R);
|
|
D2Ndir.Subtract(DNdir.Multiplied(2.0 * myOffset * Dr / R3));
|
|
D2Ndir.Subtract(Ndir.Multiplied(
|
|
myOffset * (((3.0 * Dr * Dr) / R5) - (D2r / R3))));
|
|
// V1 = P' (U) :
|
|
DNdir.Multiply(myOffset / R);
|
|
DNdir.Subtract(Ndir.Multiplied(myOffset * Dr / R3));
|
|
}
|
|
|
|
Ndir.Multiply(myOffset / R);
|
|
// P(u)
|
|
theValue.ChangeCoord().Add(Ndir);
|
|
// P'(u) :
|
|
theD1.Add(gp_Vec2d(DNdir));
|
|
// P"(u)
|
|
theD2.Add(gp_Vec2d(D2Ndir));
|
|
// P"'(u)
|
|
if (theIsDirChange)
|
|
theD3.Reverse();
|
|
theD3.Add(gp_Vec2d(D2Ndir));
|
|
}
|
|
|
|
|
|
Standard_Boolean Geom2dEvaluator_OffsetCurve::AdjustDerivative(
|
|
const Standard_Integer theMaxDerivative, const Standard_Real theU,
|
|
gp_Vec2d& theD1, gp_Vec2d& theD2, gp_Vec2d& theD3, gp_Vec2d& theD4) const
|
|
{
|
|
static const Standard_Real aTol = gp::Resolution();
|
|
static const Standard_Real aMinStep = 1e-7;
|
|
static const Standard_Integer aMaxDerivOrder = 3;
|
|
|
|
Standard_Boolean isDirectionChange = Standard_False;
|
|
Standard_Real anUinfium;
|
|
Standard_Real anUsupremum;
|
|
if (!myBaseAdaptor.IsNull())
|
|
{
|
|
anUinfium = myBaseAdaptor->FirstParameter();
|
|
anUsupremum = myBaseAdaptor->LastParameter();
|
|
}
|
|
else
|
|
{
|
|
anUinfium = myBaseCurve->FirstParameter();
|
|
anUsupremum = myBaseCurve->LastParameter();
|
|
}
|
|
|
|
static const Standard_Real DivisionFactor = 1.e-3;
|
|
Standard_Real du;
|
|
if ((anUsupremum >= RealLast()) || (anUinfium <= RealFirst()))
|
|
du = 0.0;
|
|
else
|
|
du = anUsupremum - anUinfium;
|
|
|
|
const Standard_Real aDelta = Max(du * DivisionFactor, aMinStep);
|
|
|
|
//Derivative is approximated by Taylor-series
|
|
Standard_Integer anIndex = 1; //Derivative order
|
|
gp_Vec2d V;
|
|
|
|
do
|
|
{
|
|
V = BaseDN(theU, ++anIndex);
|
|
} while ((V.SquareMagnitude() <= aTol) && anIndex < aMaxDerivOrder);
|
|
|
|
Standard_Real u;
|
|
|
|
if (theU - anUinfium < aDelta)
|
|
u = theU + aDelta;
|
|
else
|
|
u = theU - aDelta;
|
|
|
|
gp_Pnt2d P1, P2;
|
|
BaseD0(Min(theU, u), P1);
|
|
BaseD0(Max(theU, u), P2);
|
|
|
|
gp_Vec2d V1(P1, P2);
|
|
isDirectionChange = V.Dot(V1) < 0.0;
|
|
Standard_Real aSign = isDirectionChange ? -1.0 : 1.0;
|
|
|
|
theD1 = V * aSign;
|
|
gp_Vec2d* aDeriv[3] = { &theD2, &theD3, &theD4 };
|
|
for (Standard_Integer i = 1; i < theMaxDerivative; i++)
|
|
*(aDeriv[i - 1]) = BaseDN(theU, anIndex + i) * aSign;
|
|
|
|
return isDirectionChange;
|
|
}
|
|
|