mirror of
https://git.dev.opencascade.org/repos/occt.git
synced 2025-04-05 18:16:23 +03:00
The Delete() methods have been deleted from the following classes: - Adaptor2d_Curve2d - Adaptor3d_Curve - Adaptor3d_Surface - AppBlend_Approx - AppCont_Function - AppParCurves_MultiCurve - AppParCurves_MultiPoint - ApproxInt_SvSurfaces - BRepPrim_OneAxis - BRepSweep_NumLinearRegularSweep - BRepSweep_Translation - BRepSweep_Trsf - DBC_BaseArray - GeomFill_Profiler - HatchGen_PointOnHatching - math_BFGS - math_FunctionSet - math_FunctionSetRoot - math_FunctionWithDerivative - math_MultipleVarFunction - math_MultipleVarFunctionWithHessian - math_MultipleVarFunctionWithGradient - math_Powell - math_NewtonMinimum - math_NewtonFunctionSetRoot - math_BissecNewton (just add virtual destructor) - math_FRPR - math_BrentMinimum (just add virtual destructor) - OSD_Chronometer - ProjLib_Projector Virtual methods Delete() or Destroy() of the transient inheritors is not changed (-> separate issue). Classes Graphic3d_DataStructureManager and PrsMgr_Presentation without changes.
217 lines
6.7 KiB
C++
217 lines
6.7 KiB
C++
// Created on: 1996-05-03
|
|
// Created by: Philippe MANGIN
|
|
// Copyright (c) 1996-1999 Matra Datavision
|
|
// Copyright (c) 1999-2014 OPEN CASCADE SAS
|
|
//
|
|
// This file is part of Open CASCADE Technology software library.
|
|
//
|
|
// This library is free software; you can redistribute it and/or modify it under
|
|
// the terms of the GNU Lesser General Public License version 2.1 as published
|
|
// by the Free Software Foundation, with special exception defined in the file
|
|
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
|
|
// distribution for complete text of the license and disclaimer of any warranty.
|
|
//
|
|
// Alternatively, this file may be used under the terms of Open CASCADE
|
|
// commercial license or contractual agreement.
|
|
|
|
//#ifndef OCCT_DEBUG
|
|
#define No_Standard_RangeError
|
|
#define No_Standard_OutOfRange
|
|
#define No_Standard_DimensionError
|
|
//#endif
|
|
|
|
#include <math_NewtonMinimum.ixx>
|
|
|
|
#include <math_Gauss.hxx>
|
|
#include <math_Jacobi.hxx>
|
|
|
|
//============================================================================
|
|
math_NewtonMinimum::math_NewtonMinimum(math_MultipleVarFunctionWithHessian& F,
|
|
const math_Vector& StartingPoint,
|
|
const Standard_Real Tolerance,
|
|
const Standard_Integer NbIterations,
|
|
const Standard_Real Convexity,
|
|
const Standard_Boolean WithSingularity)
|
|
//============================================================================
|
|
: TheLocation(1, F.NbVariables()),
|
|
TheGradient(1, F.NbVariables()),
|
|
TheStep(1, F.NbVariables(), 10*Tolerance),
|
|
TheHessian(1, F.NbVariables(), 1, F.NbVariables() )
|
|
{
|
|
XTol = Tolerance;
|
|
CTol = Convexity;
|
|
Itermax = NbIterations;
|
|
NoConvexTreatement = WithSingularity;
|
|
Convex = Standard_True;
|
|
// Done = Standard_True;
|
|
// TheStatus = math_OK;
|
|
Perform ( F, StartingPoint);
|
|
}
|
|
|
|
//============================================================================
|
|
math_NewtonMinimum::math_NewtonMinimum(math_MultipleVarFunctionWithHessian& F,
|
|
const Standard_Real Tolerance,
|
|
const Standard_Integer NbIterations,
|
|
const Standard_Real Convexity,
|
|
const Standard_Boolean WithSingularity)
|
|
//============================================================================
|
|
: TheLocation(1, F.NbVariables()),
|
|
TheGradient(1, F.NbVariables()),
|
|
TheStep(1, F.NbVariables(), 10*Tolerance),
|
|
TheHessian(1, F.NbVariables(), 1, F.NbVariables() )
|
|
{
|
|
XTol = Tolerance;
|
|
CTol = Convexity;
|
|
Itermax = NbIterations;
|
|
NoConvexTreatement = WithSingularity;
|
|
Convex = Standard_True;
|
|
Done = Standard_False;
|
|
TheStatus = math_NotBracketed;
|
|
}
|
|
//============================================================================
|
|
math_NewtonMinimum::~math_NewtonMinimum()
|
|
{
|
|
}
|
|
|
|
//============================================================================
|
|
void math_NewtonMinimum::Perform(math_MultipleVarFunctionWithHessian& F,
|
|
const math_Vector& StartingPoint)
|
|
//============================================================================
|
|
{
|
|
math_Vector Point1 (1, F.NbVariables());
|
|
Point1 = StartingPoint;
|
|
math_Vector Point2(1, F.NbVariables());
|
|
math_Vector* precedent = &Point1;
|
|
math_Vector* suivant = &Point2;
|
|
math_Vector* auxiliaire = precedent;
|
|
|
|
Standard_Boolean Ok = Standard_True;
|
|
Standard_Integer NbConv = 0, ii, Nreduction;
|
|
Standard_Real VPrecedent, VItere;
|
|
|
|
Done = Standard_True;
|
|
TheStatus = math_OK;
|
|
nbiter = 0;
|
|
|
|
while ( Ok && (NbConv < 2) ) {
|
|
nbiter++;
|
|
|
|
// Positionnement
|
|
|
|
Ok = F.Values(*precedent, VPrecedent, TheGradient, TheHessian);
|
|
if (!Ok) {
|
|
Done = Standard_False;
|
|
TheStatus = math_FunctionError;
|
|
return;
|
|
}
|
|
if (nbiter==1) {
|
|
PreviousMinimum = VPrecedent;
|
|
TheMinimum = VPrecedent;
|
|
}
|
|
|
|
// Traitement de la non convexite
|
|
|
|
math_Jacobi CalculVP(TheHessian);
|
|
if ( !CalculVP.IsDone() ) {
|
|
Done = Standard_False;
|
|
TheStatus = math_FunctionError;
|
|
return;
|
|
}
|
|
|
|
|
|
|
|
MinEigenValue = CalculVP.Values() ( CalculVP.Values().Min());
|
|
if ( MinEigenValue < CTol) {
|
|
Convex = Standard_False;
|
|
if (NoConvexTreatement) {
|
|
Standard_Real Delta = CTol+0.1*Abs(MinEigenValue) -MinEigenValue ;
|
|
for (ii=1; ii<=TheGradient.Length(); ii++) {
|
|
TheHessian(ii, ii) += Delta;
|
|
}
|
|
}
|
|
else {
|
|
TheStatus = math_FunctionError;
|
|
return;
|
|
}
|
|
}
|
|
|
|
// Schemas de Newton
|
|
|
|
math_Gauss LU(TheHessian, CTol/100);
|
|
if ( !LU.IsDone()) {
|
|
Done = Standard_False;
|
|
TheStatus = math_DirectionSearchError;
|
|
return;
|
|
}
|
|
|
|
LU.Solve(TheGradient, TheStep);
|
|
Standard_Boolean hasProblem = Standard_False;
|
|
do
|
|
{
|
|
*suivant = *precedent - TheStep;
|
|
|
|
// Gestion de la convergence
|
|
hasProblem = !(F.Value(*suivant, TheMinimum));
|
|
|
|
if (hasProblem)
|
|
{
|
|
TheStep /= 2.0;
|
|
}
|
|
} while (hasProblem);
|
|
|
|
if (IsConverged()) { NbConv++; }
|
|
else { NbConv=0; }
|
|
|
|
// Controle et corrections.
|
|
|
|
VItere = TheMinimum;
|
|
TheMinimum = PreviousMinimum;
|
|
Nreduction =0;
|
|
while (VItere > VPrecedent && Nreduction < 10) {
|
|
TheStep *= 0.4;
|
|
*suivant = *precedent - TheStep;
|
|
F.Value(*suivant, VItere);
|
|
Nreduction++;
|
|
}
|
|
|
|
if (VItere <= VPrecedent) {
|
|
auxiliaire = precedent;
|
|
precedent = suivant;
|
|
suivant = auxiliaire;
|
|
PreviousMinimum = VPrecedent;
|
|
TheMinimum = VItere;
|
|
Ok = (nbiter < Itermax);
|
|
if (!Ok && NbConv < 2) TheStatus = math_TooManyIterations;
|
|
}
|
|
else {
|
|
Ok = Standard_False;
|
|
TheStatus = math_DirectionSearchError;
|
|
}
|
|
}
|
|
TheLocation = *precedent;
|
|
}
|
|
|
|
//============================================================================
|
|
Standard_Boolean math_NewtonMinimum::IsConverged() const
|
|
//============================================================================
|
|
{
|
|
return ( (TheStep.Norm() <= XTol ) ||
|
|
( Abs(TheMinimum-PreviousMinimum) <= XTol*Abs(PreviousMinimum) ));
|
|
}
|
|
|
|
//============================================================================
|
|
void math_NewtonMinimum::Dump(Standard_OStream& o) const
|
|
//============================================================================
|
|
{
|
|
o<< "math_Newton Optimisation: ";
|
|
o << " Done =" << Done << endl;
|
|
o << " Status = " << (Standard_Integer)TheStatus << endl;
|
|
o <<" Location Vector = " << Location() << endl;
|
|
o <<" Minimum value = "<< Minimum()<< endl;
|
|
o <<" Previous value = "<< PreviousMinimum << endl;
|
|
o <<" Number of iterations = " <<NbIterations() << endl;
|
|
o <<" Convexity = " << Convex << endl;
|
|
o <<" Eigen Value = " << MinEigenValue << endl;
|
|
}
|
|
|