1
0
mirror of https://git.dev.opencascade.org/repos/occt.git synced 2025-04-16 10:08:36 +03:00
occt/src/Convert/Convert_EllipseToBSplineCurve.cxx
abv 42cf5bc1ca 0024002: Overall code and build procedure refactoring -- automatic
Automatic upgrade of OCCT code by command "occt_upgrade . -nocdl":
- WOK-generated header files from inc and sources from drv are moved to src
- CDL files removed
- All packages are converted to nocdlpack
2015-07-12 07:42:38 +03:00

185 lines
5.5 KiB
C++

// Copyright (c) 1995-1999 Matra Datavision
// Copyright (c) 1999-2014 OPEN CASCADE SAS
//
// This file is part of Open CASCADE Technology software library.
//
// This library is free software; you can redistribute it and/or modify it under
// the terms of the GNU Lesser General Public License version 2.1 as published
// by the Free Software Foundation, with special exception defined in the file
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
// distribution for complete text of the license and disclaimer of any warranty.
//
// Alternatively, this file may be used under the terms of Open CASCADE
// commercial license or contractual agreement.
//JCV 16/10/91
#include <Convert_EllipseToBSplineCurve.hxx>
#include <gp.hxx>
#include <gp_Ax2d.hxx>
#include <gp_Dir2d.hxx>
#include <gp_Elips2d.hxx>
#include <gp_Trsf2d.hxx>
#include <Precision.hxx>
#include <Standard_DomainError.hxx>
#include <TColgp_Array1OfPnt2d.hxx>
#include <TColgp_HArray1OfPnt2d.hxx>
#include <TColStd_Array1OfReal.hxx>
#include <TColStd_HArray1OfInteger.hxx>
#include <TColStd_HArray1OfReal.hxx>
//Attention :
//To avoid use of persistent tables in the fields
//the tables are dimensioned to the maximum (TheNbKnots and TheNbPoles)
//that correspond to the full circle. For an arc of circle there is a
//need of less poles and nodes, that is why the fields
//nbKnots and nbPoles are present and updated in the
//constructor of an arc of B-spline circle to take into account
//the real number of poles and nodes.
// parameterization :
// Reference : Rational B-spline for Curve and Surface Representation
// Wayne Tiller CADG September 1983
// x(t) = (1 - t^2) / (1 + t^2)
// y(t) = 2 t / (1 + t^2)
// then t = Sqrt(2) u / ((Sqrt(2) - 2) u + 2)
// => u = 2 t / (Sqrt(2) + (2 - Sqrt(2)) t)
//=======================================================================
//function : Convert_EllipseToBSplineCurve
//purpose : this constructs a periodic Ellipse
//=======================================================================
Convert_EllipseToBSplineCurve::Convert_EllipseToBSplineCurve
(const gp_Elips2d& E, const Convert_ParameterisationType Parameterisation)
:Convert_ConicToBSplineCurve(0,0,0){
Standard_Integer ii ;
Standard_Real R,
r,
value ;
Handle(TColStd_HArray1OfReal) CosNumeratorPtr,
SinNumeratorPtr ;
R = E.MajorRadius();
r = E.MinorRadius();
if (Parameterisation != Convert_TgtThetaOver2 &&
Parameterisation != Convert_RationalC1) {
// If BuildCosAndSin cannot manage the periodicity
// => trim on 0,2*PI
isperiodic = Standard_False;
Convert_ConicToBSplineCurve::
BuildCosAndSin(Parameterisation,
0, 2*M_PI,
CosNumeratorPtr,
SinNumeratorPtr,
weights,
degree,
knots,
mults) ;
}
else {
isperiodic = Standard_True;
Convert_ConicToBSplineCurve::
BuildCosAndSin(Parameterisation,
CosNumeratorPtr,
SinNumeratorPtr,
weights,
degree,
knots,
mults);
}
nbPoles = CosNumeratorPtr->Length();
nbKnots = knots->Length();
poles =
new TColgp_HArray1OfPnt2d(1,nbPoles) ;
gp_Dir2d Ox = E.XAxis().Direction();
gp_Dir2d Oy = E.YAxis().Direction();
gp_Trsf2d Trsf;
Trsf.SetTransformation( E.XAxis(), gp::OX2d());
if ( Ox.X() * Oy.Y() - Ox.Y() * Oy.X() > 0.0e0) {
value = r ;
}
else {
value = -r ;
}
// Replace the bspline in the mark of the circle.
// and calculate the weight of the bspline.
for (ii = 1; ii <= nbPoles ; ii++) {
poles->ChangeArray1()(ii).SetCoord(1, R * CosNumeratorPtr->Value(ii)) ;
poles->ChangeArray1()(ii).SetCoord(2, value * SinNumeratorPtr->Value(ii)) ;
poles->ChangeArray1()(ii).Transform( Trsf);
}
}
//=======================================================================
//function : Convert_EllipseToBSplineCurve
//purpose : this constructs a non periodic Ellipse
//=======================================================================
Convert_EllipseToBSplineCurve::Convert_EllipseToBSplineCurve
(const gp_Elips2d& E,
const Standard_Real UFirst,
const Standard_Real ULast,
const Convert_ParameterisationType Parameterisation)
:Convert_ConicToBSplineCurve(0,0,0)
{
#ifndef No_Exception
Standard_Real Tol = Precision::PConfusion();
Standard_Real delta = ULast - UFirst;
#endif
Standard_DomainError_Raise_if( (delta > (2*M_PI+Tol)) || (delta <= 0.0e0),
"Convert_EllipseToBSplineCurve");
Standard_Integer ii;
Standard_Real R, r, value;
Handle(TColStd_HArray1OfReal) CosNumeratorPtr, SinNumeratorPtr;
R = E.MajorRadius();
r = E.MinorRadius();
isperiodic = Standard_False;
Convert_ConicToBSplineCurve::BuildCosAndSin(Parameterisation,
UFirst,
ULast,
CosNumeratorPtr,
SinNumeratorPtr,
weights,
degree,
knots,
mults) ;
nbPoles = CosNumeratorPtr->Length();
nbKnots = knots->Length();
poles = new TColgp_HArray1OfPnt2d(1,nbPoles) ;
gp_Dir2d Ox = E.XAxis().Direction();
gp_Dir2d Oy = E.YAxis().Direction();
gp_Trsf2d Trsf;
Trsf.SetTransformation( E.XAxis(), gp::OX2d());
if ( Ox.X() * Oy.Y() - Ox.Y() * Oy.X() > 0.0e0) {
value = r ;
}
else {
value = -r ;
}
// Replace the bspline in the mark of the circle.
// and calculate the weight of the bspline.
for (ii = 1; ii <= nbPoles ; ii++) {
poles->ChangeArray1()(ii).SetCoord(1, R * CosNumeratorPtr->Value(ii)) ;
poles->ChangeArray1()(ii).SetCoord(2, value * SinNumeratorPtr->Value(ii)) ;
poles->ChangeArray1()(ii).Transform( Trsf);
}
}