1
0
mirror of https://git.dev.opencascade.org/repos/occt.git synced 2025-04-04 18:06:22 +03:00
occt/src/GeomFill/GeomFill_Frenet.cdl
nbv 32ca7a5106 0023706: Cannot project point on curve
1.   Approximation of derivative (by Taylor-series and by three points).
2.   Some methods (Degree(), GetType(), D0(), D3(), DN()) are added.
3.   Getting of subInterval's boundaries.
4.   Algorithm for checking if 1st derivative is equal to zero is amended.
5.   Cases are controlled when extrema or Project point do not exist.
6.   GetNormal() function for gp_Vec2d was added.
7.   Computing of Value, D0, D1, D2 and D3 for offset curves was changed.
8.   Limitation of tolerance for derivative computing was added.
9.   Methods for computing trihedron in singularity point are added.
10. Test tests/bugs/moddata_3/bug23706 is added.
11. Restriction on the LastParameter for visualization of 3-D curves. Calling PlotCurve(...) function for last interval.
12. LProp package is modified for tangent computing in singularity point (LProp_CLProps, LProp_SLProps).
13. Added test cases for issue.
Deleting bad test cases for this fix
2013-06-13 15:12:06 +04:00

211 lines
7.1 KiB
Plaintext
Executable File

-- Created on: 1997-12-19
-- Created by: Philippe MANGIN
-- Copyright (c) 1997-1999 Matra Datavision
-- Copyright (c) 1999-2012 OPEN CASCADE SAS
--
-- The content of this file is subject to the Open CASCADE Technology Public
-- License Version 6.5 (the "License"). You may not use the content of this file
-- except in compliance with the License. Please obtain a copy of the License
-- at http://www.opencascade.org and read it completely before using this file.
--
-- The Initial Developer of the Original Code is Open CASCADE S.A.S., having its
-- main offices at: 1, place des Freres Montgolfier, 78280 Guyancourt, France.
--
-- The Original Code and all software distributed under the License is
-- distributed on an "AS IS" basis, without warranty of any kind, and the
-- Initial Developer hereby disclaims all such warranties, including without
-- limitation, any warranties of merchantability, fitness for a particular
-- purpose or non-infringement. Please see the License for the specific terms
-- and conditions governing the rights and limitations under the License.
class Frenet from GeomFill
inherits TrihedronLaw from GeomFill
---Purpose: Defined Frenet Trihedron Law
uses
HCurve from Adaptor3d,
Shape from GeomAbs,
Array1OfReal from TColStd,
Pnt from gp,
Vec from gp,
HArray1OfReal from TColStd,
HArray1OfBoolean from TColStd
raises
OutOfRange, ConstructionError
is
Create
returns Frenet from GeomFill
raises ConstructionError;
Copy(me)
returns TrihedronLaw from GeomFill
is redefined;
Init(me: mutable)
is static;
SetCurve(me : mutable; C : HCurve from Adaptor3d)
is redefined;
--
--
--========== To compute Location and derivatives Location
--
D0(me : mutable;
Param: Real;
Tangent : out Vec from gp;
Normal : out Vec from gp;
BiNormal : out Vec from gp)
---Purpose: compute Triedrhon on curve at parameter <Param>
returns Boolean is redefined;
D1(me : mutable;
Param: Real;
Tangent : out Vec from gp;
DTangent : out Vec from gp;
Normal : out Vec from gp;
DNormal : out Vec from gp;
BiNormal : out Vec from gp;
DBiNormal : out Vec from gp)
---Purpose: compute Triedrhon and derivative Trihedron on curve
-- at parameter <Param>
-- Warning : It used only for C1 or C2 aproximation
returns Boolean
is redefined;
D2(me : mutable;
Param: Real;
Tangent : out Vec from gp;
DTangent : out Vec from gp;
D2Tangent : out Vec from gp;
Normal : out Vec from gp;
DNormal : out Vec from gp;
D2Normal : out Vec from gp;
BiNormal : out Vec from gp;
DBiNormal : out Vec from gp;
D2BiNormal : out Vec from gp)
---Purpose: compute Trihedron on curve
-- first and seconde derivatives.
-- Warning : It used only for C2 aproximation
returns Boolean
is redefined;
--
-- =================== Management of continuity ===================
--
NbIntervals(me; S : Shape from GeomAbs)
---Purpose: Returns the number of intervals for continuity
-- <S>.
-- May be one if Continuity(me) >= <S>
returns Integer is redefined;
Intervals(me; T : in out Array1OfReal from TColStd;
S : Shape from GeomAbs)
---Purpose: Stores in <T> the parameters bounding the intervals
-- of continuity <S>.
--
-- The array must provide enough room to accomodate
-- for the parameters. i.e. T.Length() > NbIntervals()
raises
OutOfRange from Standard
is redefined;
-- =================== To help computation of Tolerance ===============
GetAverageLaw(me : mutable;
ATangent : out Vec from gp;
ANormal : out Vec from gp;
ABiNormal : out Vec from gp)
---Purpose: Get average value of Tangent(t) and Normal(t) it is usfull to
-- make fast approximation of rational surfaces.
is redefined;
-- =================== To help Particular case ===============
IsConstant(me)
---Purpose: Say if the law is Constant.
returns Boolean
is redefined;
IsOnlyBy3dCurve(me)
---Purpose: Return True.
returns Boolean
is redefined;
IsSingular(me; U: Real; Index: out Integer)
returns Boolean
is private;
DoSingular(me: mutable; U: Real; Index: Integer;
Tangent, BiNormal: out Vec from gp;
n, k, TFlag, BNFlag: out Integer;
Delta: out Real)
returns Boolean
is private;
SingularD0(me : mutable;
Param: Real; Index: Integer;
Tangent : out Vec from gp;
Normal : out Vec from gp;
BiNormal : out Vec from gp;
Delta : out Real)
---Purpose: computes Triedrhon on curve at parameter <Param>
returns Boolean
is private;
SingularD1(me : mutable;
Param: Real; Index: Integer;
Tangent : out Vec from gp;
DTangent : out Vec from gp;
Normal : out Vec from gp;
DNormal : out Vec from gp;
BiNormal : out Vec from gp;
DBiNormal : out Vec from gp;
Delta : out Real)
---Purpose: computes Triedrhon and derivative Trihedron on curve
-- at parameter <Param>
-- Warning : It used only for C1 or C2 aproximation
returns Boolean
is private;
SingularD2(me : mutable;
Param: Real; Index: Integer;
Tangent : out Vec from gp;
DTangent : out Vec from gp;
D2Tangent : out Vec from gp;
Normal : out Vec from gp;
DNormal : out Vec from gp;
D2Normal : out Vec from gp;
BiNormal : out Vec from gp;
DBiNormal : out Vec from gp;
D2BiNormal : out Vec from gp;
Delta : out Real)
---Purpose: computes Trihedron on curve
-- first and seconde derivatives.
-- Warning : It used only for C2 aproximation
returns Boolean
is private;
RotateTrihedron(me;
Tangent : out Vec from gp;
Normal : out Vec from gp;
BiNormal : out Vec from gp;
NewTangent : in Vec from gp)
---Purpose: revolves the trihedron (which is determined
-- of given "Tangent", "Normal" and "BiNormal" vectors)
-- to coincide "Tangent" and "NewTangent" axes.
returns Boolean from Standard
is private;
fields
P : Pnt from gp;
mySngl : HArray1OfReal from TColStd;
mySnglLen : HArray1OfReal from TColStd;
isSngl : Boolean from Standard; -- True if there is some
-- singular points
end Frenet;