1
0
mirror of https://git.dev.opencascade.org/repos/occt.git synced 2025-04-03 17:56:21 +03:00
occt/src/Extrema/Extrema_FuncExtPC.gxx
nbv 32ca7a5106 0023706: Cannot project point on curve
1.   Approximation of derivative (by Taylor-series and by three points).
2.   Some methods (Degree(), GetType(), D0(), D3(), DN()) are added.
3.   Getting of subInterval's boundaries.
4.   Algorithm for checking if 1st derivative is equal to zero is amended.
5.   Cases are controlled when extrema or Project point do not exist.
6.   GetNormal() function for gp_Vec2d was added.
7.   Computing of Value, D0, D1, D2 and D3 for offset curves was changed.
8.   Limitation of tolerance for derivative computing was added.
9.   Methods for computing trihedron in singularity point are added.
10. Test tests/bugs/moddata_3/bug23706 is added.
11. Restriction on the LastParameter for visualization of 3-D curves. Calling PlotCurve(...) function for last interval.
12. LProp package is modified for tangent computing in singularity point (LProp_CLProps, LProp_SLProps).
13. Added test cases for issue.
Deleting bad test cases for this fix
2013-06-13 15:12:06 +04:00

421 lines
12 KiB
Plaintext
Executable File

// Copyright (c) 1995-1999 Matra Datavision
// Copyright (c) 1999-2012 OPEN CASCADE SAS
//
// The content of this file is subject to the Open CASCADE Technology Public
// License Version 6.5 (the "License"). You may not use the content of this file
// except in compliance with the License. Please obtain a copy of the License
// at http://www.opencascade.org and read it completely before using this file.
//
// The Initial Developer of the Original Code is Open CASCADE S.A.S., having its
// main offices at: 1, place des Freres Montgolfier, 78280 Guyancourt, France.
//
// The Original Code and all software distributed under the License is
// distributed on an "AS IS" basis, without warranty of any kind, and the
// Initial Developer hereby disclaims all such warranties, including without
// limitation, any warranties of merchantability, fitness for a particular
// purpose or non-infringement. Please see the License for the specific terms
// and conditions governing the rights and limitations under the License.
#include <Standard_TypeMismatch.hxx>
#include <Precision.hxx>
static const Standard_Real TolFactor = 1.e-12;
static const Standard_Real MinTol = 1.e-20;
static const Standard_Real MinStep = 1e-7;
static const Standard_Integer MaxOrder = 3;
/*-----------------------------------------------------------------------------
Fonction permettant de rechercher une distance extremale entre un point P et
une courbe C (en partant d'un point approche C(u0)).
Cette classe herite de math_FunctionWithDerivative et est utilisee par
les algorithmes math_FunctionRoot et math_FunctionRoots.
Si on note D1c et D2c les derivees premiere et seconde:
{ F(u) = (C(u)-P).D1c(u)/ ||Du||}
{ DF(u) = ||Du|| + (C(u)-P).D2c(u)/||Du|| - F(u)*Duu*Du/||Du||**2
{ F(u) = (C(u)-P).D1c(u) }
{ DF(u) = D1c(u).D1c(u) + (C(u)-P).D2c(u)
= ||D1c(u)|| ** 2 + (C(u)-P).D2c(u) }
----------------------------------------------------------------------------*/
Standard_Real Extrema_FuncExtPC::SearchOfTolerance()
{
const Standard_Integer NPoint = 10;
const Standard_Real aStep = (myUsupremum - myUinfium)/(Standard_Real)NPoint;
Standard_Integer aNum = 0;
Standard_Real aMax = -Precision::Infinite(); //Maximum value of 1st derivative
//(it is computed with using NPoint point)
do
{
Standard_Real u = myUinfium + aNum*aStep; //parameter for every point
if(u > myUsupremum)
u = myUsupremum;
Pnt Ptemp; //empty point (is not used below)
Vec VDer; // 1st derivative vector
Tool::D1(*((Curve*)myC), u, Ptemp, VDer);
Standard_Real vm = VDer.Magnitude();
if(vm > aMax)
aMax = vm;
}
while(++aNum < NPoint+1);
return Max(aMax*TolFactor,MinTol);
}
//=============================================================================
Extrema_FuncExtPC::Extrema_FuncExtPC():
myU(0.),
myD1f(0.)
{
myPinit = Standard_False;
myCinit = Standard_False;
myD1Init = Standard_False;
SubIntervalInitialize(0.0,0.0);
myMaxDerivOrder = 0;
myTol=MinTol;
}
//=============================================================================
Extrema_FuncExtPC::Extrema_FuncExtPC (const Pnt& P,
const Curve& C): myU(0.), myD1f(0.)
{
myP = P;
myC = (Standard_Address)&C;
myPinit = Standard_True;
myCinit = Standard_True;
myD1Init = Standard_False;
SubIntervalInitialize(Tool::FirstParameter(*((Curve*)myC)),
Tool::LastParameter(*((Curve*)myC)));
switch(Tool::GetType(*((Curve*)myC)))
{
case GeomAbs_BezierCurve:
case GeomAbs_BSplineCurve:
case GeomAbs_OtherCurve:
myMaxDerivOrder = MaxOrder;
myTol = SearchOfTolerance();
break;
default:
myMaxDerivOrder = 0;
myTol=MinTol;
break;
}
}
//=============================================================================
void Extrema_FuncExtPC::Initialize(const Curve& C)
{
myC = (Standard_Address)&C;
myCinit = Standard_True;
myPoint.Clear();
mySqDist.Clear();
myIsMin.Clear();
SubIntervalInitialize(Tool::FirstParameter(*((Curve*)myC)),
Tool::LastParameter(*((Curve*)myC)));
switch(Tool::GetType(*((Curve*)myC)))
{
case GeomAbs_BezierCurve:
case GeomAbs_BSplineCurve:
case GeomAbs_OtherCurve:
myMaxDerivOrder = MaxOrder;
myTol = SearchOfTolerance();
break;
default:
myMaxDerivOrder = 0;
myTol=MinTol;
break;
}
}
//=============================================================================
void Extrema_FuncExtPC::SetPoint(const Pnt& P)
{
myP = P;
myPinit = Standard_True;
myPoint.Clear();
mySqDist.Clear();
myIsMin.Clear();
}
//=============================================================================
Standard_Boolean Extrema_FuncExtPC::Value (const Standard_Real U, Standard_Real& F)
{
if (!myPinit || !myCinit)
Standard_TypeMismatch::Raise("No init");
myU = U;
Vec D1c;
Tool::D1(*((Curve*)myC),myU,myPc,D1c);
Standard_Real Ndu = D1c.Magnitude();
if(myMaxDerivOrder != 0)
{
if (Ndu <= myTol) // Cas Singulier (PMN 22/04/1998)
{
const Standard_Real DivisionFactor = 1.e-3;
Standard_Real du;
if((myUsupremum >= RealLast()) || (myUinfium <= RealFirst()))
du = 0.0;
else
du = myUsupremum-myUinfium;
const Standard_Real aDelta = Max(du*DivisionFactor,MinStep);
//Derivative is approximated by Taylor-series
Standard_Integer n = 1; //Derivative order
Vec V;
Standard_Boolean IsDeriveFound;
do
{
V = Tool::DN(*((Curve*)myC),myU,++n);
Ndu = V.Magnitude();
IsDeriveFound = (Ndu > myTol);
}
while(!IsDeriveFound && n < myMaxDerivOrder);
if(IsDeriveFound)
{
Standard_Real u;
if(myU-myUinfium < aDelta)
u = myU+aDelta;
else
u = myU-aDelta;
Pnt P1, P2;
Tool::D0(*((Curve*)myC),Min(myU, u),P1);
Tool::D0(*((Curve*)myC),Max(myU, u),P2);
Vec V1(P1,P2);
Standard_Real aDirFactor = V.Dot(V1);
if(aDirFactor < 0.0)
D1c = -V;
else
D1c = V;
}//if(IsDeriveFound)
else
{
//Derivative is approximated by three points
Pnt Ptemp; //(0,0,0)-coordinate
Pnt P1, P2, P3;
Standard_Boolean IsParameterGrown;
if(myU-myUinfium < 2*aDelta)
{
Tool::D0(*((Curve*)myC),myU,P1);
Tool::D0(*((Curve*)myC),myU+aDelta,P2);
Tool::D0(*((Curve*)myC),myU+2*aDelta,P3);
IsParameterGrown = Standard_True;
}
else
{
Tool::D0(*((Curve*)myC),myU-2*aDelta,P1);
Tool::D0(*((Curve*)myC),myU-aDelta,P2);
Tool::D0(*((Curve*)myC),myU,P3);
IsParameterGrown = Standard_False;
}
Vec V1(Ptemp,P1), V2(Ptemp,P2), V3(Ptemp,P3);
if(IsParameterGrown)
D1c=-3*V1+4*V2-V3;
else
D1c=V1-4*V2+3*V3;
}
Ndu = D1c.Magnitude();
}//(if (Ndu <= myTol)) condition
}//if(myMaxDerivOrder != 0)
if (Ndu <= MinTol)
{
#ifdef DEB
cout << "+++Function Extrema_FuncExtPC::Value(...)." << endl;
cout << "Warning: 1st derivative is equal to zero!---"<<endl;
#endif
return Standard_False;
}
Vec PPc (myP,myPc);
F = PPc.Dot(D1c)/Ndu;
return Standard_True;
}
//=============================================================================
Standard_Boolean Extrema_FuncExtPC::Derivative (const Standard_Real U, Standard_Real& D1f)
{
if (!myPinit || !myCinit) Standard_TypeMismatch::Raise();
Standard_Real F;
return Values(U,F,D1f); /* on fait appel a Values pour simplifier la
sauvegarde de l'etat. */
}
//=============================================================================
Standard_Boolean Extrema_FuncExtPC::Values (const Standard_Real U, Standard_Real& F, Standard_Real& D1f)
{
if (!myPinit || !myCinit)
Standard_TypeMismatch::Raise("No init");
Pnt myPc_old = myPc, myP_old = myP;
if(Value(U,F) == Standard_False)
{
#ifdef DEB
cout << "+++Function Extrema_FuncExtPC::Values(...)." << endl;
cout << "Warning: No function value found!---"<<endl;
#endif
myD1Init = Standard_False;
return Standard_False;
}
myU = U;
myPc = myPc_old;
myP = myP_old;
Vec D1c,D2c;
Tool::D2(*((Curve*)myC),myU,myPc,D1c,D2c);
Standard_Real Ndu = D1c.Magnitude();
if (Ndu <= myTol) // Cas Singulier (PMN 22/04/1998)
{
//Derivative is approximated by three points
//Attention: aDelta value must be greater than same value for "Value(...)"
// function to avoid of points' collisions.
const Standard_Real DivisionFactor = 0.01;
Standard_Real du;
if((myUsupremum >= RealLast()) || (myUinfium <= RealFirst()))
du = 0.0;
else
du = myUsupremum-myUinfium;
const Standard_Real aDelta = Max(du*DivisionFactor,MinStep);
Standard_Real F1, F2, F3;
if(myU-myUinfium < 2*aDelta)
{
F1=F;
const Standard_Real U1 = myU, U2 = myU+aDelta, U3 = myU+2*aDelta;
if(!((Value(U2,F2)) && (Value(U3,F3))))
{
#ifdef DEB
cout << "+++ Function Extrema_FuncExtPC::Values(...)" << endl;
cout << "There are many points close to singularity points "
"and which have zero-derivative." << endl;
cout << "Try to decrease aDelta variable's value. ---" << endl;
#endif
myD1Init = Standard_False;
return Standard_False;
}
//After calling of Value(...) function variable myU will be redeterminated.
//So we must return it previous value.
D1f=(-3*F1+4*F2-F3)/(2.0*aDelta);
}
else
{
F3 = F;
const Standard_Real U1 = myU-2*aDelta, U2 = myU-aDelta, U3 = myU;
if(!((Value(U2,F2)) && (Value(U1,F1))))
{
#ifdef DEB
cout << "+++ Function Extrema_FuncExtPC::Values(...)" << endl;
cout << "There are many points close to singularity points "
"and which have zero-derivative." << endl;
cout << "Try to decrease aDelta variable's value. ---" << endl;
#endif
myD1Init = Standard_False;
return Standard_False;
}
//After calling of Value(...) function variable myU will be redeterminated.
//So we must return it previous value.
D1f=(F1-4*F2+3*F3)/(2.0*aDelta);
}
myU = U;
myPc = myPc_old;
myP = myP_old;
}
else
{
Vec PPc (myP,myPc);
D1f = Ndu + (PPc.Dot(D2c)/Ndu) - F*(D1c.Dot(D2c))/(Ndu*Ndu);
}
myD1f = D1f;
myD1Init = Standard_True;
return Standard_True;
}
//=============================================================================
Standard_Integer Extrema_FuncExtPC::GetStateNumber ()
{
if (!myPinit || !myCinit) Standard_TypeMismatch::Raise();
mySqDist.Append(myPc.SquareDistance(myP));
Standard_Integer IntVal;
if (!myD1Init) {
myD1Init = Standard_True;
Standard_Real FF, DD;
Values(myU, FF, DD);
}
if (!myD1Init) IntVal = 0;
else {
if (myD1f > 0.) { IntVal = 1; }
else { IntVal = 0; }
}
myIsMin.Append(IntVal);
myPoint.Append(POnC(myU,myPc));
return 0;
}
//=============================================================================
Standard_Integer Extrema_FuncExtPC::NbExt () const { return mySqDist.Length(); }
//=============================================================================
Standard_Real Extrema_FuncExtPC::SquareDistance (const Standard_Integer N) const
{
if (!myPinit || !myCinit) Standard_TypeMismatch::Raise();
return mySqDist.Value(N);
}
//=============================================================================
Standard_Boolean Extrema_FuncExtPC::IsMin (const Standard_Integer N) const
{
if (!myPinit || !myCinit) Standard_TypeMismatch::Raise();
return (myIsMin.Value(N) == 1);
}
//=============================================================================
POnC Extrema_FuncExtPC::Point (const Standard_Integer N) const
{
if (!myPinit || !myCinit) Standard_TypeMismatch::Raise();
return myPoint.Value(N);
}
//=============================================================================
void Extrema_FuncExtPC::SubIntervalInitialize(const Standard_Real theUfirst, const Standard_Real theUlast)
{
myUinfium = theUfirst;
myUsupremum = theUlast;
}