1
0
mirror of https://git.dev.opencascade.org/repos/occt.git synced 2025-04-05 18:16:23 +03:00
occt/src/BSplCLib/BSplCLib_Cache.cxx
abv 35c0599a42 0024023: Revamp the OCCT Handle -- automatic
Automatic upgrade by command "occt_upgrade . -handle"
2015-07-11 12:08:01 +03:00

361 lines
15 KiB
C++

// Copyright (c) 2014 OPEN CASCADE SAS
//
// This file is part of Open CASCADE Technology software library.
//
// This library is free software; you can redistribute it and/or modify it under
// the terms of the GNU Lesser General Public License version 2.1 as published
// by the Free Software Foundation, with special exception defined in the file
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
// distribution for complete text of the license and disclaimer of any warranty.
//
// Alternatively, this file may be used under the terms of Open CASCADE
// commercial license or contractual agreement.
#include <BSplCLib_Cache.hxx>
#include <BSplCLib.hxx>
#include <NCollection_LocalArray.hxx>
#include <TColgp_HArray1OfPnt.hxx>
#include <TColgp_HArray1OfPnt2d.hxx>
#include <TColStd_HArray1OfReal.hxx>
#include <TColStd_HArray2OfReal.hxx>
//! Converts handle of array of Standard_Real into the pointer to Standard_Real
static Standard_Real* ConvertArray(const Handle(TColStd_HArray2OfReal)& theHArray)
{
const TColStd_Array2OfReal& anArray = theHArray->Array2();
return (Standard_Real*) &(anArray(anArray.LowerRow(), anArray.LowerCol()));
}
BSplCLib_Cache::BSplCLib_Cache()
{
myPolesWeights.Nullify();
myIsRational = Standard_False;
mySpanStart = 0.0;
mySpanLength = 0.0;
mySpanIndex = 0;
myDegree = 0;
myFlatKnots.Nullify();
}
BSplCLib_Cache::BSplCLib_Cache(const Standard_Integer& theDegree,
const Standard_Boolean& thePeriodic,
const TColStd_Array1OfReal& theFlatKnots,
const TColgp_Array1OfPnt2d& thePoles2d,
const TColStd_Array1OfReal& theWeights)
{
Standard_Real aCacheParam = theFlatKnots.Value(theFlatKnots.Lower() + theDegree);
BuildCache(aCacheParam, theDegree, thePeriodic,
theFlatKnots, thePoles2d, theWeights);
}
BSplCLib_Cache::BSplCLib_Cache(const Standard_Integer& theDegree,
const Standard_Boolean& thePeriodic,
const TColStd_Array1OfReal& theFlatKnots,
const TColgp_Array1OfPnt& thePoles,
const TColStd_Array1OfReal& theWeights)
{
Standard_Real aCacheParam = theFlatKnots.Value(theFlatKnots.Lower() + theDegree);
BuildCache(aCacheParam, theDegree, thePeriodic,
theFlatKnots, thePoles, theWeights);
}
Standard_Boolean BSplCLib_Cache::IsCacheValid(Standard_Real theParameter) const
{
Standard_Real aNewParam = theParameter;
if (!myFlatKnots.IsNull())
PeriodicNormalization(myFlatKnots->Array1(), aNewParam);
Standard_Real aDelta = aNewParam - mySpanStart;
return (aDelta >= 0.0 && (aDelta < mySpanLength || mySpanIndex == mySpanIndexMax));
}
void BSplCLib_Cache::PeriodicNormalization(const TColStd_Array1OfReal& theFlatKnots,
Standard_Real& theParameter) const
{
Standard_Real aPeriod = theFlatKnots.Value(theFlatKnots.Upper() - myDegree) -
theFlatKnots.Value(myDegree + 1) ;
if (theParameter < theFlatKnots.Value(myDegree + 1))
{
Standard_Real aScale = IntegerPart(
(theFlatKnots.Value(myDegree + 1) - theParameter) / aPeriod);
theParameter += aPeriod * (aScale + 1.0);
}
if (theParameter > theFlatKnots.Value(theFlatKnots.Upper() - myDegree))
{
Standard_Real aScale = IntegerPart(
(theParameter - theFlatKnots.Value(theFlatKnots.Upper() - myDegree)) / aPeriod);
theParameter -= aPeriod * (aScale + 1.0);
}
}
void BSplCLib_Cache::BuildCache(const Standard_Real& theParameter,
const Standard_Integer& theDegree,
const Standard_Boolean& thePeriodic,
const TColStd_Array1OfReal& theFlatKnots,
const TColgp_Array1OfPnt2d& thePoles2d,
const TColStd_Array1OfReal& theWeights)
{
// Normalize theParameter for periodical B-splines
Standard_Real aNewParam = theParameter;
if (thePeriodic)
{
PeriodicNormalization(theFlatKnots, aNewParam);
myFlatKnots = new TColStd_HArray1OfReal(1, theFlatKnots.Length());
myFlatKnots->ChangeArray1() = theFlatKnots;
}
else if (!myFlatKnots.IsNull()) // Periodical curve became non-periodical
myFlatKnots.Nullify();
// Change the size of cached data if needed
myIsRational = (&theWeights != NULL);
Standard_Integer aPWColNumber = myIsRational ? 3 : 2;
if (theDegree > myDegree)
myPolesWeights = new TColStd_HArray2OfReal(1, theDegree + 1, 1, aPWColNumber);
myDegree = theDegree;
mySpanIndex = 0;
BSplCLib::LocateParameter(theDegree, theFlatKnots, BSplCLib::NoMults(),
aNewParam, thePeriodic, mySpanIndex, aNewParam);
mySpanStart = theFlatKnots.Value(mySpanIndex);
mySpanLength = theFlatKnots.Value(mySpanIndex + 1) - mySpanStart;
mySpanIndexMax = theFlatKnots.Length() - 1 - theDegree;
// Calculate new cache data
BSplCLib::BuildCache(mySpanStart, mySpanLength, thePeriodic, theDegree,
theFlatKnots, thePoles2d, theWeights,
myPolesWeights->ChangeArray2());
}
void BSplCLib_Cache::BuildCache(const Standard_Real& theParameter,
const Standard_Integer& theDegree,
const Standard_Boolean& thePeriodic,
const TColStd_Array1OfReal& theFlatKnots,
const TColgp_Array1OfPnt& thePoles,
const TColStd_Array1OfReal& theWeights)
{
// Create list of knots with repetitions and normalize theParameter for periodical B-splines
Standard_Real aNewParam = theParameter;
if (thePeriodic)
{
PeriodicNormalization(theFlatKnots, aNewParam);
myFlatKnots = new TColStd_HArray1OfReal(1, theFlatKnots.Length());
myFlatKnots->ChangeArray1() = theFlatKnots;
}
else if (!myFlatKnots.IsNull()) // Periodical curve became non-periodical
myFlatKnots.Nullify();
// Change the size of cached data if needed
myIsRational = (&theWeights != NULL);
Standard_Integer aPWColNumber = myIsRational ? 4 : 3;
if (theDegree > myDegree)
myPolesWeights = new TColStd_HArray2OfReal(1, theDegree + 1, 1, aPWColNumber);
myDegree = theDegree;
mySpanIndex = 0;
BSplCLib::LocateParameter(theDegree, theFlatKnots, BSplCLib::NoMults(),
aNewParam, thePeriodic, mySpanIndex, aNewParam);
mySpanStart = theFlatKnots.Value(mySpanIndex);
mySpanLength = theFlatKnots.Value(mySpanIndex + 1) - mySpanStart;
mySpanIndexMax = theFlatKnots.Length() - 1 - theDegree;
// Calculate new cache data
BSplCLib::BuildCache(mySpanStart, mySpanLength, thePeriodic, theDegree,
theFlatKnots, thePoles, theWeights,
myPolesWeights->ChangeArray2());
}
void BSplCLib_Cache::CalculateDerivative(const Standard_Real& theParameter,
const Standard_Integer& theDerivative,
Standard_Real& theDerivArray) const
{
Standard_Real aNewParameter = theParameter;
if (!myFlatKnots.IsNull()) // B-spline is periodical
PeriodicNormalization(myFlatKnots->Array1(), aNewParameter);
aNewParameter = (aNewParameter - mySpanStart) / mySpanLength;
Standard_Real* aPolesArray = ConvertArray(myPolesWeights);
Standard_Integer aDimension = myPolesWeights->RowLength(); // number of columns
// Temporary container. The maximal size of this container is defined by:
// 1) maximal derivative for cache evaluation, which is 3, plus one row for function values,
// 2) and maximal dimension of the point, which is 3, plus one column for weights.
Standard_Real aTmpContainer[16];
// When the PLib::RationaDerivative needs to be called, use temporary container
Standard_Real* aPntDeriv = myIsRational ? aTmpContainer : &theDerivArray;
// When the degree of curve is lesser than the requested derivative,
// nullify array cells corresponding to greater derivatives
Standard_Integer aDerivative = theDerivative;
if (myDegree < theDerivative)
{
aDerivative = myDegree;
for (Standard_Integer ind = myDegree * aDimension; ind < (theDerivative + 1) * aDimension; ind++)
{
aPntDeriv[ind] = 0.0;
(&theDerivArray)[ind] = 0.0; // should be cleared separately, because aPntDeriv may look to another memory area
}
}
PLib::EvalPolynomial(aNewParameter, aDerivative, myDegree, aDimension,
aPolesArray[0], aPntDeriv[0]);
// Unnormalize derivatives since those are computed normalized
Standard_Real aFactor = 1.0;
for (Standard_Integer deriv = 1; deriv <= aDerivative; deriv++)
{
aFactor /= mySpanLength;
for (Standard_Integer ind = 0; ind < aDimension; ind++)
aPntDeriv[aDimension * deriv + ind] *= aFactor;
}
if (myIsRational) // calculate derivatives divided by weights derivatives
PLib::RationalDerivative(aDerivative, aDerivative, aDimension - 1, aPntDeriv[0], theDerivArray);
}
void BSplCLib_Cache::D0(const Standard_Real& theParameter, gp_Pnt2d& thePoint) const
{
Standard_Real aNewParameter = theParameter;
if (!myFlatKnots.IsNull()) // B-spline is periodical
PeriodicNormalization(myFlatKnots->Array1(), aNewParameter);
aNewParameter = (aNewParameter - mySpanStart) / mySpanLength;
Standard_Real* aPolesArray = ConvertArray(myPolesWeights);
Standard_Real aPoint[4];
Standard_Integer aDimension = myPolesWeights->RowLength(); // number of columns
PLib::NoDerivativeEvalPolynomial(aNewParameter, myDegree,
aDimension, myDegree * aDimension,
aPolesArray[0], aPoint[0]);
thePoint.SetCoord(aPoint[0], aPoint[1]);
if (myIsRational)
thePoint.ChangeCoord().Divide(aPoint[2]);
}
void BSplCLib_Cache::D0(const Standard_Real& theParameter, gp_Pnt& thePoint) const
{
Standard_Real aNewParameter = theParameter;
if (!myFlatKnots.IsNull()) // B-spline is periodical
PeriodicNormalization(myFlatKnots->Array1(), aNewParameter);
aNewParameter = (aNewParameter - mySpanStart) / mySpanLength;
Standard_Real* aPolesArray = ConvertArray(myPolesWeights);
Standard_Real aPoint[4];
Standard_Integer aDimension = myPolesWeights->RowLength(); // number of columns
PLib::NoDerivativeEvalPolynomial(aNewParameter, myDegree,
aDimension, myDegree * aDimension,
aPolesArray[0], aPoint[0]);
thePoint.SetCoord(aPoint[0], aPoint[1], aPoint[2]);
if (myIsRational)
thePoint.ChangeCoord().Divide(aPoint[3]);
}
void BSplCLib_Cache::D1(const Standard_Real& theParameter, gp_Pnt2d& thePoint, gp_Vec2d& theTangent) const
{
Standard_Integer aDimension = myPolesWeights->RowLength(); // number of columns
Standard_Real aPntDeriv[8]; // result storage (point and derivative coordinates)
this->CalculateDerivative(theParameter, 1, aPntDeriv[0]);
if (myIsRational) // the size of aPntDeriv was changed by PLib::RationalDerivative
aDimension -= 1;
thePoint.SetCoord(aPntDeriv[0], aPntDeriv[1]);
theTangent.SetCoord(aPntDeriv[aDimension], aPntDeriv[aDimension + 1]);
}
void BSplCLib_Cache::D1(const Standard_Real& theParameter, gp_Pnt& thePoint, gp_Vec& theTangent) const
{
Standard_Integer aDimension = myPolesWeights->RowLength(); // number of columns
Standard_Real aPntDeriv[8]; // result storage (point and derivative coordinates)
this->CalculateDerivative(theParameter, 1, aPntDeriv[0]);
if (myIsRational) // the size of aPntDeriv was changed by PLib::RationalDerivative
aDimension -= 1;
thePoint.SetCoord(aPntDeriv[0], aPntDeriv[1], aPntDeriv[2]);
theTangent.SetCoord(aPntDeriv[aDimension], aPntDeriv[aDimension + 1], aPntDeriv[aDimension + 2]);
}
void BSplCLib_Cache::D2(const Standard_Real& theParameter, gp_Pnt2d& thePoint, gp_Vec2d& theTangent, gp_Vec2d& theCurvature) const
{
Standard_Integer aDimension = myPolesWeights->RowLength(); // number of columns
Standard_Real aPntDeriv[12]; // result storage (point and derivatives coordinates)
this->CalculateDerivative(theParameter, 2, aPntDeriv[0]);
if (myIsRational) // the size of aPntDeriv was changed by PLib::RationalDerivative
aDimension -= 1;
thePoint.SetCoord(aPntDeriv[0], aPntDeriv[1]);
theTangent.SetCoord(aPntDeriv[aDimension], aPntDeriv[aDimension + 1]);
theCurvature.SetCoord(aPntDeriv[aDimension<<1], aPntDeriv[(aDimension<<1) + 1]);
}
void BSplCLib_Cache::D2(const Standard_Real& theParameter, gp_Pnt& thePoint, gp_Vec& theTangent, gp_Vec& theCurvature) const
{
Standard_Integer aDimension = myPolesWeights->RowLength(); // number of columns
Standard_Real aPntDeriv[12]; // result storage (point and derivatives coordinates)
this->CalculateDerivative(theParameter, 2, aPntDeriv[0]);
if (myIsRational) // the size of aPntDeriv was changed by PLib::RationalDerivative
aDimension -= 1;
thePoint.SetCoord(aPntDeriv[0], aPntDeriv[1], aPntDeriv[2]);
theTangent.SetCoord(aPntDeriv[aDimension], aPntDeriv[aDimension + 1], aPntDeriv[aDimension + 2]);
theCurvature.SetCoord(aPntDeriv[aDimension<<1], aPntDeriv[(aDimension<<1) + 1], aPntDeriv[(aDimension<<1) + 2]);
}
void BSplCLib_Cache::D3(const Standard_Real& theParameter,
gp_Pnt2d& thePoint,
gp_Vec2d& theTangent,
gp_Vec2d& theCurvature,
gp_Vec2d& theTorsion) const
{
Standard_Integer aDimension = myPolesWeights->RowLength(); // number of columns
Standard_Real aPntDeriv[16]; // result storage (point and derivatives coordinates)
this->CalculateDerivative(theParameter, 3, aPntDeriv[0]);
if (myIsRational) // the size of aPntDeriv was changed by PLib::RationalDerivative
aDimension -= 1;
thePoint.SetCoord(aPntDeriv[0], aPntDeriv[1]);
theTangent.SetCoord(aPntDeriv[aDimension], aPntDeriv[aDimension + 1]);
Standard_Integer aShift = aDimension << 1;
theCurvature.SetCoord(aPntDeriv[aShift], aPntDeriv[aShift + 1]);
aShift += aDimension;
theTorsion.SetCoord(aPntDeriv[aShift], aPntDeriv[aShift + 1]);
}
void BSplCLib_Cache::D3(const Standard_Real& theParameter,
gp_Pnt& thePoint,
gp_Vec& theTangent,
gp_Vec& theCurvature,
gp_Vec& theTorsion) const
{
Standard_Integer aDimension = myPolesWeights->RowLength(); // number of columns
Standard_Real aPntDeriv[16]; // result storage (point and derivatives coordinates)
this->CalculateDerivative(theParameter, 3, aPntDeriv[0]);
if (myIsRational) // the size of aPntDeriv was changed by PLib::RationalDerivative
aDimension -= 1;
thePoint.SetCoord(aPntDeriv[0], aPntDeriv[1], aPntDeriv[2]);
theTangent.SetCoord(aPntDeriv[aDimension], aPntDeriv[aDimension + 1], aPntDeriv[aDimension + 2]);
Standard_Integer aShift = aDimension << 1;
theCurvature.SetCoord(aPntDeriv[aShift], aPntDeriv[aShift + 1], aPntDeriv[aShift + 2]);
aShift += aDimension;
theTorsion.SetCoord(aPntDeriv[aShift], aPntDeriv[aShift + 1], aPntDeriv[aShift + 2]);
}