1
0
mirror of https://git.dev.opencascade.org/repos/occt.git synced 2025-04-21 10:13:43 +03:00
occt/src/Convert/Convert_CompBezierCurvesToBSplineCurve.cxx
abv 9a9a3edfd8 0027234: Code duplication: Convert_CompBezierCurvesToBSplineCurve* in ShapeConstruct
Classes from ShapeConstruct duplicating the ones from Convert package are removed.
Protection against joining segments when degree is 1 is introduced in Convert classes.
Optimization previously made in Convert_CompBezierCurvesToBSplineCurve class (within #25256) is applied to 2d equivalent.

Data for automatic upgrade procedure are extended to replace removed classes by their duplicates from Convert.

// cout disabled unless OCCT_DEBUG is defined
2016-04-22 15:21:19 +03:00

250 lines
7.3 KiB
C++

// Created on: 1993-10-20
// Created by: Bruno DUMORTIER
// Copyright (c) 1993-1999 Matra Datavision
// Copyright (c) 1999-2014 OPEN CASCADE SAS
//
// This file is part of Open CASCADE Technology software library.
//
// This library is free software; you can redistribute it and/or modify it under
// the terms of the GNU Lesser General Public License version 2.1 as published
// by the Free Software Foundation, with special exception defined in the file
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
// distribution for complete text of the license and disclaimer of any warranty.
//
// Alternatively, this file may be used under the terms of Open CASCADE
// commercial license or contractual agreement.
#include <BSplCLib.hxx>
#include <Convert_CompBezierCurvesToBSplineCurve.hxx>
#include <gp.hxx>
#include <gp_Pnt.hxx>
#include <gp_Vec.hxx>
#include <PLib.hxx>
#include <Precision.hxx>
#include <Standard_ConstructionError.hxx>
#include <TColgp_HArray1OfPnt.hxx>
//=======================================================================
//function : Convert_CompBezierCurvesToBSplineCurve
//purpose :
//=======================================================================
Convert_CompBezierCurvesToBSplineCurve::
Convert_CompBezierCurvesToBSplineCurve(
const Standard_Real AngularTolerance) :
myAngular(AngularTolerance),
myDone(Standard_False)
{
}
//=======================================================================
//function : AddCurve
//purpose :
//=======================================================================
void Convert_CompBezierCurvesToBSplineCurve::AddCurve
(const TColgp_Array1OfPnt& Poles)
{
if ( !mySequence.IsEmpty()) {
gp_Pnt P1,P2;
P1 = mySequence.Last()->Value(mySequence.Last()->Upper());
P2 = Poles(Poles.Lower());
#ifdef OCCT_DEBUG
if (!P1.IsEqual(P2, Precision::Confusion()))
cout << "Convert_CompBezierCurvesToBSplineCurve::Addcurve" << endl;
#endif
}
myDone = Standard_False;
Handle(TColgp_HArray1OfPnt) HPoles =
new TColgp_HArray1OfPnt(Poles.Lower(),Poles.Upper());
HPoles->ChangeArray1() = Poles;
mySequence.Append(HPoles);
}
//=======================================================================
//function : Degree
//purpose :
//=======================================================================
Standard_Integer Convert_CompBezierCurvesToBSplineCurve::Degree() const
{
return myDegree;
}
//=======================================================================
//function : NbPoles
//purpose :
//=======================================================================
Standard_Integer Convert_CompBezierCurvesToBSplineCurve::NbPoles() const
{
return CurvePoles.Length();
}
//=======================================================================
//function : Poles
//purpose :
//=======================================================================
void Convert_CompBezierCurvesToBSplineCurve::Poles
(TColgp_Array1OfPnt& Poles) const
{
Standard_Integer i, Lower = Poles.Lower(), Upper = Poles.Upper();
Standard_Integer k = 1;
for (i = Lower; i <= Upper; i++) {
Poles(i) = CurvePoles(k++);
}
}
//=======================================================================
//function : NbKnots
//purpose :
//=======================================================================
Standard_Integer Convert_CompBezierCurvesToBSplineCurve::NbKnots() const
{
return CurveKnots.Length();
}
//=======================================================================
//function : KnotsAndMults
//purpose :
//=======================================================================
void Convert_CompBezierCurvesToBSplineCurve::KnotsAndMults
(TColStd_Array1OfReal& Knots,
TColStd_Array1OfInteger& Mults ) const
{
Standard_Integer i, LowerK = Knots.Lower(), UpperK = Knots.Upper();
Standard_Integer LowerM = Mults.Lower(), UpperM = Mults.Upper();
Standard_Integer k = 1;
for (i = LowerK; i <= UpperK; i++) {
Knots(i) = CurveKnots(k++);
}
k = 1;
for (i = LowerM; i <= UpperM; i++) {
Mults(i) = KnotsMultiplicities(k++);
}
}
//=======================================================================
//function : Perform
//purpose :
//=======================================================================
void Convert_CompBezierCurvesToBSplineCurve::Perform()
{
myDone = Standard_True;
CurvePoles.Clear();
CurveKnots.Clear();
KnotsMultiplicities.Clear();
Standard_Integer LowerI = 1;
Standard_Integer UpperI = mySequence.Length();
Standard_Integer NbrCurv = UpperI-LowerI+1;
// Standard_Integer NbKnotsSpl = NbrCurv + 1 ;
TColStd_Array1OfReal CurveKnVals (1,NbrCurv);
Standard_Integer i;
myDegree = 0;
for ( i = 1; i <= mySequence.Length(); i++) {
myDegree = Max( myDegree, (mySequence(i))->Length() -1);
}
Standard_Real Det=0;
gp_Pnt P1, P2, P3;
Standard_Integer Deg, Inc, MaxDegree = myDegree;
TColgp_Array1OfPnt Points(1, myDegree+1);
for (i = LowerI ; i <= UpperI ; i++) {
// 1- Raise the Bezier curve to the maximum degree.
Deg = mySequence(i)->Length()-1;
Inc = myDegree - Deg;
if ( Inc > 0) {
BSplCLib::IncreaseDegree(myDegree,
mySequence(i)->Array1(), BSplCLib::NoWeights(),
Points, BSplCLib::NoWeights());
}
else {
Points = mySequence(i)->Array1();
}
// 2- Process the node of junction between 2 Bezier curves.
if (i == LowerI) {
// Processing of the initial node of the BSpline.
for (Standard_Integer j = 1 ; j <= MaxDegree ; j++) {
CurvePoles.Append(Points(j));
}
CurveKnVals(1) = 1.; // To begin the series.
KnotsMultiplicities.Append(MaxDegree+1);
Det = 1.;
}
if (i != LowerI) {
P2 = Points(1);
P3 = Points(2);
gp_Vec V1(P1, P2), V2(P2, P3);
// Processing of the tangency between Bezier and the previous.
// This allows to guarantee at least a C1 continuity if the tangents are
// coherent.
Standard_Real D1 = V1.SquareMagnitude();
Standard_Real D2 = V2.SquareMagnitude();
if (MaxDegree > 1 && //rln 20.06.99 work-around
D1 > gp::Resolution() && D2 > gp::Resolution() && V1.IsParallel(V2, myAngular ))
{
Standard_Real Lambda = Sqrt(D2/D1);
if(CurveKnVals(i-1) * Lambda > 10. * Epsilon(Det)) {
KnotsMultiplicities.Append(MaxDegree-1);
CurveKnVals(i) = CurveKnVals(i-1) * Lambda;
}
else {
CurvePoles.Append(Points(1));
KnotsMultiplicities.Append(MaxDegree);
CurveKnVals(i) = 1.0 ;
}
}
else {
CurvePoles.Append(Points(1));
KnotsMultiplicities.Append(MaxDegree);
CurveKnVals(i) = 1.0 ;
}
Det += CurveKnVals(i);
// Store the poles.
for (Standard_Integer j = 2 ; j <= MaxDegree ; j++) {
CurvePoles.Append(Points(j));
}
}
if (i == UpperI) {
// Processing of the end node of the BSpline.
CurvePoles.Append(Points(MaxDegree+1));
KnotsMultiplicities.Append(MaxDegree+1);
}
P1 = Points(MaxDegree);
}
// Correct nodal values to make them variable within [0.,1.].
CurveKnots.Append(0.0);
// cout << "Convert : Det = " << Det << endl;
for (i = 2 ; i <= NbrCurv ; i++) {
CurveKnots.Append(CurveKnots(i-1) + (CurveKnVals(i-1)/Det));
}
CurveKnots.Append(1.0);
}