1
0
mirror of https://git.dev.opencascade.org/repos/occt.git synced 2025-05-01 10:26:12 +03:00
occt/src/IntSurf/IntSurf_Quadric.cxx
abv 42cf5bc1ca 0024002: Overall code and build procedure refactoring -- automatic
Automatic upgrade of OCCT code by command "occt_upgrade . -nocdl":
- WOK-generated header files from inc and sources from drv are moved to src
- CDL files removed
- All packages are converted to nocdlpack
2015-07-12 07:42:38 +03:00

535 lines
14 KiB
C++

// Copyright (c) 1995-1999 Matra Datavision
// Copyright (c) 1999-2014 OPEN CASCADE SAS
//
// This file is part of Open CASCADE Technology software library.
//
// This library is free software; you can redistribute it and/or modify it under
// the terms of the GNU Lesser General Public License version 2.1 as published
// by the Free Software Foundation, with special exception defined in the file
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
// distribution for complete text of the license and disclaimer of any warranty.
//
// Alternatively, this file may be used under the terms of Open CASCADE
// commercial license or contractual agreement.
#include <ElCLib.hxx>
#include <ElSLib.hxx>
#include <gp.hxx>
#include <gp_Cone.hxx>
#include <gp_Cylinder.hxx>
#include <gp_Pln.hxx>
#include <gp_Pnt.hxx>
#include <gp_Sphere.hxx>
#include <gp_Torus.hxx>
#include <gp_Vec.hxx>
#include <IntSurf_Quadric.hxx>
#include <StdFail_NotDone.hxx>
// ============================================================
IntSurf_Quadric::IntSurf_Quadric ():typ(GeomAbs_OtherSurface),
prm1(0.), prm2(0.), prm3(0.), prm4(0.)
{}
// ============================================================
IntSurf_Quadric::IntSurf_Quadric (const gp_Pln& P):
ax3(P.Position()),typ(GeomAbs_Plane)
{
ax3direc = ax3.Direct();
P.Coefficients(prm1,prm2,prm3,prm4);
}
// ============================================================
IntSurf_Quadric::IntSurf_Quadric (const gp_Cylinder& C):
ax3(C.Position()),lin(ax3.Axis()),typ(GeomAbs_Cylinder)
{
prm2=prm3=prm4=0.0;
ax3direc=ax3.Direct();
prm1=C.Radius();
}
// ============================================================
IntSurf_Quadric::IntSurf_Quadric (const gp_Sphere& S):
ax3(S.Position()),lin(ax3.Axis()),typ(GeomAbs_Sphere)
{
prm2=prm3=prm4=0.0;
ax3direc = ax3.Direct();
prm1=S.Radius();
}
// ============================================================
IntSurf_Quadric::IntSurf_Quadric (const gp_Cone& C):
ax3(C.Position()),typ(GeomAbs_Cone)
{
ax3direc = ax3.Direct();
lin.SetPosition(ax3.Axis());
prm1 = C.RefRadius();
prm2 = C.SemiAngle();
prm3 = Cos(prm2);
prm4 = 0.0;
}
// ============================================================
IntSurf_Quadric::IntSurf_Quadric (const gp_Torus& T):
ax3(T.Position()),typ(GeomAbs_Torus)
{
ax3direc = ax3.Direct();
lin.SetPosition(ax3.Axis());
prm1 = T.MajorRadius();
prm2 = T.MinorRadius();
prm3 = 0.0;
prm4 = 0.0;
}
// ============================================================
void IntSurf_Quadric::SetValue (const gp_Pln& P)
{
typ = GeomAbs_Plane;
ax3 = P.Position();
ax3direc = ax3.Direct();
P.Coefficients(prm1,prm2,prm3,prm4);
}
// ============================================================
void IntSurf_Quadric::SetValue (const gp_Cylinder& C)
{
typ = GeomAbs_Cylinder;
ax3 = C.Position();
ax3direc = ax3.Direct();
lin.SetPosition(ax3.Axis());
prm1 = C.Radius();
prm2=prm3=prm4=0.0;
}
// ============================================================
void IntSurf_Quadric::SetValue (const gp_Sphere& S)
{
typ = GeomAbs_Sphere;
ax3 = S.Position();
ax3direc = ax3.Direct();
lin.SetPosition(ax3.Axis());
prm1 = S.Radius();
prm2=prm3=prm4=0.0;
}
// ============================================================
void IntSurf_Quadric::SetValue (const gp_Cone& C)
{
typ = GeomAbs_Cone;
ax3 = C.Position();
ax3direc = ax3.Direct();
lin.SetPosition(ax3.Axis());
prm1 = C.RefRadius();
prm2 = C.SemiAngle();
prm3 = Cos(prm2);
prm4 = 0.0;
}
// ============================================================
void IntSurf_Quadric::SetValue (const gp_Torus& T)
{
typ = GeomAbs_Torus;
ax3 = T.Position();
ax3direc = ax3.Direct();
lin.SetPosition(ax3.Axis());
prm1 = T.MajorRadius();
prm2 = T.MinorRadius();
prm3 = 0.0;
prm4 = 0.0;
}
// ============================================================
Standard_Real IntSurf_Quadric::Distance (const gp_Pnt& P) const {
switch (typ) {
case GeomAbs_Plane: // plan
return prm1*P.X() + prm2*P.Y() + prm3*P.Z() + prm4;
case GeomAbs_Cylinder: // cylindre
return (lin.Distance(P) - prm1);
case GeomAbs_Sphere: // sphere
return (lin.Location().Distance(P) - prm1);
case GeomAbs_Cone: // cone
{
Standard_Real dist = lin.Distance(P);
Standard_Real U,V;
ElSLib::ConeParameters(ax3,prm1,prm2,P,U,V);
gp_Pnt Pp = ElSLib::ConeValue(U,V,ax3,prm1,prm2);
Standard_Real distp = lin.Distance(Pp);
dist = (dist-distp)/prm3;
return(dist);
}
case GeomAbs_Torus: // torus
{
gp_Pnt O, Pp, PT;
//
O = ax3.Location();
gp_Vec OZ (ax3.Direction());
Pp = P.Translated(OZ.Multiplied(-(gp_Vec(O,P).Dot(ax3.Direction()))));
//
gp_Dir DOPp = (O.SquareDistance(Pp) < 1e-14) ?
ax3.XDirection() : gp_Dir(gp_Vec(O, Pp));
PT.SetXYZ(O.XYZ() + DOPp.XYZ()*prm1);
//
Standard_Real dist = P.Distance(PT) - prm2;
return dist;
}
default:
{
}
break;
}
return(0.0);
}
// ============================================================
gp_Vec IntSurf_Quadric::Gradient (const gp_Pnt& P) const {
gp_Vec grad;
switch (typ) {
case GeomAbs_Plane: // plan
grad.SetCoord(prm1,prm2,prm3);
break;
case GeomAbs_Cylinder: // cylindre
{
gp_XYZ PP(lin.Location().XYZ());
PP.Add(ElCLib::Parameter(lin,P)*lin.Direction().XYZ());
grad.SetXYZ(P.XYZ()-PP);
Standard_Real N = grad.Magnitude();
if(N>1e-14) { grad.Divide(N); }
else { grad.SetCoord(0.0,0.0,0.0); }
}
break;
case GeomAbs_Sphere: // sphere
{
gp_XYZ PP(P.XYZ());
grad.SetXYZ((PP-lin.Location().XYZ()));
Standard_Real N = grad.Magnitude();
if(N>1e-14) { grad.Divide(N); }
else { grad.SetCoord(0.0,0.0,0.0); }
}
break;
case GeomAbs_Cone: // cone
{
Standard_Real U,V;
ElSLib::ConeParameters(ax3,prm1,prm2,P,U,V);
gp_Pnt Pp = ElSLib::ConeValue(U,V,ax3,prm1,prm2);
gp_Vec D1u,D1v;
ElSLib::ConeD1(U,V,ax3,prm1,prm2,Pp,D1u,D1v);
grad=D1u.Crossed(D1v);
if(ax3direc==Standard_False) {
grad.Reverse();
}
grad.Normalize();
}
break;
case GeomAbs_Torus: // torus
{
gp_Pnt O, Pp, PT;
//
O = ax3.Location();
gp_Vec OZ (ax3.Direction());
Pp = P.Translated(OZ.Multiplied(-(gp_Vec(O,P).Dot(ax3.Direction()))));
//
gp_Dir DOPp = (O.SquareDistance(Pp) < 1e-14) ?
ax3.XDirection() : gp_Dir(gp_Vec(O, Pp));
PT.SetXYZ(O.XYZ() + DOPp.XYZ()*prm1);
//
grad.SetXYZ(P.XYZ() - PT.XYZ());
Standard_Real N = grad.Magnitude();
if(N>1e-14) { grad.Divide(N); }
else { grad.SetCoord(0., 0., 0.); }
}
break;
default:
{}
break;
}
return grad;
}
// ============================================================
void IntSurf_Quadric::ValAndGrad (const gp_Pnt& P,
Standard_Real& Dist,
gp_Vec& Grad) const
{
switch (typ) {
case GeomAbs_Plane:
{
Dist = prm1*P.X() + prm2*P.Y() + prm3*P.Z() + prm4;
Grad.SetCoord(prm1,prm2,prm3);
}
break;
case GeomAbs_Cylinder:
{
Dist = lin.Distance(P) - prm1;
gp_XYZ PP(lin.Location().XYZ());
PP.Add(ElCLib::Parameter(lin,P)*lin.Direction().XYZ());
Grad.SetXYZ((P.XYZ()-PP));
Standard_Real N = Grad.Magnitude();
if(N>1e-14) { Grad.Divide(N); }
else { Grad.SetCoord(0.0,0.0,0.0); }
}
break;
case GeomAbs_Sphere:
{
Dist = lin.Location().Distance(P) - prm1;
gp_XYZ PP(P.XYZ());
Grad.SetXYZ((PP-lin.Location().XYZ()));
Standard_Real N = Grad.Magnitude();
if(N>1e-14) { Grad.Divide(N); }
else { Grad.SetCoord(0.0,0.0,0.0); }
}
break;
case GeomAbs_Cone:
{
Standard_Real dist = lin.Distance(P);
Standard_Real U,V;
gp_Vec D1u,D1v;
gp_Pnt Pp;
ElSLib::ConeParameters(ax3,prm1,prm2,P,U,V);
ElSLib::ConeD1(U,V,ax3,prm1,prm2,Pp,D1u,D1v);
Standard_Real distp = lin.Distance(Pp);
dist = (dist-distp)/prm3;
Dist = dist;
Grad=D1u.Crossed(D1v);
if(ax3direc==Standard_False) {
Grad.Reverse();
}
//-- lbr le 7 mars 96
//-- Si le gardient est nul, on est sur l axe
//-- et dans ce cas dist vaut 0
//-- On peut donc renvoyer une valeur quelconque.
if( Grad.X() > 1e-13
|| Grad.Y() > 1e-13
|| Grad.Z() > 1e-13) {
Grad.Normalize();
}
}
break;
case GeomAbs_Torus:
{
gp_Pnt O, Pp, PT;
//
O = ax3.Location();
gp_Vec OZ (ax3.Direction());
Pp = P.Translated(OZ.Multiplied(-(gp_Vec(O,P).Dot(ax3.Direction()))));
//
gp_Dir DOPp = (O.SquareDistance(Pp) < 1e-14) ?
ax3.XDirection() : gp_Dir(gp_Vec(O, Pp));
PT.SetXYZ(O.XYZ() + DOPp.XYZ()*prm1);
//
Dist = P.Distance(PT) - prm2;
//
Grad.SetXYZ(P.XYZ()-PT.XYZ());
Standard_Real N = Grad.Magnitude();
if(N>1e-14) { Grad.Divide(N); }
else { Grad.SetCoord(0., 0., 0.); }
}
break;
default:
{}
break;
}
}
// ============================================================
gp_Pnt IntSurf_Quadric::Value(const Standard_Real U,
const Standard_Real V) const
{
switch (typ) {
case GeomAbs_Plane:
return ElSLib::PlaneValue(U,V,ax3);
case GeomAbs_Cylinder:
return ElSLib::CylinderValue(U,V,ax3,prm1);
case GeomAbs_Sphere:
return ElSLib::SphereValue(U,V,ax3,prm1);
case GeomAbs_Cone:
return ElSLib::ConeValue(U,V,ax3,prm1,prm2);
case GeomAbs_Torus:
return ElSLib::TorusValue(U,V,ax3,prm1,prm2);
default:
{
gp_Pnt p(0,0,0);
return(p);
}
//break;
}
// pop : pour NT
// return gp_Pnt(0,0,0);
}
// ============================================================
void IntSurf_Quadric::D1(const Standard_Real U,
const Standard_Real V,
gp_Pnt& P,
gp_Vec& D1U,
gp_Vec& D1V) const
{
switch (typ) {
case GeomAbs_Plane:
ElSLib::PlaneD1(U,V,ax3,P,D1U,D1V);
break;
case GeomAbs_Cylinder:
ElSLib::CylinderD1(U,V,ax3,prm1,P,D1U,D1V);
break;
case GeomAbs_Sphere:
ElSLib::SphereD1(U,V,ax3,prm1,P,D1U,D1V);
break;
case GeomAbs_Cone:
ElSLib::ConeD1(U,V,ax3,prm1,prm2,P,D1U,D1V);
break;
case GeomAbs_Torus:
ElSLib::TorusD1(U,V,ax3,prm1,prm2,P,D1U,D1V);
break;
default:
{
}
break;
}
}
// ============================================================
gp_Vec IntSurf_Quadric::DN(const Standard_Real U,
const Standard_Real V,
const Standard_Integer Nu,
const Standard_Integer Nv) const
{
switch (typ) {
case GeomAbs_Plane:
return ElSLib::PlaneDN(U,V,ax3,Nu,Nv);
case GeomAbs_Cylinder:
return ElSLib::CylinderDN(U,V,ax3,prm1,Nu,Nv);
case GeomAbs_Sphere:
return ElSLib::SphereDN(U,V,ax3,prm1,Nu,Nv);
case GeomAbs_Cone:
return ElSLib::ConeDN(U,V,ax3,prm1,prm2,Nu,Nv);
case GeomAbs_Torus:
return ElSLib::TorusDN(U,V,ax3,prm1,prm2,Nu,Nv);
default:
{
gp_Vec v(0,0,0);
return(v);
}
//break;
}
// pop : pour NT
// return gp_Vec(0,0,0);
}
// ============================================================
gp_Vec IntSurf_Quadric::Normale(const Standard_Real U,
const Standard_Real V) const
{
switch (typ) {
case GeomAbs_Plane:
if(ax3direc)
return ax3.Direction();
else
return ax3.Direction().Reversed();
case GeomAbs_Cylinder:
return Normale(Value(U,V));
case GeomAbs_Sphere:
return Normale(Value(U,V));
case GeomAbs_Cone:
{
gp_Pnt P;
gp_Vec D1u,D1v;
ElSLib::ConeD1(U,V,ax3,prm1,prm2,P,D1u,D1v);
if(D1u.Magnitude()<0.0000001) {
gp_Vec Vn(0.0,0.0,0.0);
return(Vn);
}
return(D1u.Crossed(D1v));
}
case GeomAbs_Torus:
return Normale(Value(U,V));
default:
{
gp_Vec v(0,0,0);
return(v);
}
// break;
}
// pop : pour NT
// return gp_Vec(0,0,0);
}
// ============================================================
gp_Vec IntSurf_Quadric::Normale (const gp_Pnt& P) const
{
switch (typ) {
case GeomAbs_Plane:
if(ax3direc)
return ax3.Direction();
else
return ax3.Direction().Reversed();
case GeomAbs_Cylinder:
{
if(ax3direc) {
return lin.Normal(P).Direction();
}
else {
gp_Dir D(lin.Normal(P).Direction());
D.Reverse();
return(D);
}
}
case GeomAbs_Sphere:
{
if(ax3direc) {
gp_Vec ax3P(ax3.Location(),P);
return gp_Dir(ax3P);
}
else {
gp_Vec Pax3(P,ax3.Location());
return gp_Dir(Pax3);
}
}
case GeomAbs_Cone:
{
Standard_Real U,V;
ElSLib::ConeParameters(ax3,prm1,prm2,P,U,V);
return Normale(U,V);
}
case GeomAbs_Torus:
{
gp_Pnt O, Pp, PT;
//
O = ax3.Location();
gp_Vec OZ (ax3.Direction());
Pp = P.Translated(OZ.Multiplied(-(gp_Vec(O,P).Dot(ax3.Direction()))));
//
gp_Dir DOPp = (O.SquareDistance(Pp) < 1e-14) ?
ax3.XDirection() : gp_Dir(gp_Vec(O, Pp));
PT.SetXYZ(O.XYZ() + DOPp.XYZ()*prm1);
if (PT.SquareDistance(P) < 1e-14) {
return gp_Dir(OZ);
}
gp_Dir aD(ax3direc ? gp_Vec(PT, P) : gp_Vec(P, PT));
return aD;
}
default:
{
gp_Vec v(0,0,0);
return(v);
} // break;
}
}
// ============================================================
void IntSurf_Quadric::Parameters (const gp_Pnt& P,
Standard_Real& U,
Standard_Real& V) const
{
switch (typ) {
case GeomAbs_Plane:
ElSLib::PlaneParameters(ax3,P,U,V);
break;
case GeomAbs_Cylinder:
ElSLib::CylinderParameters(ax3,prm1,P,U,V);
break;
case GeomAbs_Sphere:
ElSLib::SphereParameters(ax3,prm1,P,U,V);
break;
case GeomAbs_Cone:
ElSLib::ConeParameters(ax3,prm1,prm2,P,U,V);
break;
case GeomAbs_Torus:
ElSLib::TorusParameters(ax3,prm1,prm2,P,U,V);
break;
default:
break;
}
}
// ============================================================