1
0
mirror of https://git.dev.opencascade.org/repos/occt.git synced 2025-04-05 18:16:23 +03:00
occt/src/math/math_NewtonMinimum.cxx
azn 6da30ff153 0025622: CAST analysis: Avoid invocation of virtual Methods of the declared Class in a Constructor or Destructor
The Delete() methods have been deleted from the following classes:
- Adaptor2d_Curve2d
- Adaptor3d_Curve
- Adaptor3d_Surface
- AppBlend_Approx
- AppCont_Function
- AppParCurves_MultiCurve
- AppParCurves_MultiPoint
- ApproxInt_SvSurfaces
- BRepPrim_OneAxis
- BRepSweep_NumLinearRegularSweep
- BRepSweep_Translation
- BRepSweep_Trsf
- DBC_BaseArray
- GeomFill_Profiler
- HatchGen_PointOnHatching
- math_BFGS
- math_FunctionSet
- math_FunctionSetRoot
- math_FunctionWithDerivative
- math_MultipleVarFunction
- math_MultipleVarFunctionWithHessian
- math_MultipleVarFunctionWithGradient
- math_Powell
- math_NewtonMinimum
- math_NewtonFunctionSetRoot
- math_BissecNewton (just add virtual destructor)
- math_FRPR
- math_BrentMinimum (just add virtual destructor)
- OSD_Chronometer
- ProjLib_Projector

Virtual methods Delete() or Destroy() of the transient inheritors is not changed (-> separate issue).
Classes Graphic3d_DataStructureManager and PrsMgr_Presentation without changes.
2015-01-29 13:43:36 +03:00

217 lines
6.7 KiB
C++

// Created on: 1996-05-03
// Created by: Philippe MANGIN
// Copyright (c) 1996-1999 Matra Datavision
// Copyright (c) 1999-2014 OPEN CASCADE SAS
//
// This file is part of Open CASCADE Technology software library.
//
// This library is free software; you can redistribute it and/or modify it under
// the terms of the GNU Lesser General Public License version 2.1 as published
// by the Free Software Foundation, with special exception defined in the file
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
// distribution for complete text of the license and disclaimer of any warranty.
//
// Alternatively, this file may be used under the terms of Open CASCADE
// commercial license or contractual agreement.
//#ifndef OCCT_DEBUG
#define No_Standard_RangeError
#define No_Standard_OutOfRange
#define No_Standard_DimensionError
//#endif
#include <math_NewtonMinimum.ixx>
#include <math_Gauss.hxx>
#include <math_Jacobi.hxx>
//============================================================================
math_NewtonMinimum::math_NewtonMinimum(math_MultipleVarFunctionWithHessian& F,
const math_Vector& StartingPoint,
const Standard_Real Tolerance,
const Standard_Integer NbIterations,
const Standard_Real Convexity,
const Standard_Boolean WithSingularity)
//============================================================================
: TheLocation(1, F.NbVariables()),
TheGradient(1, F.NbVariables()),
TheStep(1, F.NbVariables(), 10*Tolerance),
TheHessian(1, F.NbVariables(), 1, F.NbVariables() )
{
XTol = Tolerance;
CTol = Convexity;
Itermax = NbIterations;
NoConvexTreatement = WithSingularity;
Convex = Standard_True;
// Done = Standard_True;
// TheStatus = math_OK;
Perform ( F, StartingPoint);
}
//============================================================================
math_NewtonMinimum::math_NewtonMinimum(math_MultipleVarFunctionWithHessian& F,
const Standard_Real Tolerance,
const Standard_Integer NbIterations,
const Standard_Real Convexity,
const Standard_Boolean WithSingularity)
//============================================================================
: TheLocation(1, F.NbVariables()),
TheGradient(1, F.NbVariables()),
TheStep(1, F.NbVariables(), 10*Tolerance),
TheHessian(1, F.NbVariables(), 1, F.NbVariables() )
{
XTol = Tolerance;
CTol = Convexity;
Itermax = NbIterations;
NoConvexTreatement = WithSingularity;
Convex = Standard_True;
Done = Standard_False;
TheStatus = math_NotBracketed;
}
//============================================================================
math_NewtonMinimum::~math_NewtonMinimum()
{
}
//============================================================================
void math_NewtonMinimum::Perform(math_MultipleVarFunctionWithHessian& F,
const math_Vector& StartingPoint)
//============================================================================
{
math_Vector Point1 (1, F.NbVariables());
Point1 = StartingPoint;
math_Vector Point2(1, F.NbVariables());
math_Vector* precedent = &Point1;
math_Vector* suivant = &Point2;
math_Vector* auxiliaire = precedent;
Standard_Boolean Ok = Standard_True;
Standard_Integer NbConv = 0, ii, Nreduction;
Standard_Real VPrecedent, VItere;
Done = Standard_True;
TheStatus = math_OK;
nbiter = 0;
while ( Ok && (NbConv < 2) ) {
nbiter++;
// Positionnement
Ok = F.Values(*precedent, VPrecedent, TheGradient, TheHessian);
if (!Ok) {
Done = Standard_False;
TheStatus = math_FunctionError;
return;
}
if (nbiter==1) {
PreviousMinimum = VPrecedent;
TheMinimum = VPrecedent;
}
// Traitement de la non convexite
math_Jacobi CalculVP(TheHessian);
if ( !CalculVP.IsDone() ) {
Done = Standard_False;
TheStatus = math_FunctionError;
return;
}
MinEigenValue = CalculVP.Values() ( CalculVP.Values().Min());
if ( MinEigenValue < CTol) {
Convex = Standard_False;
if (NoConvexTreatement) {
Standard_Real Delta = CTol+0.1*Abs(MinEigenValue) -MinEigenValue ;
for (ii=1; ii<=TheGradient.Length(); ii++) {
TheHessian(ii, ii) += Delta;
}
}
else {
TheStatus = math_FunctionError;
return;
}
}
// Schemas de Newton
math_Gauss LU(TheHessian, CTol/100);
if ( !LU.IsDone()) {
Done = Standard_False;
TheStatus = math_DirectionSearchError;
return;
}
LU.Solve(TheGradient, TheStep);
Standard_Boolean hasProblem = Standard_False;
do
{
*suivant = *precedent - TheStep;
// Gestion de la convergence
hasProblem = !(F.Value(*suivant, TheMinimum));
if (hasProblem)
{
TheStep /= 2.0;
}
} while (hasProblem);
if (IsConverged()) { NbConv++; }
else { NbConv=0; }
// Controle et corrections.
VItere = TheMinimum;
TheMinimum = PreviousMinimum;
Nreduction =0;
while (VItere > VPrecedent && Nreduction < 10) {
TheStep *= 0.4;
*suivant = *precedent - TheStep;
F.Value(*suivant, VItere);
Nreduction++;
}
if (VItere <= VPrecedent) {
auxiliaire = precedent;
precedent = suivant;
suivant = auxiliaire;
PreviousMinimum = VPrecedent;
TheMinimum = VItere;
Ok = (nbiter < Itermax);
if (!Ok && NbConv < 2) TheStatus = math_TooManyIterations;
}
else {
Ok = Standard_False;
TheStatus = math_DirectionSearchError;
}
}
TheLocation = *precedent;
}
//============================================================================
Standard_Boolean math_NewtonMinimum::IsConverged() const
//============================================================================
{
return ( (TheStep.Norm() <= XTol ) ||
( Abs(TheMinimum-PreviousMinimum) <= XTol*Abs(PreviousMinimum) ));
}
//============================================================================
void math_NewtonMinimum::Dump(Standard_OStream& o) const
//============================================================================
{
o<< "math_Newton Optimisation: ";
o << " Done =" << Done << endl;
o << " Status = " << (Standard_Integer)TheStatus << endl;
o <<" Location Vector = " << Location() << endl;
o <<" Minimum value = "<< Minimum()<< endl;
o <<" Previous value = "<< PreviousMinimum << endl;
o <<" Number of iterations = " <<NbIterations() << endl;
o <<" Convexity = " << Convex << endl;
o <<" Eigen Value = " << MinEigenValue << endl;
}