1
0
mirror of https://git.dev.opencascade.org/repos/occt.git synced 2025-04-05 18:16:23 +03:00
occt/src/OpenGl/OpenGl_View_2.cxx
apl 34a44cbd3b 0023015: TKOpenGl redesign regression in text printing
Changes:
- the lost code block for scaling text restored;
- the color attributes fixed.
2012-03-21 18:11:24 +04:00

1557 lines
47 KiB
C++

// File: OpenGl_View_2.cxx
// Created: 20 September 2011
// Author: Sergey ZERCHANINOV
// Copyright: OPEN CASCADE 2011
#include <stdio.h>
#include <stdlib.h>
#include <OpenGl_GlCore11.hxx>
#include <OpenGl_tgl_funcs.hxx>
#include <OpenGl_TextureBox.hxx>
#include <AlienImage.hxx>
#include <Image_Image.hxx>
#include <Visual3d_Layer.hxx>
#include <OpenGl_AspectLine.hxx>
#include <OpenGl_Display.hxx>
#include <OpenGl_Workspace.hxx>
#include <OpenGl_View.hxx>
#include <OpenGl_Trihedron.hxx>
#include <OpenGl_GraduatedTrihedron.hxx>
#include <OpenGl_PrinterContext.hxx>
#include <OpenGl_Structure.hxx>
#include <GL/glu.h> // gluBuild2DMipmaps()
#define EPSI 0.0001
static const GLfloat default_amb[4] = { 0.F, 0.F, 0.F, 1.F };
static const GLfloat default_sptdir[3] = { 0.F, 0.F, -1.F };
static const GLfloat default_sptexpo = 0.F;
static const GLfloat default_sptcutoff = 180.F;
extern void InitLayerProp (const int AListId); //szvgl: defined in OpenGl_GraphicDriver_Layer.cxx
/*----------------------------------------------------------------------*/
struct OPENGL_CLIP_PLANE
{
GLboolean isEnabled;
GLdouble Equation[4];
DEFINE_STANDARD_ALLOC
};
/*----------------------------------------------------------------------*/
/*
* Fonctions privees
*/
/*-----------------------------------------------------------------*/
/*
* Set des lumieres
*/
static void bind_light(const OpenGl_Light *lptr, int *gl_lid)
{
// Only 8 lights in OpenGL...
if (*gl_lid > GL_LIGHT7) return;
// the light is a headlight ?
GLint cur_matrix;
if (lptr->HeadLight)
{
glGetIntegerv(GL_MATRIX_MODE, &cur_matrix);
glMatrixMode(GL_MODELVIEW);
glPushMatrix();
glLoadIdentity();
}
GLfloat data_amb[4];
GLfloat data_diffu[4];
GLfloat data_pos[4];
GLfloat data_sptdir[3];
GLfloat data_sptexpo;
GLfloat data_sptcutoff;
GLfloat data_constantattenuation;
GLfloat data_linearattenuation;
/* set la light en fonction de son type */
switch (lptr->type)
{
case TLightAmbient:
data_amb[0] = lptr->col.rgb[0];
data_amb[1] = lptr->col.rgb[1];
data_amb[2] = lptr->col.rgb[2];
data_amb[3] = 1.0;
/*------------------------- Ambient ---------------------------*/
/*
* The GL_AMBIENT parameter refers to RGBA intensity of the ambient
* light.
*/
glLightModelfv(GL_LIGHT_MODEL_AMBIENT, data_amb);
break;
case TLightDirectional:
data_diffu[0] = lptr->col.rgb[0];
data_diffu[1] = lptr->col.rgb[1];
data_diffu[2] = lptr->col.rgb[2];
data_diffu[3] = 1.0;
/*------------------------- Direction ---------------------------*/
/* From Open GL Programming Rev 1 Guide Chapt 6 :
Lighting The Mathematics of Lighting ( p 168 )
Directional Light Source ( Infinite ) :
if the last parameter of GL_POSITION , w , is zero, the
corresponding light source is a Directional one.
GL_SPOT_CUTOFF a 180 signifie que ce n'est pas un spot.
To create a realistic effect, set the GL_SPECULAR parameter
to the same value as the GL_DIFFUSE.
*/
data_pos[0] = -lptr->dir[0];
data_pos[1] = -lptr->dir[1];
data_pos[2] = -lptr->dir[2];
data_pos[3] = 0.0;
glLightfv(*gl_lid, GL_AMBIENT, default_amb);
glLightfv(*gl_lid, GL_DIFFUSE, data_diffu);
glLightfv(*gl_lid, GL_SPECULAR, data_diffu);
glLightfv(*gl_lid, GL_POSITION, data_pos);
glLightfv(*gl_lid, GL_SPOT_DIRECTION, default_sptdir);
glLightf(*gl_lid, GL_SPOT_EXPONENT, default_sptexpo);
glLightf(*gl_lid, GL_SPOT_CUTOFF, default_sptcutoff);
break;
case TLightPositional:
data_diffu[0] = lptr->col.rgb[0];
data_diffu[1] = lptr->col.rgb[1];
data_diffu[2] = lptr->col.rgb[2];
data_diffu[3] = 1.0;
/*------------------------- Position -----------------------------*/
/* From Open GL Programming Rev 1 Guide Chapt 6 :
Lighting The Mathematics of Lighting ( p 168 )
Positional Light Source :
if the last parameter of GL_POSITION , w , is nonzero,
the corresponding light source is a Positional one.
GL_SPOT_CUTOFF a 180 signifie que ce n'est pas un spot.
To create a realistic effect, set the GL_SPECULAR parameter
to the same value as the GL_DIFFUSE.
*/
data_pos[0] = lptr->pos[0];
data_pos[1] = lptr->pos[1];
data_pos[2] = lptr->pos[2];
data_pos[3] = 1.0;
data_constantattenuation = lptr->atten[0];
data_linearattenuation = lptr->atten[1];
glLightfv(*gl_lid, GL_AMBIENT, default_amb);
glLightfv(*gl_lid, GL_DIFFUSE, data_diffu);
glLightfv(*gl_lid, GL_SPECULAR, data_diffu);
glLightfv(*gl_lid, GL_POSITION, data_pos);
glLightfv(*gl_lid, GL_SPOT_DIRECTION, default_sptdir);
glLightf(*gl_lid, GL_SPOT_EXPONENT, default_sptexpo);
glLightf(*gl_lid, GL_SPOT_CUTOFF, default_sptcutoff);
glLightf(*gl_lid, GL_CONSTANT_ATTENUATION, data_constantattenuation);
glLightf(*gl_lid, GL_LINEAR_ATTENUATION, data_linearattenuation);
glLightf(*gl_lid, GL_QUADRATIC_ATTENUATION, 0.0);
break;
case TLightSpot:
data_diffu[0] = lptr->col.rgb[0];
data_diffu[1] = lptr->col.rgb[1];
data_diffu[2] = lptr->col.rgb[2];
data_diffu[3] = 1.0;
data_pos[0] = lptr->pos[0];
data_pos[1] = lptr->pos[1];
data_pos[2] = lptr->pos[2];
data_pos[3] = 1.0;
data_sptdir[0] = lptr->dir[0];
data_sptdir[1] = lptr->dir[1];
data_sptdir[2] = lptr->dir[2];
data_sptexpo = ( float )lptr->shine * 128.0F;
data_sptcutoff = ( float )(lptr->angle * 180.0F)/( float )M_PI;
data_constantattenuation = lptr->atten[0];
data_linearattenuation = lptr->atten[1];
glLightfv(*gl_lid, GL_AMBIENT, default_amb);
glLightfv(*gl_lid, GL_DIFFUSE, data_diffu);
glLightfv(*gl_lid, GL_SPECULAR, data_diffu);
glLightfv(*gl_lid, GL_POSITION, data_pos);
glLightfv(*gl_lid, GL_SPOT_DIRECTION, data_sptdir);
glLightf(*gl_lid, GL_SPOT_EXPONENT, data_sptexpo);
glLightf(*gl_lid, GL_SPOT_CUTOFF, data_sptcutoff);
glLightf(*gl_lid, GL_CONSTANT_ATTENUATION, data_constantattenuation);
glLightf(*gl_lid, GL_LINEAR_ATTENUATION, data_linearattenuation);
glLightf(*gl_lid, GL_QUADRATIC_ATTENUATION, 0.0);
break;
}
if (lptr->type != TLightAmbient)
{
glEnable(*gl_lid);
(*gl_lid)++;
}
/* si la light etait une headlight alors restaure la matrice precedente */
if (lptr->HeadLight)
{
glPopMatrix();
glMatrixMode(cur_matrix);
}
}
/*----------------------------------------------------------------------*/
/*
* Prototypes
*/
static void call_util_apply_trans2( float ix, float iy, float iz, matrix3 mat,
float *ox, float *oy, float *oz );
static void call_util_mat_mul( matrix3 mat_a, matrix3 mat_b, matrix3 mat_c);
/*----------------------------------------------------------------------*/
/*
* Fonctions externes
*/
/*
* Evaluates orientation matrix.
*/
/* OCC18942: obsolete in OCCT6.3, might be removed in further versions! */
void call_func_eval_ori_matrix3 (const point3* vrp, // view reference point
const vec3* vpn, // view plane normal
const vec3* vup, // view up vector
int* err_ind,
float mout[4][4]) // OUT view orientation matrix
{
/* Translate to VRP then change the basis.
* The old basis is: e1 = < 1, 0, 0>, e2 = < 0, 1, 0>, e3 = < 0, 0, 1>.
* The new basis is: ("x" means cross product)
* e3' = VPN / |VPN|
* e1' = VUP x VPN / |VUP x VPN|
* e2' = e3' x e1'
* Therefore the transform from old to new is x' = TAx, where:
*
* | e1'x e2'x e3'x 0 | | 1 0 0 0 |
* A = | e1'y e2'y e3'y 0 |, T = | 0 1 0 0 |
* | e1'z e2'z e3'z 0 | | 0 0 1 0 |
* | 0 0 0 1 | | -vrp.x -vrp.y -vrp.z 1 |
*
*/
/*
* These ei's are really ei primes.
*/
register float (*m)[4][4];
point3 e1, e2, e3, e4;
double s, v;
/*
* e1' = VUP x VPN / |VUP x VPN|, but do the division later.
*/
e1.x = vup->delta_y * vpn->delta_z - vup->delta_z * vpn->delta_y;
e1.y = vup->delta_z * vpn->delta_x - vup->delta_x * vpn->delta_z;
e1.z = vup->delta_x * vpn->delta_y - vup->delta_y * vpn->delta_x;
s = sqrt( e1.x * e1.x + e1.y * e1.y + e1.z * e1.z);
e3.x = vpn->delta_x;
e3.y = vpn->delta_y;
e3.z = vpn->delta_z;
v = sqrt( e3.x * e3.x + e3.y * e3.y + e3.z * e3.z);
/*
* Check for vup and vpn colinear (zero dot product).
*/
if ((s > -EPSI) && (s < EPSI))
*err_ind = 2;
else
/*
* Check for a normal vector not null.
*/
if ((v > -EPSI) && (v < EPSI))
*err_ind = 3;
else {
/*
* Normalize e1
*/
e1.x /= ( float )s;
e1.y /= ( float )s;
e1.z /= ( float )s;
/*
* e3 = VPN / |VPN|
*/
e3.x /= ( float )v;
e3.y /= ( float )v;
e3.z /= ( float )v;
/*
* e2 = e3 x e1
*/
e2.x = e3.y * e1.z - e3.z * e1.y;
e2.y = e3.z * e1.x - e3.x * e1.z;
e2.z = e3.x * e1.y - e3.y * e1.x;
/*
* Add the translation
*/
e4.x = -( e1.x * vrp->x + e1.y * vrp->y + e1.z * vrp->z);
e4.y = -( e2.x * vrp->x + e2.y * vrp->y + e2.z * vrp->z);
e4.z = -( e3.x * vrp->x + e3.y * vrp->y + e3.z * vrp->z);
/*
* Homogeneous entries
*
* | e1.x e2.x e3.x 0.0 | | 1 0 0 0 |
* | e1.y e2.y e3.y 0.0 | * | 0 1 0 0 |
* | e1.z e2.z e3.z 0.0 | | a b 1 c |
* | e4.x e4.y e4.z 1.0 | | 0 0 0 1 |
*/
m = (float (*)[4][4])mout;
(*m)[0][0] = e1.x;
(*m)[0][1] = e2.x;
(*m)[0][2] = e3.x;
(*m)[0][3] = ( float )0.0;
(*m)[1][0] = e1.y;
(*m)[1][1] = e2.y;
(*m)[1][2] = e3.y;
(*m)[1][3] = ( float )0.0;
(*m)[2][0] = e1.z;
(*m)[2][1] = e2.z;
(*m)[2][2] = e3.z;
(*m)[2][3] = ( float )0.0;
(*m)[3][0] = e4.x;
(*m)[3][1] = e4.y;
(*m)[3][2] = e4.z;
(*m)[3][3] = ( float )1.0;
*err_ind = 0;
}
}
/*----------------------------------------------------------------------*/
/*
* Evaluates mapping matrix.
*/
/* OCC18942: obsolete in OCCT6.3, might be removed in further versions! */
void call_func_eval_map_matrix3(
view_map3 *Map,
int *err_ind,
matrix3 mat)
{
int i, j;
matrix3 Tpar, Spar;
matrix3 Tper, Sper;
matrix3 Shear;
matrix3 Scale;
matrix3 Tprp;
matrix3 aux_mat1, aux_mat2, aux_mat3;
point3 Prp;
*err_ind = 0;
for (i=0; i<4; i++)
for (j=0; j<4; j++)
Spar[i][j] = Sper[i][j] = aux_mat1[i][j] = aux_mat2[i][j] =
aux_mat3[i][j] = Tper[i][j] = Tpar[i][j] = Tprp[i][j] =
Shear[i][j] = Scale[i][j] = ( float )(i == j);
Prp.x = Map->proj_ref_point.x;
Prp.y = Map->proj_ref_point.y;
Prp.z = Map->proj_ref_point.z;
/*
* Type Parallele
*/
if (Map->proj_type == TYPE_PARAL)
{
float umid, vmid;
point3 temp;
#ifdef FMN
float cx, cy, gx, gy, xsf, ysf, zsf;
float fpd, bpd;
float dopx, dopy, dopz;
matrix3 tmat = { { ( float )1.0, ( float )0.0, ( float )0.0, ( float )0.0 },
{ ( float )0.0, ( float )1.0, ( float )0.0, ( float )0.0 },
{ ( float )0.0, ( float )0.0, ( float )1.0, ( float )0.0 },
{ ( float )0.0, ( float )0.0, ( float )0.0, ( float )1.0 } };
matrix3 smat = { { ( float )1.0, ( float )0.0, ( float )0.0, ( float )0.0 },
{ ( float )0.0, ( float )1.0, ( float )0.0, ( float )0.0 },
{ ( float )0.0, ( float )0.0, ( float )1.0, ( float )0.0 },
{ ( float )0.0, ( float )0.0, ( float )0.0, ( float )1.0 } };
matrix3 shmat = { { ( float )1.0, ( float )0.0, ( float )0.0, ( float )0.0 },
{ ( float )0.0, ( float )1.0, ( float )0.0, ( float )0.0 },
{ ( float )0.0, ( float )0.0, ( float )1.0, ( float )0.0 },
{ ( float )0.0, ( float )0.0, ( float )0.0, ( float )1.0 } };
matrix3 tshmat = { { ( float )1.0, ( float )0.0, ( float )0.0, ( float )0.0 },
{ ( float )0.0, ( float )1.0, ( float )0.0, ( float )0.0 },
{ ( float )0.0, ( float )0.0, ( float )1.0, ( float )0.0 },
{ ( float )0.0, ( float )0.0, ( float )0.0, ( float )1.0 } };
/* centers */
cx = Map->win.x_min + Map->win.x_max, cx /= ( float )2.0;
cy = Map->win.y_min + Map->win.y_max, cy /= ( float )2.0;
gx = 2.0/ (Map->win.x_max - Map->win.x_min);
gy = 2.0/ (Map->win.y_max - Map->win.y_min);
tmat[0][3] = -cx;
tmat[1][3] = -cy;
tmat[2][3] = (Map->front_plane + Map->back_plane)/(Map->front_plane - Map->back_plane);
smat[0][0] = gx;
smat[1][1] = gy;
smat[2][2] = -2./(Map->front_plane - Map->back_plane);
/* scale factors */
dopx = cx - Prp.x;
dopy = cy - Prp.y;
dopz = - Prp.z;
/* map matrix */
shmat[0][2] = -(dopx/dopz);
shmat[1][2] = -(dopy/dopz);
/* multiply to obtain mapping matrix */
call_util_mat_mul( tmat, shmat, tshmat );
call_util_mat_mul( smat, tshmat, mat );
return;
#endif
/* CAL */
Map->proj_vp.z_min = ( float )0.0;
Map->proj_vp.z_max = ( float )1.0;
/* CAL */
/* Shear matrix calculation */
umid = ( float )(Map->win.x_min+Map->win.x_max)/( float )2.0;
vmid = ( float )(Map->win.y_min+Map->win.y_max)/( float )2.0;
if(Prp.z == Map->view_plane){
/* Projection reference point is on the view plane */
*err_ind = 1;
return;
}
Shear[2][0] = ( float )(-1.0) * ((Prp.x-umid)/(Prp.z-Map->view_plane));
Shear[2][1] = ( float )(-1.0) * ((Prp.y-vmid)/(Prp.z-Map->view_plane));
/*
* Calculate the lower left coordinate of the view plane
* after the Shearing Transformation.
*/
call_util_apply_trans2(Map->win.x_min, Map->win.y_min,
Map->view_plane, Shear, &(temp.x), &(temp.y), &(temp.z));
/* Translate the back plane to the origin */
Tpar[3][0] = ( float )(-1.0) * temp.x;
Tpar[3][1] = ( float )(-1.0) * temp.y;
Tpar[3][2] = ( float )(-1.0) * Map->back_plane;
call_util_mat_mul(Shear, Tpar, aux_mat1);
/* Calculation of Scaling transformation */
Spar[0][0] = ( float )1.0 / (Map->win.x_max - Map->win.x_min);
Spar[1][1] = ( float )1.0 / (Map->win.y_max - Map->win.y_min);
Spar[2][2] = ( float )1.0 / (Map->front_plane - Map->back_plane );
call_util_mat_mul (aux_mat1, Spar, aux_mat2);
/* Atlast we transformed view volume to NPC */
/* Translate and scale the view plane to projection view port */
if(Map->proj_vp.x_min < 0.0 || Map->proj_vp.y_min < 0.0 ||
Map->proj_vp.z_min < 0.0 || Map->proj_vp.x_max > 1.0 ||
Map->proj_vp.y_max > 1.0 || Map->proj_vp.z_max > 1.0 ||
Map->proj_vp.x_min > Map->proj_vp.x_max ||
Map->proj_vp.y_min > Map->proj_vp.y_max ||
Map->proj_vp.z_min > Map->proj_vp.z_max){
*err_ind = 1;
return;
}
for(i=0; i<4; i++)
for(j=0; j<4; j++)
aux_mat1[i][j] = (float)(i==j);
aux_mat1[0][0] = Map->proj_vp.x_max-Map->proj_vp.x_min;
aux_mat1[1][1] = Map->proj_vp.y_max-Map->proj_vp.y_min;
aux_mat1[2][2] = Map->proj_vp.z_max-Map->proj_vp.z_min;
aux_mat1[3][0] = Map->proj_vp.x_min;
aux_mat1[3][1] = Map->proj_vp.y_min;
aux_mat1[3][2] = Map->proj_vp.z_min;
call_util_mat_mul (aux_mat2, aux_mat1, mat);
return;
}
/*
* Type Perspective
*/
else if (Map->proj_type == TYPE_PERSPECT)
{
float umid, vmid;
float B, F, V;
float Zvmin;
/* CAL */
Map->proj_vp.z_min = ( float )0.0;
Map->proj_vp.z_max = ( float )1.0;
/* CAL */
B = Map->back_plane;
F = Map->front_plane;
V = Map->view_plane;
if(Prp.z == Map->view_plane){
/* Centre of Projection is on the view plane */
*err_ind = 1;
return;
}
if(Map->proj_vp.x_min < 0.0 || Map->proj_vp.y_min < 0.0 ||
Map->proj_vp.z_min < 0.0 || Map->proj_vp.x_max > 1.0 ||
Map->proj_vp.y_max > 1.0 || Map->proj_vp.z_max > 1.0 ||
Map->proj_vp.x_min > Map->proj_vp.x_max ||
Map->proj_vp.y_min > Map->proj_vp.y_max ||
Map->proj_vp.z_min > Map->proj_vp.z_max ||
F < B){
*err_ind = 1;
return;
}
/* This is the transformation to move VRC to Center Of Projection */
Tprp[3][0] = ( float )(-1.0)*Prp.x;
Tprp[3][1] = ( float )(-1.0)*Prp.y;
Tprp[3][2] = ( float )(-1.0)*Prp.z;
/* Calculation of Shear matrix */
umid = ( float )(Map->win.x_min+Map->win.x_max)/( float )2.0-Prp.x;
vmid = ( float )(Map->win.y_min+Map->win.y_max)/( float )2.0-Prp.y;
Shear[2][0] = ( float )(-1.0)*umid/(Map->view_plane-Prp.z);
Shear[2][1] = ( float )(-1.0)*vmid/(Map->view_plane-Prp.z);
call_util_mat_mul(Tprp, Shear, aux_mat3);
/* Scale the view volume to canonical view volume
* Centre of projection at origin.
* 0 <= N <= -1, -0.5 <= U <= 0.5, -0.5 <= V <= 0.5
*/
Scale[0][0] = (( float )(-1.0)*Prp.z+V)/
((Map->win.x_max-Map->win.x_min)*(( float )(-1.0)*Prp.z+B));
Scale[1][1] = (( float )(-1.0)*Prp.z+V)/
((Map->win.y_max-Map->win.y_min)*(( float )(-1.0)*Prp.z+B));
Scale[2][2] = ( float )(-1.0) / (( float )(-1.0)*Prp.z+B);
call_util_mat_mul(aux_mat3, Scale, aux_mat1);
/*
* Transform the Perspective view volume into
* Parallel view volume.
* Lower left coordinate: (-0.5,-0.5, -1)
* Upper right coordinate: (0.5, 0.5, 1.0)
*/
Zvmin = ( float )(-1.0*(-1.0*Prp.z+F)/(-1.0*Prp.z+B));
aux_mat2[2][2] = ( float )1.0/(( float )1.0+Zvmin);
aux_mat2[2][3] = ( float )(-1.0);
aux_mat2[3][2] = ( float )(-1.0)*Zvmin*aux_mat2[2][2];
aux_mat2[3][3] = ( float )0.0;
call_util_mat_mul(aux_mat1, aux_mat2, Shear);
for(i=0; i<4; i++)
for(j=0; j<4; j++)
aux_mat1[i][j] = aux_mat2[i][j] = (float)(i==j);
/* Translate and scale the view plane to projection view port */
aux_mat2[0][0] = (Map->proj_vp.x_max-Map->proj_vp.x_min);
aux_mat2[1][1] = (Map->proj_vp.y_max-Map->proj_vp.y_min);
aux_mat2[2][2] = (Map->proj_vp.z_max-Map->proj_vp.z_min);
aux_mat2[3][0] = aux_mat2[0][0]/( float )2.0+Map->proj_vp.x_min;
aux_mat2[3][1] = aux_mat2[1][1]/( float )2.0+Map->proj_vp.y_min;
aux_mat2[3][2] = aux_mat2[2][2]+Map->proj_vp.z_min;
call_util_mat_mul (Shear, aux_mat2, mat);
return;
}
else
*err_ind = 1;
}
/*----------------------------------------------------------------------*/
static void
call_util_apply_trans2( float ix, float iy, float iz, matrix3 mat,
float *ox, float *oy, float *oz )
{
float temp;
*ox = ix*mat[0][0]+iy*mat[1][0]+iz*mat[2][0]+mat[3][0];
*oy = ix*mat[0][1]+iy*mat[1][1]+iz*mat[2][1]+mat[3][1];
*oz = ix*mat[0][2]+iy*mat[1][2]+iz*mat[2][2]+mat[3][2];
temp = ix * mat[0][3]+iy * mat[1][3]+iz * mat[2][3]+mat[3][3];
*ox /= temp;
*oy /= temp;
*oz /= temp;
}
/*----------------------------------------------------------------------*/
static void
call_util_mat_mul( matrix3 mat_a, matrix3 mat_b, matrix3 mat_c)
{
int i, j, k;
for (i=0; i<4; i++)
for (j=0; j<4; j++)
for (mat_c[i][j] = ( float )0.0,k=0; k<4; k++)
mat_c[i][j] += mat_a[i][k] * mat_b[k][j];
}
/*----------------------------------------------------------------------*/
//call_func_redraw_all_structs_proc
void OpenGl_View::Render (const Handle(OpenGl_Workspace) &AWorkspace,
const Graphic3d_CView& ACView,
const Aspect_CLayer2d& ACUnderLayer,
const Aspect_CLayer2d& ACOverLayer)
{
// Reset FLIST status after modification of myBackfacing
if (myResetFLIST)
{
AWorkspace->NamedStatus &= ~OPENGL_NS_FLIST;
myResetFLIST = Standard_False;
}
// Store and disable current clipping planes
GLint maxplanes;
glGetIntegerv(GL_MAX_CLIP_PLANES, &maxplanes);
const GLenum lastid = GL_CLIP_PLANE0 + maxplanes;
OPENGL_CLIP_PLANE *oldPlanes = new OPENGL_CLIP_PLANE[maxplanes];
OPENGL_CLIP_PLANE *ptrPlane = oldPlanes;
GLenum planeid = GL_CLIP_PLANE0;
for ( ; planeid < lastid; planeid++, ptrPlane++ )
{
glGetClipPlane( planeid, ptrPlane->Equation );
if ( ptrPlane->isEnabled )
{
glDisable( planeid );
ptrPlane->isEnabled = GL_TRUE;
}
else
ptrPlane->isEnabled = GL_FALSE;
}
/////////////////////////////////////////////////////////////////////////////
// Step 1: Prepare for redraw
// Render background
if ( (AWorkspace->NamedStatus & OPENGL_NS_WHITEBACK) == 0 &&
( myBgTexture.TexId != 0 || myBgGradient.type != Aspect_GFM_NONE ) )
{
const Standard_Integer aViewWidth = AWorkspace->Width();
const Standard_Integer aViewHeight = AWorkspace->Height();
glPushAttrib( GL_ENABLE_BIT | GL_TEXTURE_BIT );
glMatrixMode( GL_PROJECTION );
glPushMatrix();
glLoadIdentity();
glMatrixMode( GL_MODELVIEW );
glPushMatrix();
glLoadIdentity();
if ( glIsEnabled( GL_DEPTH_TEST ) )
glDisable( GL_DEPTH_TEST ); //push GL_ENABLE_BIT
// drawing bg gradient if:
// - gradient fill type is not Aspect_GFM_NONE and
// - either background texture is no specified or it is drawn in Aspect_FM_CENTERED mode
if ( ( myBgGradient.type != Aspect_GFM_NONE ) &&
( myBgTexture.TexId == 0 || myBgTexture.Style == Aspect_FM_CENTERED ||
myBgTexture.Style == Aspect_FM_NONE ) )
{
Tfloat* corner1 = 0;/* -1,-1*/
Tfloat* corner2 = 0;/* 1,-1*/
Tfloat* corner3 = 0;/* 1, 1*/
Tfloat* corner4 = 0;/* -1, 1*/
Tfloat dcorner1[3];
Tfloat dcorner2[3];
switch( myBgGradient.type )
{
case Aspect_GFM_HOR:
corner1 = myBgGradient.color1.rgb;
corner2 = myBgGradient.color2.rgb;
corner3 = myBgGradient.color2.rgb;
corner4 = myBgGradient.color1.rgb;
break;
case Aspect_GFM_VER:
corner1 = myBgGradient.color2.rgb;
corner2 = myBgGradient.color2.rgb;
corner3 = myBgGradient.color1.rgb;
corner4 = myBgGradient.color1.rgb;
break;
case Aspect_GFM_DIAG1:
corner2 = myBgGradient.color2.rgb;
corner4 = myBgGradient.color1.rgb;
dcorner1 [0] = dcorner2[0] = 0.5F * (corner2[0] + corner4[0]);
dcorner1 [1] = dcorner2[1] = 0.5F * (corner2[1] + corner4[1]);
dcorner1 [2] = dcorner2[2] = 0.5F * (corner2[2] + corner4[2]);
corner1 = dcorner1;
corner3 = dcorner2;
break;
case Aspect_GFM_DIAG2:
corner1 = myBgGradient.color2.rgb;
corner3 = myBgGradient.color1.rgb;
dcorner1 [0] = dcorner2[0] = 0.5F * (corner1[0] + corner3[0]);
dcorner1 [1] = dcorner2[1] = 0.5F * (corner1[1] + corner3[1]);
dcorner1 [2] = dcorner2[2] = 0.5F * (corner1[2] + corner3[2]);
corner2 = dcorner1;
corner4 = dcorner2;
break;
case Aspect_GFM_CORNER1:
corner1 = myBgGradient.color2.rgb;
corner2 = myBgGradient.color2.rgb;
corner3 = myBgGradient.color2.rgb;
corner4 = myBgGradient.color1.rgb;
break;
case Aspect_GFM_CORNER2:
corner1 = myBgGradient.color2.rgb;
corner2 = myBgGradient.color2.rgb;
corner3 = myBgGradient.color1.rgb;
corner4 = myBgGradient.color2.rgb;
break;
case Aspect_GFM_CORNER3:
corner1 = myBgGradient.color2.rgb;
corner2 = myBgGradient.color1.rgb;
corner3 = myBgGradient.color2.rgb;
corner4 = myBgGradient.color2.rgb;
break;
case Aspect_GFM_CORNER4:
corner1 = myBgGradient.color1.rgb;
corner2 = myBgGradient.color2.rgb;
corner3 = myBgGradient.color2.rgb;
corner4 = myBgGradient.color2.rgb;
break;
default:
//printf("gradient background type not right\n");
break;
}
// Save GL parameters
glDisable( GL_LIGHTING ); //push GL_ENABLE_BIT
GLint curSM;
glGetIntegerv( GL_SHADE_MODEL, &curSM );
if ( curSM != GL_SMOOTH )
glShadeModel( GL_SMOOTH ); //push GL_LIGHTING_BIT
glBegin(GL_TRIANGLE_FAN);
if( myBgGradient.type != Aspect_GFM_CORNER1 && myBgGradient.type != Aspect_GFM_CORNER3 )
{
glColor3f(corner1[0],corner1[1],corner1[2]); glVertex2f(-1.,-1.);
glColor3f(corner2[0],corner2[1],corner2[2]); glVertex2f( 1.,-1.);
glColor3f(corner3[0],corner3[1],corner3[2]); glVertex2f( 1., 1.);
glColor3f(corner4[0],corner4[1],corner4[2]); glVertex2f(-1., 1.);
}
else //if ( myBgGradient.type == Aspect_GFM_CORNER1 || myBgGradient.type == Aspect_GFM_CORNER3 )
{
glColor3f(corner2[0],corner2[1],corner2[2]); glVertex2f( 1.,-1.);
glColor3f(corner3[0],corner3[1],corner3[2]); glVertex2f( 1., 1.);
glColor3f(corner4[0],corner4[1],corner4[2]); glVertex2f(-1., 1.);
glColor3f(corner1[0],corner1[1],corner1[2]); glVertex2f(-1.,-1.);
}
glEnd();
// Restore GL parameters
if ( curSM != GL_SMOOTH )
glShadeModel( curSM );
}
// drawing bg image if:
// - it is defined and
// - fill type is not Aspect_FM_NONE
if ( myBgTexture.TexId != 0 && myBgTexture.Style != Aspect_FM_NONE )
{
GLfloat texX_range = 1.F; // texture <s> coordinate
GLfloat texY_range = 1.F; // texture <t> coordinate
// Set up for stretching or tiling
GLfloat x_offset, y_offset;
if ( myBgTexture.Style == Aspect_FM_CENTERED )
{
x_offset = (GLfloat)myBgTexture.Width / (GLfloat)aViewWidth;
y_offset = (GLfloat)myBgTexture.Height / (GLfloat)aViewHeight;
}
else
{
x_offset = 1.F;
y_offset = 1.F;
if ( myBgTexture.Style == Aspect_FM_TILED )
{
texX_range = (GLfloat)aViewWidth / (GLfloat)myBgTexture.Width;
texY_range = (GLfloat)aViewHeight / (GLfloat)myBgTexture.Height;
}
}
glEnable( GL_TEXTURE_2D ); //push GL_ENABLE_BIT
glBindTexture( GL_TEXTURE_2D, myBgTexture.TexId ); //push GL_TEXTURE_BIT
glDisable( GL_BLEND ); //push GL_ENABLE_BIT
glColor3fv( AWorkspace->BackgroundColor().rgb );
glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_DECAL); //push GL_TEXTURE_BIT
glBegin( GL_QUADS );
glTexCoord2f(0.F, 0.F); glVertex2f( -x_offset, -y_offset );
glTexCoord2f(texX_range, 0.F); glVertex2f( x_offset, -y_offset );
glTexCoord2f(texX_range, texY_range); glVertex2f( x_offset, y_offset );
glTexCoord2f(0.F, texY_range); glVertex2f( -x_offset, y_offset );
glEnd();
}
glPopMatrix();
glMatrixMode( GL_PROJECTION );
glPopMatrix();
glMatrixMode( GL_MODELVIEW );
glPopAttrib(); //GL_ENABLE_BIT | GL_TEXTURE_BIT
if ( AWorkspace->UseZBuffer() )
glEnable( GL_DEPTH_TEST );
/* GL_DITHER on/off pour le trace */
if (AWorkspace->Dither())
glEnable (GL_DITHER);
else
glDisable (GL_DITHER);
}
// Switch off lighting by default
glDisable(GL_LIGHTING);
/////////////////////////////////////////////////////////////////////////////
// Step 2: Draw underlayer
RedrawLayer2d(AWorkspace, ACView, ACUnderLayer);
/////////////////////////////////////////////////////////////////////////////
// Step 3: Redraw main plane
// Setup face culling
GLboolean isCullFace = GL_FALSE;
if ( myBackfacing )
{
isCullFace = glIsEnabled( GL_CULL_FACE );
if ( myBackfacing < 0 )
{
glEnable( GL_CULL_FACE );
glCullFace( GL_BACK );
}
else
glDisable( GL_CULL_FACE );
}
//TsmPushAttri(); /* save previous graphics context */
// if the view is scaled normal vectors are scaled to unit length for correct displaying of shaded objects
if(myExtra.scaleFactors[0] != 1.F ||
myExtra.scaleFactors[1] != 1.F ||
myExtra.scaleFactors[2] != 1.F)
glEnable(GL_NORMALIZE);
else if(glIsEnabled(GL_NORMALIZE))
glDisable(GL_NORMALIZE);
// Apply View Projection
// This routine activates the Projection matrix for a view.
glMatrixMode( GL_PROJECTION );
#ifdef WNT
// add printing scale/tiling transformation
OpenGl_PrinterContext* aPrinterContext = OpenGl_PrinterContext::GetPrinterContext(AWorkspace->GetGContext());
if (aPrinterContext)
{
GLfloat aProjMatrix[16];
aPrinterContext->GetProjTransformation(aProjMatrix);
glLoadMatrixf((GLfloat*) aProjMatrix);
}
else
#endif
glLoadIdentity();
glMultMatrixf( (const GLfloat *) myMappingMatrix );
// Add translation necessary for the environnement mapping
if (mySurfaceDetail != Visual3d_TOD_NONE)
{
// OCC280: FitAll work incorrect for perspective view if the SurfaceDetail mode is V3d_TEX_ENVIRONMENT or V3d_TEX_ALL
// const GLfloat dep = vptr->vrep.extra.map.fpd * 0.5F;
const GLfloat dep = (myExtra.map.fpd + myExtra.map.bpd) * 0.5F;
glTranslatef(-dep*myExtra.vpn[0],-dep*myExtra.vpn[1],-dep*myExtra.vpn[2]);
}
// Apply matrix
AWorkspace->SetViewMatrix((const OpenGl_Matrix *)myOrientationMatrix);
/*
While drawing after a clipplane has been defined and enabled, each vertex
is transformed to eye-coordinates, where it is dotted with the transformed
clipping plane equation. Eye-coordinate vertexes whose dot product with
the transformed clipping plane equation is positive or zero are in, and
require no clipping. Those eye-coordinate vertexes whose dot product is
negative are clipped. Because clipplane clipping is done in eye-
coordinates, changes to the projection matrix have no effect on its
operation.
A point and a normal are converted to a plane equation in the following manner:
point = [Px,Py,Pz]
normal = |Nx|
|Ny|
|Nz|
plane equation = |A|
|B|
|C|
|D|
A = Nx
B = Ny
C = Nz
D = -[Px,Py,Pz] dot |Nx|
|Ny|
|Nz|
*/
glPushAttrib( GL_FOG_BIT | GL_LIGHTING_BIT | GL_ENABLE_BIT );
// Apply Fog
if ( myFog.IsOn )
{
const GLfloat ramp = myExtra.map.fpd - myExtra.map.bpd;
const GLfloat fog_start = myFog.Front * ramp - myExtra.map.fpd;
const GLfloat fog_end = myFog.Back * ramp - myExtra.map.fpd;
glFogi(GL_FOG_MODE, GL_LINEAR);
glFogf(GL_FOG_START, fog_start);
glFogf(GL_FOG_END, fog_end);
glFogfv(GL_FOG_COLOR, myFog.Color.rgb);
glEnable(GL_FOG);
}
else
glDisable(GL_FOG);
// Apply Lights
{
int i;
// Switch off all lights
for (i = GL_LIGHT0; i <= GL_LIGHT7; i++)
glDisable(i);
glLightModelfv(GL_LIGHT_MODEL_AMBIENT, default_amb);
/* set les lights */
int gl_lid = GL_LIGHT0;
OpenGl_ListOfLight::Iterator itl(myLights);
for (; itl.More(); itl.Next())
{
const OpenGl_Light &alight = itl.Value();
bind_light(&alight, &gl_lid);
}
if (gl_lid != GL_LIGHT0) glEnable(GL_LIGHTING);
}
// Apply InteriorShadingMethod
glShadeModel( myIntShadingMethod == TEL_SM_FLAT ? GL_FLAT : GL_SMOOTH );
// Apply clipping planes
{
// Define starting plane id
planeid = GL_CLIP_PLANE0;
GLdouble equation[4];
if ( myZClip.Back.IsOn || myZClip.Front.IsOn )
{
// Apply front and back clipping planes
GLfloat mat[4][4];
glMatrixMode( GL_MODELVIEW );
glGetFloatv( GL_MODELVIEW_MATRIX,(GLfloat *) mat );
glLoadIdentity();
const GLdouble ramp = myExtra.map.fpd - myExtra.map.bpd;
if ( myZClip.Back.IsOn )
{
const GLdouble back = ramp * myZClip.Back.Limit + myExtra.map.bpd;
equation[0] = 0.0; /* Nx */
equation[1] = 0.0; /* Ny */
equation[2] = 1.0; /* Nz */
equation[3] = -back; /* P dot N */
glClipPlane( planeid, equation );
glEnable( planeid );
planeid++;
}
if ( myZClip.Front.IsOn )
{
const GLdouble front = ramp * myZClip.Front.Limit + myExtra.map.bpd;
equation[0] = 0.0; /* Nx */
equation[1] = 0.0; /* Ny */
equation[2] = -1.0; /* Nz */
equation[3] = front; /* P dot N */
glClipPlane( planeid, equation );
glEnable( planeid );
planeid++;
}
glLoadMatrixf( (GLfloat *) mat );
}
// Apply user clipping planes
NCollection_List<OPENGL_CLIP_REP>::Iterator planeIter(myClippingPlanes);
for ( ; planeIter.More(); planeIter.Next() )
{
glClipPlane( planeid, planeIter.Value().equation );
glEnable( planeid );
planeid++;
}
}
// Apply AntiAliasing
{
if (myAntiAliasing)
AWorkspace->NamedStatus |= OPENGL_NS_ANTIALIASING;
else
AWorkspace->NamedStatus &= ~OPENGL_NS_ANTIALIASING;
}
Standard_Boolean isAnimationListOpen = Standard_False;
// Request for update of animation mode?
if ( (AWorkspace->NamedStatus & OPENGL_NS_UPDATEAM) != 0 )
{
// Request to rebuild display list
myAnimationListReady = Standard_False;
// Reset request for update of animation mode
AWorkspace->NamedStatus &= ~OPENGL_NS_UPDATEAM;
}
// Is in animation mode?
if ( AWorkspace->NamedStatus & OPENGL_NS_ANIMATION )
{
// Is the animation list ready?
if (myAnimationListReady)
{
// Execute the animation list
glCallList(myAnimationListIndex);
}
else
{
// Update the animation list
if ( AWorkspace->NamedStatus & OPENGL_NS_FLIST )
{
if (myAnimationListIndex == 0)
myAnimationListIndex = glGenLists(1);
if (myAnimationListIndex != 0)
{
glNewList(myAnimationListIndex, GL_COMPILE_AND_EXECUTE);
isAnimationListOpen = Standard_True;
}
}
else
AWorkspace->NamedStatus |= OPENGL_NS_FLIST;
}
}
else
myAnimationListReady = Standard_False;
if (!myAnimationListReady)
{
// Clear status bitfields
AWorkspace->NamedStatus &= ~(OPENGL_NS_2NDPASSNEED | OPENGL_NS_2NDPASSDO);
// Added PCT for handling of textures
switch (mySurfaceDetail)
{
case Visual3d_TOD_NONE:
AWorkspace->NamedStatus |= OPENGL_NS_FORBIDSETTEX;
DisableTexture();
// Render the view
RenderStructs(AWorkspace);
break;
case Visual3d_TOD_ENVIRONMENT:
AWorkspace->NamedStatus |= OPENGL_NS_FORBIDSETTEX;
SetCurrentTexture(myTextureEnv);
EnableTexture();
// Render the view
RenderStructs(AWorkspace);
DisableTexture();
break;
case Visual3d_TOD_ALL:
// First pass
AWorkspace->NamedStatus &= ~OPENGL_NS_FORBIDSETTEX;
// Render the view
RenderStructs(AWorkspace);
DisableTexture();
// Second pass
if (AWorkspace->NamedStatus & OPENGL_NS_2NDPASSNEED)
{
AWorkspace->NamedStatus |= OPENGL_NS_2NDPASSDO;
SetCurrentTexture(myTextureEnv);
EnableTexture();
/* sauvegarde de quelques parametres OpenGL */
GLint blend_dst, blend_src;
GLint zbuff_f;
GLboolean zbuff_w;
glGetBooleanv(GL_DEPTH_WRITEMASK, &zbuff_w);
glGetIntegerv(GL_DEPTH_FUNC, &zbuff_f);
glGetIntegerv(GL_BLEND_DST, &blend_dst);
glGetIntegerv(GL_BLEND_SRC, &blend_src);
GLboolean zbuff_state = glIsEnabled(GL_DEPTH_TEST);
GLboolean blend_state = glIsEnabled(GL_BLEND);
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
glEnable(GL_BLEND);
glDepthFunc(GL_EQUAL);
glDepthMask(GL_FALSE);
glEnable(GL_DEPTH_TEST);
AWorkspace->NamedStatus |= OPENGL_NS_FORBIDSETTEX;
// Render the view
RenderStructs(AWorkspace);
DisableTexture();
/* restauration des parametres OpenGL */
glBlendFunc(blend_src, blend_dst);
if (!blend_state) glDisable(GL_BLEND);
glDepthFunc(zbuff_f);
glDepthMask(zbuff_w);
if (!zbuff_state) glDisable(GL_DEPTH_FUNC);
}
break;
}
if (isAnimationListOpen)
{
glEndList();
myAnimationListReady = Standard_True;
}
}
/* restore previous graphics context; before update lights */
//TsmPopAttri();
// Disable current clipping planes
for ( planeid = GL_CLIP_PLANE0; planeid < lastid; planeid++ )
glDisable( planeid );
/* affichage de Triedre Non Zoomable de la vue s'il existe */
if (!myTrihedron.IsNull())
myTrihedron->Render(AWorkspace);
if (!myGraduatedTrihedron.IsNull())
myGraduatedTrihedron->Render(AWorkspace);
// The applied aspects should be reset to make it possible to
// update gl state and bring it into line with currently set
// aspects by reapplying them. Reset should be done, because
// the glPopAttrib() will return original gl state while the
// internal TKOpenGl state stills unchanged.
AWorkspace->ResetAppliedAspect();
glPopAttrib(); // GL_FOG_BIT | GL_LIGHTING_BIT | GL_ENABLE_BIT
// Restore face culling
if ( myBackfacing )
{
if ( isCullFace )
{
glEnable ( GL_CULL_FACE );
glCullFace ( GL_BACK );
}
else
glDisable ( GL_CULL_FACE );
}
/////////////////////////////////////////////////////////////////////////////
// Step 6: Draw overlayer
const int aMode = 0;
AWorkspace->DisplayCallback (ACView, (aMode | OCC_PRE_OVERLAY));
RedrawLayer2d(AWorkspace, ACView, ACOverLayer);
AWorkspace->DisplayCallback (ACView, aMode);
// Restore clipping planes
for ( ptrPlane = oldPlanes, planeid = GL_CLIP_PLANE0; planeid < lastid; planeid++, ptrPlane++ )
{
glClipPlane( planeid, ptrPlane->Equation );
if ( ptrPlane->isEnabled )
glEnable( planeid );
else
glDisable( planeid );
}
delete[] oldPlanes;
}
/*----------------------------------------------------------------------*/
//ExecuteViewDisplay
void OpenGl_View::RenderStructs (const Handle(OpenGl_Workspace) &AWorkspace)
{
if ( myZLayers.NbStructures() <= 0 )
return;
glPushAttrib ( GL_DEPTH_BUFFER_BIT );
const OpenGl_AspectLine *aspect_line = AWorkspace->AspectLine( Standard_True );
//TsmPushAttri(); /* save previous graphics context */
if ( (AWorkspace->NamedStatus & OPENGL_NS_2NDPASSNEED) == 0 )
{
const int antiAliasingMode = AWorkspace->GetDisplay()->AntiAliasingMode();
if ( !myAntiAliasing )
{
glDisable(GL_POINT_SMOOTH);
glDisable(GL_LINE_SMOOTH);
if( antiAliasingMode & 2 ) glDisable(GL_POLYGON_SMOOTH);
glBlendFunc (GL_ONE, GL_ZERO);
glDisable (GL_BLEND);
}
else
{
glEnable(GL_POINT_SMOOTH);
glEnable(GL_LINE_SMOOTH);
if( antiAliasingMode & 2 ) glEnable(GL_POLYGON_SMOOTH);
glBlendFunc (GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
glEnable (GL_BLEND);
}
}
myZLayers.Render (AWorkspace);
//TsmPopAttri(); /* restore previous graphics context; before update lights */
if ( AWorkspace->DegenerateModel > 1 )
{
glLineWidth ( aspect_line->Width() );
if ( aspect_line->Type() != Aspect_TOL_SOLID ) glEnable ( GL_LINE_STIPPLE );
}
glPopAttrib ();
}
/*----------------------------------------------------------------------*/
//call_togl_redraw_layer2d
void OpenGl_View::RedrawLayer2d (const Handle(OpenGl_Workspace) &AWorkspace, const Graphic3d_CView& ACView, const Aspect_CLayer2d& ACLayer)
{
if (&ACLayer == NULL
|| ACLayer.ptrLayer == NULL
|| ACLayer.ptrLayer->listIndex == 0) return;
GLsizei dispWidth = (GLsizei )ACLayer.viewport[0];
GLsizei dispHeight = (GLsizei )ACLayer.viewport[1];
const GLboolean isl = glIsEnabled(GL_LIGHTING); /*OCC6247*/
if (isl)
glDisable(GL_LIGHTING); /*OCC6247*/
/*
* On positionne la projection
*/
glMatrixMode( GL_MODELVIEW );
glPushMatrix ();
glLoadIdentity ();
glMatrixMode (GL_PROJECTION);
glPushMatrix ();
glLoadIdentity ();
if (!ACLayer.sizeDependent)
glViewport (0, 0, dispWidth, dispHeight);
float left = ACLayer.ortho[0];
float right = ACLayer.ortho[1];
float bottom = ACLayer.ortho[2];
float top = ACLayer.ortho[3];
int attach = ACLayer.attach;
float ratio;
if (!ACLayer.sizeDependent)
ratio = (float) dispWidth/dispHeight;
else
ratio = ACView.DefWindow.dx/ACView.DefWindow.dy;
float delta;
if (ratio >= 1.0) { /* fenetre horizontale */
delta = (float )((top - bottom)/2.0);
switch (attach) {
case 0: /* Aspect_TOC_BOTTOM_LEFT */
top = bottom + 2*delta/ratio;
break;
case 1: /* Aspect_TOC_BOTTOM_RIGHT */
top = bottom + 2*delta/ratio;
break;
case 2: /* Aspect_TOC_TOP_LEFT */
bottom = top - 2*delta/ratio;
break;
case 3: /* Aspect_TOC_TOP_RIGHT */
bottom = top - 2*delta/ratio;
break;
}
}
else { /* fenetre verticale */
delta = (float )((right - left)/2.0);
switch (attach) {
case 0: /* Aspect_TOC_BOTTOM_LEFT */
right = left + 2*delta*ratio;
break;
case 1: /* Aspect_TOC_BOTTOM_RIGHT */
left = right - 2*delta*ratio;
break;
case 2: /* Aspect_TOC_TOP_LEFT */
right = left + 2*delta*ratio;
break;
case 3: /* Aspect_TOC_TOP_RIGHT */
left = right - 2*delta*ratio;
break;
}
}
#ifdef WNT
// Check printer context that exists only for print operation
OpenGl_PrinterContext* aPrinterContext = OpenGl_PrinterContext::GetPrinterContext (AWorkspace->GetGContext());
if (aPrinterContext)
{
// additional transformation matrix could be applied to
// render only those parts of viewport that will be
// passed to a printer as a current "frame" to provide
// tiling; scaling of graphics by matrix helps render a
// part of a view (frame) in same viewport, but with higher
// resolution
GLfloat aProjMatrix[16];
aPrinterContext->GetProjTransformation (aProjMatrix);
glLoadMatrixf ((GLfloat*) aProjMatrix);
// printing operation also assumes other viewport dimension
// to comply with transformation matrix or graphics scaling
// factors for tiling for layer redraw
GLsizei anViewportX = 0;
GLsizei anViewportY = 0;
aPrinterContext->GetLayerViewport (anViewportX, anViewportY);
if (anViewportX != 0 && anViewportY != 0)
glViewport (0, 0, anViewportX, anViewportY);
}
#endif
glOrtho (left, right, bottom, top, -1.0, 1.0);
/*
* On trace la display-list associee au layer.
*/
glPushAttrib (
GL_LIGHTING_BIT | GL_LINE_BIT | GL_POLYGON_BIT |
GL_DEPTH_BUFFER_BIT | GL_CURRENT_BIT | GL_TEXTURE_BIT );
glDisable (GL_DEPTH_TEST);
glCallList (ACLayer.ptrLayer->listIndex);
//calling dynamic render of LayerItems
if ( ACLayer.ptrLayer->layerData )
{
InitLayerProp(ACLayer.ptrLayer->listIndex);
((Visual3d_Layer*)ACLayer.ptrLayer->layerData)->RenderLayerItems();
InitLayerProp(0);
}
glPopAttrib ();
/*
* On retire la projection
*/
glMatrixMode (GL_PROJECTION);
glPopMatrix ();
glMatrixMode( GL_MODELVIEW );
glPopMatrix ();
/*
* Restauration du Viewport en cas de modification
*/
if (!ACLayer.sizeDependent)
glViewport (0, 0, (GLsizei) ACView.DefWindow.dx, (GLsizei) ACView.DefWindow.dy);
glFlush ();
if (isl)
glEnable(GL_LIGHTING); /*OCC6247*/
}
/*----------------------------------------------------------------------*/
//call_togl_create_bg_texture
void OpenGl_View::CreateBackgroundTexture (const Standard_CString AFileName, const Aspect_FillMethod AFillStyle)
{
// Delete existing texture
if ( myBgTexture.TexId != 0 )
{
glDeleteTextures( 1, (GLuint*)&(myBgTexture.TexId) );
myBgTexture.TexId = 0;
}
Standard_Integer width, height;
Handle(Image_Image) image;
if ( AlienImage::LoadImageFile( AFileName, image, width, height ) )
{
const int nbbytes = width * height * 3;
GLubyte *data = new GLubyte[nbbytes];
GLubyte *pdata = data;
Standard_Integer i, j;
for ( j = height - 1; j >= 0; j-- )
for ( i = 0; i < width; i++ )
{
const Quantity_Color &color = image->PixelColor( i, j );
*pdata++ = (GLubyte)( 255 * color.Red() );
*pdata++ = (GLubyte)( 255 * color.Green() );
*pdata++ = (GLubyte)( 255 * color.Blue() );
}
GLuint texture = 0;
glGenTextures( 1, &texture );
glBindTexture( GL_TEXTURE_2D, texture );
/* Create MipMapped Texture */
glTexParameteri( GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT );
glTexParameteri( GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT );
glTexParameteri( GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR );
glTexParameteri( GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_NEAREST);
gluBuild2DMipmaps( GL_TEXTURE_2D, 3/*4*/, width, height, GL_RGB, GL_UNSIGNED_BYTE, data );
delete[] data;
myBgTexture.TexId = texture;
myBgTexture.Width = width;
myBgTexture.Height = height;
myBgTexture.Style = AFillStyle;
}
}
/*----------------------------------------------------------------------*/
//call_togl_set_bg_texture_style
void OpenGl_View::SetBackgroundTextureStyle (const Aspect_FillMethod AFillStyle)
{
myBgTexture.Style = AFillStyle;
}
/*----------------------------------------------------------------------*/
//call_togl_gradient_background
void OpenGl_View::SetBackgroundGradient (const Quantity_Color& AColor1,
const Quantity_Color& AColor2,
const Aspect_GradientFillMethod AType)
{
Standard_Real R,G,B;
AColor1.Values( R, G, B, Quantity_TOC_RGB );
myBgGradient.color1.rgb[0] = ( Tfloat )R;
myBgGradient.color1.rgb[1] = ( Tfloat )G;
myBgGradient.color1.rgb[2] = ( Tfloat )B;
myBgGradient.color1.rgb[3] = 0.F;
AColor2.Values( R, G, B, Quantity_TOC_RGB );
myBgGradient.color2.rgb[0] = ( Tfloat )R;
myBgGradient.color2.rgb[1] = ( Tfloat )G;
myBgGradient.color2.rgb[2] = ( Tfloat )B;
myBgGradient.color2.rgb[3] = 0.F;
myBgGradient.type = AType;
}
/*----------------------------------------------------------------------*/
//call_togl_set_gradient_type
void OpenGl_View::SetBackgroundGradientType (const Aspect_GradientFillMethod AType)
{
myBgGradient.type = AType;
}
//=======================================================================
//function : AddZLayer
//purpose :
//=======================================================================
void OpenGl_View::AddZLayer (const Standard_Integer theLayerId)
{
myZLayers.AddLayer (theLayerId);
}
//=======================================================================
//function : RemoveZLayer
//purpose :
//=======================================================================
void OpenGl_View::RemoveZLayer (const Standard_Integer theLayerId)
{
myZLayers.RemoveLayer (theLayerId);
}
//=======================================================================
//function : DisplayStructure
//purpose :
//=======================================================================
void OpenGl_View::DisplayStructure (const OpenGl_Structure *theStructure,
const Standard_Integer thePriority)
{
Standard_Integer aZLayer = theStructure->GetZLayer ();
myZLayers.AddStructure (theStructure, aZLayer, thePriority);
}
//=======================================================================
//function : EraseStructure
//purpose :
//=======================================================================
void OpenGl_View::EraseStructure (const OpenGl_Structure *theStructure)
{
Standard_Integer aZLayer = theStructure->GetZLayer ();
myZLayers.RemoveStructure (theStructure, aZLayer);
}
//=======================================================================
//function : ChangeZLayer
//purpose :
//=======================================================================
void OpenGl_View::ChangeZLayer (const OpenGl_Structure *theStructure,
const Standard_Integer theNewLayerId)
{
Standard_Integer anOldLayer = theStructure->GetZLayer ();
myZLayers.ChangeLayer (theStructure, anOldLayer, theNewLayerId);
}