1
0
mirror of https://git.dev.opencascade.org/repos/occt.git synced 2025-04-10 18:51:21 +03:00
occt/src/StdPrs/StdPrs_ShadedShape.cxx
kgv 3b1817a9e2 0024521: Visualization - automatic back face culling is not turned on for Solids packed into compound
StdPrs_ToolShadedShape::IsClosed():
- return true if shape is closed Solid (NOT just free closed Shell)
- accept compound of closed Solids as well
- ignore Solids with incomplete triangulation

TKOpenGl, automatically disable back face culling when:
- clipping/capping planes are in effect
- for translucent objects

Update bug23227 test case (now back faces are clipped).

OpenGl_Workspace::AspectFace() - disable culling in case of hatched style
2014-01-20 14:45:35 +04:00

438 lines
15 KiB
C++

// Created on: 1993-09-23
// Created by: Jean-Louis FRENKEL
// Copyright (c) 1993-1999 Matra Datavision
// Copyright (c) 1999-2014 OPEN CASCADE SAS
//
// This file is part of Open CASCADE Technology software library.
//
// This library is free software; you can redistribute it and / or modify it
// under the terms of the GNU Lesser General Public version 2.1 as published
// by the Free Software Foundation, with special exception defined in the file
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
// distribution for complete text of the license and disclaimer of any warranty.
//
// Alternatively, this file may be used under the terms of Open CASCADE
// commercial license or contractual agreement.
#include <StdPrs_ShadedShape.hxx>
#include <Bnd_Box.hxx>
#include <BRep_Builder.hxx>
#include <BRepBndLib.hxx>
#include <BRepMesh_DiscretFactory.hxx>
#include <BRepMesh_DiscretRoot.hxx>
#include <BRepTools.hxx>
#include <Graphic3d_ArrayOfTriangles.hxx>
#include <Graphic3d_AspectFillArea3d.hxx>
#include <Graphic3d_Group.hxx>
#include <gp_Dir.hxx>
#include <gp_Vec.hxx>
#include <gp_Pnt.hxx>
#include <Precision.hxx>
#include <Prs3d_Drawer.hxx>
#include <Prs3d_Presentation.hxx>
#include <Prs3d_ShadingAspect.hxx>
#include <Poly_Connect.hxx>
#include <Poly_Triangulation.hxx>
#include <StdPrs_ToolShadedShape.hxx>
#include <StdPrs_WFShape.hxx>
#include <TopoDS_Shape.hxx>
#include <TopoDS_Face.hxx>
#include <TColgp_Array1OfDir.hxx>
#include <TColgp_Array1OfPnt2d.hxx>
#include <TopoDS_Compound.hxx>
#include <Poly_PolygonOnTriangulation.hxx>
#include <TopExp.hxx>
#include <TopTools_ListOfShape.hxx>
#include <TopTools_IndexedDataMapOfShapeListOfShape.hxx>
#include <NCollection_List.hxx>
#include <Graphic3d_ArrayOfSegments.hxx>
#include <Prs3d_LineAspect.hxx>
#include <TColgp_HArray1OfPnt.hxx>
#include <Aspect_PolygonOffsetMode.hxx>
#define MAX2(X, Y) (Abs(X) > Abs(Y) ? Abs(X) : Abs(Y))
#define MAX3(X, Y, Z) (MAX2 (MAX2 (X, Y), Z))
namespace
{
// =======================================================================
// function : GetDeflection
// purpose :
// =======================================================================
static Standard_Real GetDeflection (const TopoDS_Shape& theShape,
const Handle(Prs3d_Drawer)& theDrawer)
{
Standard_Real aDeflection = theDrawer->MaximalChordialDeviation();
if (theDrawer->TypeOfDeflection() == Aspect_TOD_RELATIVE)
{
Bnd_Box aBndBox;
BRepBndLib::Add (theShape, aBndBox, Standard_False);
if (!aBndBox.IsVoid())
{
Standard_Real aXmin, aYmin, aZmin, aXmax, aYmax, aZmax;
aBndBox.Get (aXmin, aYmin, aZmin, aXmax, aYmax, aZmax);
aDeflection = MAX3 (aXmax-aXmin, aYmax-aYmin, aZmax-aZmin) * theDrawer->DeviationCoefficient() * 4.0;
}
}
return aDeflection;
}
// =======================================================================
// function : ShadeFromShape
// purpose :
// =======================================================================
static Standard_Boolean ShadeFromShape (const TopoDS_Shape& theShape,
const Handle (Prs3d_Presentation)& thePresentation,
const Handle (Prs3d_Drawer)& theDrawer,
const Standard_Boolean theHasTexels,
const gp_Pnt2d& theUVOrigin,
const gp_Pnt2d& theUVRepeat,
const gp_Pnt2d& theUVScale)
{
StdPrs_ToolShadedShape SST;
Handle(Poly_Triangulation) T;
TopLoc_Location aLoc;
gp_Pnt p;
Standard_Integer decal;
Standard_Integer t[3], n[3];
Standard_Integer nbTriangles = 0, nbVertices = 0;
Standard_Real aUmin (0.0), aUmax (0.0), aVmin (0.0), aVmax (0.0), dUmax (0.0), dVmax (0.0);
// precision for compare square distances
const Standard_Real aPreci = Precision::SquareConfusion();
if (!theDrawer->ShadingAspectGlobal())
{
Handle(Graphic3d_AspectFillArea3d) anAsp = theDrawer->ShadingAspect()->Aspect();
if (StdPrs_ToolShadedShape::IsClosed (theShape))
{
anAsp->SuppressBackFace();
}
else
{
anAsp->AllowBackFace();
}
Prs3d_Root::CurrentGroup (thePresentation)->SetGroupPrimitivesAspect (anAsp);
}
for (SST.Init (theShape); SST.MoreFace(); SST.NextFace())
{
const TopoDS_Face& aFace = SST.CurrentFace();
T = SST.Triangulation (aFace, aLoc);
if (!T.IsNull())
{
nbTriangles += T->NbTriangles();
nbVertices += T->NbNodes();
}
}
if (nbVertices < 3
|| nbTriangles <= 0)
{
return Standard_False;
}
Handle(Graphic3d_ArrayOfTriangles) aPArray
= new Graphic3d_ArrayOfTriangles (nbVertices, 3 * nbTriangles,
Standard_True, Standard_False, theHasTexels, Standard_True);
for (SST.Init (theShape); SST.MoreFace(); SST.NextFace())
{
const TopoDS_Face& aFace = SST.CurrentFace();
T = SST.Triangulation (aFace, aLoc);
if (T.IsNull())
{
continue;
}
const gp_Trsf& aTrsf = aLoc.Transformation();
Poly_Connect pc (T);
// Extracts vertices & normals from nodes
const TColgp_Array1OfPnt& aNodes = T->Nodes();
const TColgp_Array1OfPnt2d& aUVNodes = T->UVNodes();
TColgp_Array1OfDir aNormals (aNodes.Lower(), aNodes.Upper());
SST.Normal (aFace, pc, aNormals);
if (theHasTexels)
{
BRepTools::UVBounds (aFace, aUmin, aUmax, aVmin, aVmax);
dUmax = (aUmax - aUmin);
dVmax = (aVmax - aVmin);
}
decal = aPArray->VertexNumber();
for (Standard_Integer aNodeIter = aNodes.Lower(); aNodeIter <= aNodes.Upper(); ++aNodeIter)
{
p = aNodes (aNodeIter);
if (!aLoc.IsIdentity())
{
p.Transform (aTrsf);
aNormals (aNodeIter).Transform (aTrsf);
}
if (theHasTexels && aUVNodes.Upper() == aNodes.Upper())
{
const gp_Pnt2d aTexel = gp_Pnt2d ((-theUVOrigin.X() + (theUVRepeat.X() * (aUVNodes (aNodeIter).X() - aUmin)) / dUmax) / theUVScale.X(),
(-theUVOrigin.Y() + (theUVRepeat.Y() * (aUVNodes (aNodeIter).Y() - aVmin)) / dVmax) / theUVScale.Y());
aPArray->AddVertex (p, aNormals (aNodeIter), aTexel);
}
else
{
aPArray->AddVertex (p, aNormals (aNodeIter));
}
}
// Fill array with vertex and edge visibility info
const Poly_Array1OfTriangle& aTriangles = T->Triangles();
for (Standard_Integer aTriIter = 1; aTriIter <= T->NbTriangles(); ++aTriIter)
{
pc.Triangles (aTriIter, t[0], t[1], t[2]);
if (SST.Orientation (aFace) == TopAbs_REVERSED)
aTriangles (aTriIter).Get (n[0], n[2], n[1]);
else
aTriangles (aTriIter).Get (n[0], n[1], n[2]);
gp_Pnt P1 = aNodes (n[0]);
gp_Pnt P2 = aNodes (n[1]);
gp_Pnt P3 = aNodes (n[2]);
gp_Vec V1 (P1, P2);
if (V1.SquareMagnitude() <= aPreci)
{
continue;
}
gp_Vec V2 (P2, P3);
if (V2.SquareMagnitude() <= aPreci)
{
continue;
}
gp_Vec V3 (P3, P1);
if (V3.SquareMagnitude() <= aPreci)
{
continue;
}
V1.Normalize();
V2.Normalize();
V1.Cross (V2);
if (V1.SquareMagnitude() > aPreci)
{
aPArray->AddEdge (n[0] + decal, t[0] == 0);
aPArray->AddEdge (n[1] + decal, t[1] == 0);
aPArray->AddEdge (n[2] + decal, t[2] == 0);
}
}
}
Prs3d_Root::CurrentGroup (thePresentation)->AddPrimitiveArray (aPArray);
return Standard_True;
}
// =======================================================================
// function : ComputeFaceBoundaries
// purpose : Compute boundary presentation for faces of the shape.
// =======================================================================
static void ComputeFaceBoundaries (const TopoDS_Shape& theShape,
const Handle (Prs3d_Presentation)& thePresentation,
const Handle (Prs3d_Drawer)& theDrawer)
{
// collection of all triangulation nodes on edges
// for computing boundaries presentation
NCollection_List<Handle(TColgp_HArray1OfPnt)> aNodeCollection;
Standard_Integer aNodeNumber = 0;
TopLoc_Location aTrsf;
// explore all boundary edges
TopTools_IndexedDataMapOfShapeListOfShape anEdgesMap;
TopExp::MapShapesAndAncestors (
theShape, TopAbs_EDGE, TopAbs_FACE, anEdgesMap);
Standard_Integer anEdgeIdx = 1;
for ( ; anEdgeIdx <= anEdgesMap.Extent (); anEdgeIdx++)
{
// reject free edges
const TopTools_ListOfShape& aFaceList = anEdgesMap.FindFromIndex (anEdgeIdx);
if (aFaceList.Extent() == 0)
continue;
// take one of the shared edges and get edge triangulation
const TopoDS_Face& aFace = TopoDS::Face (aFaceList.First ());
const TopoDS_Edge& anEdge = TopoDS::Edge (anEdgesMap.FindKey (anEdgeIdx));
Handle(Poly_Triangulation) aTriangulation =
BRep_Tool::Triangulation (aFace, aTrsf);
if (aTriangulation.IsNull ())
continue;
Handle(Poly_PolygonOnTriangulation) anEdgePoly =
BRep_Tool::PolygonOnTriangulation (anEdge, aTriangulation, aTrsf);
if (anEdgePoly.IsNull ())
continue;
// get edge nodes indexes from face triangulation
const TColgp_Array1OfPnt& aTriNodes = aTriangulation->Nodes ();
const TColStd_Array1OfInteger& anEdgeNodes = anEdgePoly->Nodes ();
if (anEdgeNodes.Length () < 2)
continue;
// collect the edge nodes
Handle(TColgp_HArray1OfPnt) aCollected =
new TColgp_HArray1OfPnt (anEdgeNodes.Lower (), anEdgeNodes.Upper ());
Standard_Integer aNodeIdx = anEdgeNodes.Lower ();
for ( ; aNodeIdx <= anEdgeNodes.Upper (); aNodeIdx++)
{
// node index in face triangulation
Standard_Integer aTriIndex = anEdgeNodes.Value (aNodeIdx);
// get node and apply location transformation to the node
gp_Pnt aTriNode = aTriNodes.Value (aTriIndex);
if (!aTrsf.IsIdentity ())
aTriNode.Transform (aTrsf);
// add node to the boundary array
aCollected->SetValue (aNodeIdx, aTriNode);
}
aNodeNumber += anEdgeNodes.Length ();
aNodeCollection.Append (aCollected);
}
// check if it possible to continue building the presentation
if (aNodeNumber == 0)
return;
// allocate polyline array for presentation
Standard_Integer aSegmentEdgeNb =
(aNodeNumber - aNodeCollection.Extent()) * 2;
Handle(Graphic3d_ArrayOfSegments) aSegments =
new Graphic3d_ArrayOfSegments (aNodeNumber, aSegmentEdgeNb);
// build presentation for edge bondaries
NCollection_List<Handle(TColgp_HArray1OfPnt)>::Iterator
aCollIt (aNodeCollection);
// the edge index is increased in each iteration step to
// avoid contiguous segments between different face edges.
for ( ; aCollIt.More(); aCollIt.Next () )
{
const Handle(TColgp_HArray1OfPnt)& aNodeArray = aCollIt.Value ();
Standard_Integer aNodeIdx = aNodeArray->Lower ();
// add first node (this node is not shared with previous segment).
// for each face edge, indices for sharing nodes
// between segments begin from the first added node.
Standard_Integer aSegmentEdge =
aSegments->AddVertex (aNodeArray->Value (aNodeIdx));
// add subsequent nodes and provide edge indexes for sharing
// the nodes between the sequential segments.
for ( aNodeIdx++; aNodeIdx <= aNodeArray->Upper (); aNodeIdx++ )
{
aSegments->AddVertex (aNodeArray->Value (aNodeIdx));
aSegments->AddEdge ( aSegmentEdge);
aSegments->AddEdge (++aSegmentEdge);
}
}
// set up aspect and add polyline data
Handle(Graphic3d_AspectLine3d) aBoundaryAspect =
theDrawer->FaceBoundaryAspect ()->Aspect ();
Handle(Graphic3d_Group) aPrsGrp = Prs3d_Root::CurrentGroup (thePresentation);
aPrsGrp->SetGroupPrimitivesAspect (aBoundaryAspect);
aPrsGrp->AddPrimitiveArray (aSegments);
}
};
// =======================================================================
// function : Add
// purpose :
// =======================================================================
void StdPrs_ShadedShape::Add (const Handle(Prs3d_Presentation)& thePresentation,
const TopoDS_Shape& theShape,
const Handle(Prs3d_Drawer)& theDrawer)
{
gp_Pnt2d aDummy;
StdPrs_ShadedShape::Add (thePresentation, theShape, theDrawer,
Standard_False, aDummy, aDummy, aDummy);
}
// =======================================================================
// function : Add
// purpose :
// =======================================================================
void StdPrs_ShadedShape::Add (const Handle (Prs3d_Presentation)& thePresentation,
const TopoDS_Shape& theShape,
const Handle (Prs3d_Drawer)& theDrawer,
const Standard_Boolean theHasTexels,
const gp_Pnt2d& theUVOrigin,
const gp_Pnt2d& theUVRepeat,
const gp_Pnt2d& theUVScale)
{
if (theShape.IsNull())
{
return;
}
if (theShape.ShapeType() == TopAbs_COMPOUND)
{
TopExp_Explorer ex;
ex.Init (theShape, TopAbs_FACE);
if (ex.More())
{
TopoDS_Compound CO;
BRep_Builder aBuilder;
aBuilder.MakeCompound (CO);
Standard_Boolean hasElement = Standard_False;
// il faut presenter les edges isoles.
for (ex.Init (theShape, TopAbs_EDGE, TopAbs_FACE); ex.More(); ex.Next())
{
hasElement = Standard_True;
aBuilder.Add (CO, ex.Current());
}
// il faut presenter les vertex isoles.
for (ex.Init (theShape, TopAbs_VERTEX, TopAbs_EDGE); ex.More(); ex.Next())
{
hasElement = Standard_True;
aBuilder.Add (CO, ex.Current());
}
if (hasElement)
{
StdPrs_WFShape::Add (thePresentation, CO, theDrawer);
}
}
else
{
StdPrs_WFShape::Add (thePresentation, theShape, theDrawer);
}
}
Standard_Real aDeflection = GetDeflection (theShape, theDrawer);
// Check if it is possible to avoid unnecessary recomputation
// of shape triangulation
if (!BRepTools::Triangulation (theShape, aDeflection))
{
BRepTools::Clean (theShape);
// retrieve meshing tool from Factory
Handle(BRepMesh_DiscretRoot) aMeshAlgo = BRepMesh_DiscretFactory::Get().Discret (theShape,
aDeflection,
theDrawer->HLRAngle());
if (!aMeshAlgo.IsNull())
aMeshAlgo->Perform();
}
ShadeFromShape (theShape, thePresentation, theDrawer,
theHasTexels, theUVOrigin, theUVRepeat, theUVScale);
if (theDrawer->IsFaceBoundaryDraw ())
{
ComputeFaceBoundaries (theShape, thePresentation, theDrawer);
}
}