1
0
mirror of https://git.dev.opencascade.org/repos/occt.git synced 2025-04-04 18:06:22 +03:00
occt/src/NCollection/NCollection_Map.hxx
msv 3f5aa017e7 0028782: Shape sewing behavior not consistent for the same CAD file
Get rid of iterations on maps with shape key by replacing simple maps with indexed maps. So iteration is done on integer key.

The map containers have been updated to insert into them type definitions of key and value.

The new methods RemoveKey() and RemoveFromIndex() have been added to indexed [data] map to be able to remove an arbitrary key from the map.

All the code in OCCT has been updated where RemoveLast() and Substitute() methods were used to remove a key from indexed [data] map.
2017-06-01 13:55:15 +03:00

591 lines
17 KiB
C++

// Created on: 2002-04-23
// Created by: Alexander KARTOMIN (akm)
// Copyright (c) 2002-2014 OPEN CASCADE SAS
//
// This file is part of Open CASCADE Technology software library.
//
// This library is free software; you can redistribute it and/or modify it under
// the terms of the GNU Lesser General Public License version 2.1 as published
// by the Free Software Foundation, with special exception defined in the file
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
// distribution for complete text of the license and disclaimer of any warranty.
//
// Alternatively, this file may be used under the terms of Open CASCADE
// commercial license or contractual agreement.
#ifndef NCollection_Map_HeaderFile
#define NCollection_Map_HeaderFile
#include <NCollection_BaseMap.hxx>
#include <NCollection_DataMap.hxx>
#include <NCollection_TListNode.hxx>
#include <NCollection_StlIterator.hxx>
#include <NCollection_DefaultHasher.hxx>
#include <Standard_NoSuchObject.hxx>
/**
* Purpose: Single hashed Map. This Map is used to store and
* retrieve keys in linear time.
*
* The ::Iterator class can be used to explore the
* content of the map. It is not wise to iterate and
* modify a map in parallel.
*
* To compute the hashcode of the key the function
* ::HashCode must be defined in the global namespace
*
* To compare two keys the function ::IsEqual must be
* defined in the global namespace.
*
* The performance of a Map is conditionned by its
* number of buckets that should be kept greater to
* the number of keys. This map has an automatic
* management of the number of buckets. It is resized
* when the number of Keys becomes greater than the
* number of buckets.
*
* If you have a fair idea of the number of objects
* you can save on automatic resizing by giving a
* number of buckets at creation or using the ReSize
* method. This should be consider only for crucial
* optimisation issues.
*/
template < class TheKeyType,
class Hasher = NCollection_DefaultHasher<TheKeyType> >
class NCollection_Map : public NCollection_BaseMap
{
public:
//! STL-compliant typedef for key type
typedef TheKeyType key_type;
public:
//! Adaptation of the TListNode to the map notations
class MapNode : public NCollection_TListNode<TheKeyType>
{
public:
//! Constructor with 'Next'
MapNode (const TheKeyType& theKey,
NCollection_ListNode* theNext) :
NCollection_TListNode<TheKeyType> (theKey, theNext) {}
//! Key
const TheKeyType& Key (void)
{ return this->Value(); }
};
public:
//! Implementation of the Iterator interface.
class Iterator : public NCollection_BaseMap::Iterator
{
public:
//! Empty constructor
Iterator (void) :
NCollection_BaseMap::Iterator() {}
//! Constructor
Iterator (const NCollection_Map& theMap) :
NCollection_BaseMap::Iterator(theMap) {}
//! Query if the end of collection is reached by iterator
Standard_Boolean More(void) const
{ return PMore(); }
//! Make a step along the collection
void Next(void)
{ PNext(); }
//! Value inquiry
const TheKeyType& Value(void) const
{
Standard_NoSuchObject_Raise_if (!More(), "NCollection_Map::Iterator::Value");
return ((MapNode *) myNode)->Value();
}
//! Key
const TheKeyType& Key (void) const
{
Standard_NoSuchObject_Raise_if (!More(), "NCollection_Map::Iterator::Key");
return ((MapNode *) myNode)->Value();
}
};
//! Shorthand for a constant iterator type.
typedef NCollection_StlIterator<std::forward_iterator_tag, Iterator, TheKeyType, true> const_iterator;
//! Returns a const iterator pointing to the first element in the map.
const_iterator cbegin() const { return Iterator (*this); }
//! Returns a const iterator referring to the past-the-end element in the map.
const_iterator cend() const { return Iterator(); }
public:
// ---------- PUBLIC METHODS ------------
//! Constructor
NCollection_Map (const Standard_Integer NbBuckets = 1,
const Handle(NCollection_BaseAllocator)& theAllocator = 0L) :
NCollection_BaseMap (NbBuckets, Standard_True, theAllocator) {}
//! Copy constructor
NCollection_Map (const NCollection_Map& theOther) :
NCollection_BaseMap (theOther.NbBuckets(), Standard_True, theOther.myAllocator)
{ *this = theOther; }
//! Exchange the content of two maps without re-allocations.
//! Notice that allocators will be swapped as well!
void Exchange (NCollection_Map& theOther)
{
this->exchangeMapsData (theOther);
}
//! Assign.
//! This method does not change the internal allocator.
NCollection_Map& Assign (const NCollection_Map& theOther)
{
if (this == &theOther)
return *this;
Clear();
ReSize (theOther.Extent()-1);
Iterator anIter(theOther);
for (; anIter.More(); anIter.Next())
Add (anIter.Key());
return *this;
}
//! Assign operator
NCollection_Map& operator= (const NCollection_Map& theOther)
{
return Assign(theOther);
}
//! ReSize
void ReSize (const Standard_Integer N)
{
NCollection_ListNode** newdata = 0L;
NCollection_ListNode** dummy = 0L;
Standard_Integer newBuck;
if (BeginResize (N, newBuck, newdata, dummy))
{
if (myData1)
{
MapNode** olddata = (MapNode**) myData1;
MapNode *p, *q;
Standard_Integer i,k;
for (i = 0; i <= NbBuckets(); i++)
{
if (olddata[i])
{
p = olddata[i];
while (p)
{
k = Hasher::HashCode(p->Key(),newBuck);
q = (MapNode*) p->Next();
p->Next() = newdata[k];
newdata[k] = p;
p = q;
}
}
}
}
EndResize (N, newBuck, newdata, dummy);
}
}
//! Add
Standard_Boolean Add(const TheKeyType& K)
{
if (Resizable())
ReSize(Extent());
MapNode** data = (MapNode**)myData1;
Standard_Integer k = Hasher::HashCode(K,NbBuckets());
MapNode* p = data[k];
while (p)
{
if (Hasher::IsEqual(p->Key(),K))
return Standard_False;
p = (MapNode *) p->Next();
}
data[k] = new (this->myAllocator) MapNode(K,data[k]);
Increment();
return Standard_True;
}
//! Added: add a new key if not yet in the map, and return
//! reference to either newly added or previously existing object
const TheKeyType& Added(const TheKeyType& K)
{
if (Resizable())
ReSize(Extent());
MapNode** data = (MapNode**)myData1;
Standard_Integer k = Hasher::HashCode(K,NbBuckets());
MapNode* p = data[k];
while (p)
{
if (Hasher::IsEqual(p->Key(),K))
return p->Key();
p = (MapNode *) p->Next();
}
data[k] = new (this->myAllocator) MapNode(K,data[k]);
Increment();
return data[k]->Key();
}
//! Contains
Standard_Boolean Contains(const TheKeyType& K) const
{
if (IsEmpty())
return Standard_False;
MapNode** data = (MapNode**) myData1;
MapNode* p = data[Hasher::HashCode(K,NbBuckets())];
while (p)
{
if (Hasher::IsEqual(p->Key(),K))
return Standard_True;
p = (MapNode *) p->Next();
}
return Standard_False;
}
//! Remove
Standard_Boolean Remove(const TheKeyType& K)
{
if (IsEmpty())
return Standard_False;
MapNode** data = (MapNode**) myData1;
Standard_Integer k = Hasher::HashCode(K,NbBuckets());
MapNode* p = data[k];
MapNode* q = NULL;
while (p)
{
if (Hasher::IsEqual(p->Key(),K))
{
Decrement();
if (q)
q->Next() = p->Next();
else
data[k] = (MapNode*) p->Next();
p->~MapNode();
this->myAllocator->Free(p);
return Standard_True;
}
q = p;
p = (MapNode*) p->Next();
}
return Standard_False;
}
//! Clear data. If doReleaseMemory is false then the table of
//! buckets is not released and will be reused.
void Clear(const Standard_Boolean doReleaseMemory = Standard_True)
{ Destroy (MapNode::delNode, doReleaseMemory); }
//! Clear data and reset allocator
void Clear (const Handle(NCollection_BaseAllocator)& theAllocator)
{
Clear();
this->myAllocator = ( ! theAllocator.IsNull() ? theAllocator :
NCollection_BaseAllocator::CommonBaseAllocator() );
}
//! Destructor
virtual ~NCollection_Map (void)
{ Clear(); }
//! Size
Standard_Integer Size(void) const
{ return Extent(); }
public:
//!@name Boolean operations with maps as sets of keys
//!@{
//! @return true if two maps contains exactly the same keys
Standard_Boolean IsEqual (const NCollection_Map& theOther) const
{
return Extent() == theOther.Extent()
&& Contains (theOther);
}
//! @return true if this map contains ALL keys of another map.
Standard_Boolean Contains (const NCollection_Map& theOther) const
{
if (this == &theOther
|| theOther.IsEmpty())
{
return Standard_True;
}
else if (Extent() < theOther.Extent())
{
return Standard_False;
}
for (Iterator anIter (theOther); anIter.More(); anIter.Next())
{
if (!Contains (anIter.Key()))
{
return Standard_False;
}
}
return Standard_True;
}
//! Sets this Map to be the result of union (aka addition, fuse, merge, boolean OR) operation between two given Maps
//! The new Map contains the values that are contained either in the first map or in the second map or in both.
//! All previous content of this Map is cleared.
//! This map (result of the boolean operation) can also be passed as one of operands.
void Union (const NCollection_Map& theLeft,
const NCollection_Map& theRight)
{
if (&theLeft == &theRight)
{
Assign (theLeft);
return;
}
if (this != &theLeft
&& this != &theRight)
{
Clear();
}
if (this != &theLeft)
{
for (Iterator anIter (theLeft); anIter.More(); anIter.Next())
{
Add (anIter.Key());
}
}
if (this != &theRight)
{
for (Iterator anIter (theRight); anIter.More(); anIter.Next())
{
Add (anIter.Key());
}
}
}
//! Apply to this Map the boolean operation union (aka addition, fuse, merge, boolean OR) with another (given) Map.
//! The result contains the values that were previously contained in this map or contained in the given (operand) map.
//! This algorithm is similar to method Union().
//! Returns True if contents of this map is changed.
Standard_Boolean Unite (const NCollection_Map& theOther)
{
if (this == &theOther)
{
return Standard_False;
}
const Standard_Integer anOldExtent = Extent();
Union (*this, theOther);
return anOldExtent != Extent();
}
//! Returns true if this and theMap have common elements.
Standard_Boolean HasIntersection (const NCollection_Map& theMap) const
{
const NCollection_Map* aMap1 = this;
const NCollection_Map* aMap2 = &theMap;
if (theMap.Size() < Size())
{
aMap1 = &theMap;
aMap2 = this;
}
for (NCollection_Map::Iterator aIt(*aMap1); aIt.More(); aIt.Next())
{
if (aMap2->Contains(aIt.Value()))
{
return Standard_True;
}
}
return Standard_False;
}
//! Sets this Map to be the result of intersection (aka multiplication, common, boolean AND) operation between two given Maps.
//! The new Map contains only the values that are contained in both map operands.
//! All previous content of this Map is cleared.
//! This same map (result of the boolean operation) can also be used as one of operands.
void Intersection (const NCollection_Map& theLeft,
const NCollection_Map& theRight)
{
if (&theLeft == &theRight)
{
Assign (theLeft);
return;
}
if (this == &theLeft)
{
NCollection_Map aCopy (1, this->myAllocator);
Exchange (aCopy);
Intersection (aCopy, theRight);
return;
}
else if (this == &theRight)
{
NCollection_Map aCopy (1, this->myAllocator);
Exchange (aCopy);
Intersection (theLeft, aCopy);
return;
}
Clear();
if (theLeft.Extent() < theRight.Extent())
{
for (Iterator anIter (theLeft); anIter.More(); anIter.Next())
{
if (theRight.Contains (anIter.Key()))
{
Add (anIter.Key());
}
}
}
else
{
for (Iterator anIter (theRight); anIter.More(); anIter.Next())
{
if (theLeft.Contains (anIter.Key()))
{
Add (anIter.Key());
}
}
}
}
//! Apply to this Map the intersection operation (aka multiplication, common, boolean AND) with another (given) Map.
//! The result contains only the values that are contained in both this and the given maps.
//! This algorithm is similar to method Intersection().
//! Returns True if contents of this map is changed.
Standard_Boolean Intersect (const NCollection_Map& theOther)
{
if (this == &theOther
|| IsEmpty())
{
return Standard_False;
}
const Standard_Integer anOldExtent = Extent();
Intersection (*this, theOther);
return anOldExtent != Extent();
}
//! Sets this Map to be the result of subtraction (aka set-theoretic difference, relative complement,
//! exclude, cut, boolean NOT) operation between two given Maps.
//! The new Map contains only the values that are contained in the first map operands and not contained in the second one.
//! All previous content of this Map is cleared.
void Subtraction (const NCollection_Map& theLeft,
const NCollection_Map& theRight)
{
if (this == &theLeft)
{
Subtract (theRight);
return;
}
else if (this == &theRight)
{
NCollection_Map aCopy (1, this->myAllocator);
Exchange (aCopy);
Subtraction (theLeft, aCopy);
return;
}
Assign (theLeft);
Subtract (theRight);
}
//! Apply to this Map the subtraction (aka set-theoretic difference, relative complement,
//! exclude, cut, boolean NOT) operation with another (given) Map.
//! The result contains only the values that were previously contained in this map and not contained in this map.
//! This algorithm is similar to method Subtract() with two operands.
//! Returns True if contents of this map is changed.
Standard_Boolean Subtract (const NCollection_Map& theOther)
{
if (this == &theOther)
{
if (IsEmpty())
{
return Standard_False;
}
Clear();
return Standard_True;
}
const Standard_Integer anOldExtent = Extent();
for (Iterator anIter (theOther); anIter.More(); anIter.Next())
{
Remove (anIter.Key());
}
return anOldExtent != Extent();
}
//! Sets this Map to be the result of symmetric difference (aka exclusive disjunction, boolean XOR) operation between two given Maps.
//! The new Map contains the values that are contained only in the first or the second operand maps but not in both.
//! All previous content of this Map is cleared. This map (result of the boolean operation) can also be used as one of operands.
void Difference (const NCollection_Map& theLeft,
const NCollection_Map& theRight)
{
if (&theLeft == &theRight)
{
Clear();
return;
}
else if (this == &theLeft)
{
NCollection_Map aCopy (1, this->myAllocator);
Exchange (aCopy);
Difference (aCopy, theRight);
return;
}
else if (this == &theRight)
{
NCollection_Map aCopy (1, this->myAllocator);
Exchange (aCopy);
Difference (theLeft, aCopy);
return;
}
Clear();
for (Iterator anIter (theLeft); anIter.More(); anIter.Next())
{
if (!theRight.Contains (anIter.Key()))
{
Add (anIter.Key());
}
}
for (Iterator anIter (theRight); anIter.More(); anIter.Next())
{
if (!theLeft.Contains (anIter.Key()))
{
Add (anIter.Key());
}
}
}
//! Apply to this Map the symmetric difference (aka exclusive disjunction, boolean XOR) operation with another (given) Map.
//! The result contains the values that are contained only in this or the operand map, but not in both.
//! This algorithm is similar to method Difference().
//! Returns True if contents of this map is changed.
Standard_Boolean Differ (const NCollection_Map& theOther)
{
if (this == &theOther)
{
if (IsEmpty())
{
return Standard_False;
}
Clear();
return Standard_True;
}
const Standard_Integer anOldExtent = Extent();
Difference (*this, theOther);
return anOldExtent != Extent();
}
//!@}
};
#endif