1
0
mirror of https://git.dev.opencascade.org/repos/occt.git synced 2025-06-05 11:24:17 +03:00
occt/src/math/math_NewtonFunctionSetRoot.cxx
bugmaster b311480ed5 0023024: Update headers of OCCT files
Added appropriate copyright and license information in source files
2012-03-21 19:43:04 +04:00

204 lines
7.0 KiB
C++
Executable File

// Copyright (c) 1997-1999 Matra Datavision
// Copyright (c) 1999-2012 OPEN CASCADE SAS
//
// The content of this file is subject to the Open CASCADE Technology Public
// License Version 6.5 (the "License"). You may not use the content of this file
// except in compliance with the License. Please obtain a copy of the License
// at http://www.opencascade.org and read it completely before using this file.
//
// The Initial Developer of the Original Code is Open CASCADE S.A.S., having its
// main offices at: 1, place des Freres Montgolfier, 78280 Guyancourt, France.
//
// The Original Code and all software distributed under the License is
// distributed on an "AS IS" basis, without warranty of any kind, and the
// Initial Developer hereby disclaims all such warranties, including without
// limitation, any warranties of merchantability, fitness for a particular
// purpose or non-infringement. Please see the License for the specific terms
// and conditions governing the rights and limitations under the License.
//#ifndef DEB
#define No_Standard_RangeError
#define No_Standard_OutOfRange
#define No_Standard_DimensionError
//#endif
#include <math_NewtonFunctionSetRoot.ixx>
#include <math_Recipes.hxx>
#include <math_FunctionSetWithDerivatives.hxx>
Standard_Boolean math_NewtonFunctionSetRoot::IsSolutionReached
// (math_FunctionSetWithDerivatives& F)
(math_FunctionSetWithDerivatives& )
{
for(Standard_Integer i = DeltaX.Lower(); i <= DeltaX.Upper(); i++) {
if(Abs(DeltaX(i)) > TolX(i) || Abs(FValues(i)) > TolF) return Standard_False;
}
return Standard_True;
}
// Constructeurs d'initialisation des champs (pour utiliser Perform)
math_NewtonFunctionSetRoot::math_NewtonFunctionSetRoot(
math_FunctionSetWithDerivatives& F,
const math_Vector& XTol,
const Standard_Real FTol,
const Standard_Integer NbIterations):
TolX(1, F.NbVariables()),
TolF(FTol),
Indx(1, F.NbVariables()),
Scratch(1, F.NbVariables()),
Sol(1, F.NbVariables()),
DeltaX(1, F.NbVariables()),
FValues(1, F.NbVariables()),
Jacobian(1, F.NbVariables(),
1, F.NbVariables()),
Itermax(NbIterations)
{
for (Standard_Integer i = 1; i <= TolX.Length(); i++) {
TolX(i) = XTol(i);
}
}
math_NewtonFunctionSetRoot::math_NewtonFunctionSetRoot(
math_FunctionSetWithDerivatives& F,
const Standard_Real FTol,
const Standard_Integer NbIterations):
TolX(1, F.NbVariables()),
TolF(FTol),
Indx(1, F.NbVariables()),
Scratch(1, F.NbVariables()),
Sol(1, F.NbVariables()),
DeltaX(1, F.NbVariables()),
FValues(1, F.NbVariables()),
Jacobian(1, F.NbVariables(),
1, F.NbVariables()),
Itermax(NbIterations)
{
}
math_NewtonFunctionSetRoot::math_NewtonFunctionSetRoot
(math_FunctionSetWithDerivatives& F,
const math_Vector& StartingPoint,
const math_Vector& XTol,
const Standard_Real FTol,
const Standard_Integer NbIterations) :
TolX(1, F.NbVariables()),
TolF(FTol),
Indx (1, F.NbVariables()),
Scratch (1, F.NbVariables()),
Sol (1, F.NbVariables()),
DeltaX (1, F.NbVariables()),
FValues (1, F.NbVariables()),
Jacobian(1, F.NbVariables(),
1, F.NbVariables()),
Itermax(NbIterations)
{
for (Standard_Integer i = 1; i <= TolX.Length(); i++) {
TolX(i) = XTol(i);
}
math_Vector UFirst(1, F.NbVariables()),
ULast(1, F.NbVariables());
UFirst.Init(RealFirst());
ULast.Init(RealLast());
Perform(F, StartingPoint, UFirst, ULast);
}
math_NewtonFunctionSetRoot::math_NewtonFunctionSetRoot
(math_FunctionSetWithDerivatives& F,
const math_Vector& StartingPoint,
const math_Vector& InfBound,
const math_Vector& SupBound,
const math_Vector& XTol,
const Standard_Real FTol,
const Standard_Integer NbIterations) :
TolX(1, F.NbVariables()),
TolF(FTol),
Indx (1, F.NbVariables()),
Scratch (1, F.NbVariables()),
Sol (1, F.NbVariables()),
DeltaX (1, F.NbVariables()),
FValues (1, F.NbVariables()),
Jacobian(1, F.NbVariables(),
1, F.NbVariables()),
Itermax(NbIterations)
{
for (Standard_Integer i = 1; i <= TolX.Length(); i++) {
TolX(i) = XTol(i);
}
Perform(F, StartingPoint, InfBound, SupBound);
}
void math_NewtonFunctionSetRoot::Delete()
{}
void math_NewtonFunctionSetRoot::SetTolerance
(const math_Vector& XTol)
{
for (Standard_Integer i = 1; i <= TolX.Length(); i++) {
TolX(i) = XTol(i);
}
}
void math_NewtonFunctionSetRoot::Perform(
math_FunctionSetWithDerivatives& F,
const math_Vector& StartingPoint,
const math_Vector& InfBound,
const math_Vector& SupBound)
{
Standard_Real d;
Standard_Boolean OK;
Standard_Integer Error;
Done = Standard_False;
Sol = StartingPoint;
OK = F.Values(Sol, FValues, Jacobian);
if(!OK) return;
for(Iter = 1; Iter <= Itermax; Iter++) {
for(Standard_Integer k = 1; k <= DeltaX.Length(); k++) {
DeltaX(k) = -FValues(k);
}
Error = LU_Decompose(Jacobian, Indx, d, Scratch, 1.0e-30);
if(Error) return;
LU_Solve(Jacobian, Indx, DeltaX);
for(Standard_Integer i = 1; i <= Sol.Length(); i++) {
Sol(i) += DeltaX(i);
// Limitation de Sol dans les bornes [InfBound, SupBound] :
if (Sol(i) <= InfBound(i)) Sol(i) = InfBound(i);
if (Sol(i) >= SupBound(i)) Sol(i) = SupBound(i);
}
OK = F.Values(Sol, FValues, Jacobian);
if(!OK) return;
if(IsSolutionReached(F)) {
State = F.GetStateNumber();
Done = Standard_True;
return;
}
}
}
void math_NewtonFunctionSetRoot::Dump(Standard_OStream& o) const
{
o <<"math_NewtonFunctionSetRoot ";
if (Done) {
o << " Status = Done \n";
o << " Vector solution = " << Sol <<"\n";
o << " Value of the function at this solution = \n";
o << FValues <<"\n";
o << " Number of iterations = " << Iter <<"\n";
}
else {
o << "Status = not Done \n";
}
}