mirror of
https://git.dev.opencascade.org/repos/occt.git
synced 2025-04-21 10:13:43 +03:00
License statement text corrected; compiler warnings caused by Bison 2.41 disabled for MSVC; a few other compiler warnings on 54-bit Windows eliminated by appropriate type cast Wrong license statements corrected in several files. Copyright and license statements added in XSD and GLSL files. Copyright year updated in some files. Obsolete documentation files removed from DrawResources.
457 lines
14 KiB
C++
457 lines
14 KiB
C++
// Created on: 1996-06-07
|
|
// Created by: Philippe MANGIN
|
|
// Copyright (c) 1996-1999 Matra Datavision
|
|
// Copyright (c) 1999-2014 OPEN CASCADE SAS
|
|
//
|
|
// This file is part of Open CASCADE Technology software library.
|
|
//
|
|
// This library is free software; you can redistribute it and/or modify it under
|
|
// the terms of the GNU Lesser General Public License version 2.1 as published
|
|
// by the Free Software Foundation, with special exception defined in the file
|
|
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
|
|
// distribution for complete text of the license and disclaimer of any warranty.
|
|
//
|
|
// Alternatively, this file may be used under the terms of Open CASCADE
|
|
// commercial license or contractual agreement.
|
|
|
|
#include <GeomConvert_CompBezierSurfacesToBSplineSurface.ixx>
|
|
|
|
#include <Standard_ConstructionError.hxx>
|
|
#include <Standard_NotImplemented.hxx>
|
|
#include <Geom_BSplineSurface.hxx>
|
|
#include <Geom_BezierSurface.hxx>
|
|
#include <Geom_Curve.hxx>
|
|
#include <TColStd_HArray1OfReal.hxx>
|
|
#include <TColgp_HArray2OfPnt.hxx>
|
|
#include <gp_XYZ.hxx>
|
|
#include <gp_Pnt.hxx>
|
|
#include <gp_Vec.hxx>
|
|
#include <TColGeom_Array2OfBezierSurface.hxx>
|
|
#include <Precision.hxx>
|
|
|
|
// ============================================================================
|
|
GeomConvert_CompBezierSurfacesToBSplineSurface::
|
|
GeomConvert_CompBezierSurfacesToBSplineSurface(const TColGeom_Array2OfBezierSurface& Beziers)
|
|
// ============================================================================
|
|
{
|
|
Standard_Integer ii;
|
|
myDone = Standard_True;
|
|
// Choix des noeuds
|
|
myUKnots = new (TColStd_HArray1OfReal) (1, Beziers.ColLength()+1);
|
|
for (ii=0; ii<myUKnots->Length(); ii++) { myUKnots->SetValue(ii+1, ii); }
|
|
|
|
myVKnots = new (TColStd_HArray1OfReal) (1, Beziers.RowLength()+1);
|
|
for (ii=0; ii<myVKnots->Length(); ii++) { myVKnots->SetValue(ii+1, ii); }
|
|
|
|
// Calcul des Poles
|
|
Perform(Beziers);
|
|
}
|
|
|
|
|
|
// ============================================================================
|
|
GeomConvert_CompBezierSurfacesToBSplineSurface::
|
|
GeomConvert_CompBezierSurfacesToBSplineSurface(
|
|
const TColGeom_Array2OfBezierSurface& Beziers,
|
|
const Standard_Real Tolerance,
|
|
const Standard_Boolean RemoveKnots)
|
|
// ============================================================================
|
|
{
|
|
Standard_Integer ii, jj, multU=0, multV, minus;
|
|
Standard_Boolean Ok;
|
|
gp_Vec vec;
|
|
Standard_Real V1, V2, V3, Ratio, L1, L2, Tol, val;
|
|
gp_Pnt P1, P2, P3;
|
|
Handle(Geom_Curve) FirstCurve, SecondCurve;
|
|
|
|
myDone = Standard_True;
|
|
|
|
// Choix des noeuds
|
|
|
|
myUKnots = new (TColStd_HArray1OfReal) (1, Beziers.ColLength()+1);
|
|
myVKnots = new (TColStd_HArray1OfReal) (1, Beziers.RowLength()+1);
|
|
|
|
// --> en U
|
|
myUKnots->SetValue(1, 0);
|
|
jj = myVKnots->Length()/2;
|
|
FirstCurve = Beziers(1, jj)->VIso(0.3);
|
|
FirstCurve->D0(0, P1);
|
|
FirstCurve->D0(0.5, P2);
|
|
FirstCurve->D1(1, P3, vec);
|
|
|
|
L1 = P1.Distance(P2) + P2.Distance(P3);
|
|
myUKnots->SetValue(2, L1);
|
|
|
|
V1 = vec.Magnitude();
|
|
// si la Parametrisation est trop bizzare on garde la pseudo-longueur
|
|
if ((V1 > 1000 * L1) || (V1 < L1 * 1.e-3)) V1 = L1;
|
|
|
|
for (ii=2; ii<myUKnots->Length(); ii++) {
|
|
|
|
SecondCurve = Beziers(ii, jj)->VIso(0.3);
|
|
SecondCurve->D1(0, P1, vec);
|
|
V2 = vec.Magnitude();
|
|
SecondCurve->D0(0.5, P2);
|
|
SecondCurve->D1(1, P3, vec);
|
|
V3 = vec.Magnitude();
|
|
L2 = P1.Distance(P2) + P2.Distance(P3);
|
|
|
|
// On calcul le ratio, en evitant les cas tordus...
|
|
if ((V2 > 1000 * L2) || (V2 < L2 * 1.e-3)) V2 = L2;
|
|
if ((V3 > 1000 * L2) || (V3 < L2 * 1.e-3)) V3 = L2;
|
|
|
|
Ratio = 1;
|
|
if ( (V1 > Precision::Confusion()) && (V2 > Precision::Confusion()) ) {
|
|
Ratio = V2 / V1;
|
|
}
|
|
if ( (Ratio < Precision::Confusion())
|
|
|| (Ratio > 1/Precision::Confusion()) ) {Ratio = 1;}
|
|
|
|
// On en deduit un nouveau noeud
|
|
val = myUKnots->Value(ii);
|
|
myUKnots->SetValue(ii+1, val + Ratio*(val- myUKnots->Value(ii-1)) );
|
|
|
|
// Et c'est reparti, pour un tour
|
|
L1 = L2;
|
|
V1 = V3;
|
|
FirstCurve = SecondCurve;
|
|
}
|
|
|
|
// --> en V
|
|
myVKnots->SetValue(1, 0);
|
|
ii = myUKnots->Length()/2;
|
|
FirstCurve = Beziers(ii, 1)->UIso(0.3);
|
|
FirstCurve->D0(0, P1);
|
|
FirstCurve->D0(0.5, P2);
|
|
FirstCurve->D1(1, P3, vec);
|
|
|
|
L1 = P1.Distance(P2) + P2.Distance(P3);
|
|
myVKnots->SetValue(2, L1);
|
|
|
|
V1 = vec.Magnitude();
|
|
// si la Parametrisation est trop bizzare on garde la pseudo-longueur
|
|
if ((V1 > 1000 * L1) || (V1 < L1 * 1.e-3)) V1 = L1;
|
|
|
|
for (jj=2; jj<myVKnots->Length(); jj++) {
|
|
|
|
SecondCurve = Beziers(ii, jj)->UIso(0.3);
|
|
SecondCurve->D1(0, P1, vec);
|
|
V2 = vec.Magnitude();
|
|
SecondCurve->D0(0.5, P2);
|
|
SecondCurve->D1(1, P3, vec);
|
|
V3 = vec.Magnitude();
|
|
L2 = P1.Distance(P2) + P2.Distance(P3);
|
|
|
|
// On calcul le ratio, en evitant les cas tordus...
|
|
if ((V2 > 1000 * L2) || (V2 < L2 * 1.e-3)) V2 = L2;
|
|
if ((V3 > 1000 * L2) || (V3 < L2 * 1.e-3)) V3 = L2;
|
|
|
|
Ratio = 1;
|
|
if ( (V1 > Precision::Confusion()) && (V2 > Precision::Confusion()) ) {
|
|
Ratio = V2 / V1;
|
|
}
|
|
if ( (Ratio < Precision::Confusion())
|
|
|| (Ratio > 1/Precision::Confusion()) ) {Ratio = 1;}
|
|
|
|
// On en deduit un nouveau noeud
|
|
val = myVKnots->Value(jj);
|
|
myVKnots->SetValue(jj+1, val + Ratio*(val-myVKnots->Value(jj-1)) );
|
|
|
|
// Et c'est reparti, pour un tour
|
|
L1 = L2;
|
|
V1 = V3;
|
|
FirstCurve = SecondCurve;
|
|
}
|
|
|
|
// Calcul des Poles
|
|
Perform(Beziers);
|
|
|
|
// Reduction de la multiplicite
|
|
Handle(Geom_BSplineSurface) Surface = new (Geom_BSplineSurface)
|
|
(myPoles->Array2(),
|
|
myUKnots->Array1(),
|
|
myVKnots->Array1(),
|
|
myUMults->Array1(),
|
|
myVMults->Array1(),
|
|
myUDegree,
|
|
myVDegree);
|
|
|
|
if (RemoveKnots) minus = 0;
|
|
else minus = 1;
|
|
|
|
for (ii=myUKnots->Length()-1; ii>1; ii--) {
|
|
Ok=Standard_True;
|
|
Tol = Tolerance/2;
|
|
multU = myUMults->Value(ii)-1;
|
|
for ( ; Ok && multU > minus; multU--, Tol/=2) {
|
|
Ok = Surface->RemoveUKnot(ii, multU, Tol);
|
|
}
|
|
}
|
|
|
|
for (ii=myVKnots->Length()-1; ii>1; ii--) {
|
|
Ok=Standard_True;
|
|
Tol = Tolerance/2;
|
|
multV = myVMults->Value(ii)-1;
|
|
for ( ; Ok && multU > minus; multV--, Tol/=2) {
|
|
Ok = Surface->RemoveVKnot(ii, multV, Tol);
|
|
}
|
|
}
|
|
|
|
// Les nouveaux champs sont arrivees ....
|
|
myPoles = new (TColgp_HArray2OfPnt) (1, Surface->NbUPoles(), 1, Surface->NbVPoles());
|
|
Surface->Poles( myPoles->ChangeArray2());
|
|
|
|
myUMults = new (TColStd_HArray1OfInteger) (1, Surface->NbUKnots());
|
|
myVMults = new (TColStd_HArray1OfInteger) (1, Surface->NbVKnots());
|
|
myUKnots = new (TColStd_HArray1OfReal) (1, Surface->NbUKnots());
|
|
myVKnots = new (TColStd_HArray1OfReal) (1, Surface->NbVKnots());
|
|
|
|
|
|
Surface->UMultiplicities( myUMults->ChangeArray1());
|
|
Surface->VMultiplicities( myVMults->ChangeArray1());
|
|
Surface->UKnots( myUKnots->ChangeArray1());
|
|
Surface->VKnots( myVKnots->ChangeArray1());
|
|
}
|
|
|
|
// ============================================================================
|
|
GeomConvert_CompBezierSurfacesToBSplineSurface::
|
|
GeomConvert_CompBezierSurfacesToBSplineSurface(
|
|
const TColGeom_Array2OfBezierSurface& Beziers,
|
|
const TColStd_Array1OfReal& UKnots,
|
|
const TColStd_Array1OfReal& VKnots,
|
|
const GeomAbs_Shape UContinuity,
|
|
const GeomAbs_Shape VContinuity,
|
|
const Standard_Real Tolerance)
|
|
// ============================================================================
|
|
{
|
|
Standard_Integer decu=0, decv=0;
|
|
Standard_Boolean Ok;
|
|
|
|
myDone = Standard_True;
|
|
|
|
// Recuperation des noeuds
|
|
myUKnots = new (TColStd_HArray1OfReal) (1, Beziers.ColLength()+1);
|
|
myUKnots->ChangeArray1() = UKnots;
|
|
|
|
myVKnots = new (TColStd_HArray1OfReal) (1, Beziers.RowLength()+1);
|
|
myVKnots->ChangeArray1() = VKnots;
|
|
|
|
// Calcul des Poles
|
|
Perform(Beziers);
|
|
|
|
// Obtention des bonne continuitee
|
|
|
|
switch ( UContinuity ) {
|
|
case GeomAbs_C0 :
|
|
decu = 0;
|
|
break;
|
|
case GeomAbs_C1 :
|
|
decu = 1;
|
|
break;
|
|
case GeomAbs_C2 :
|
|
decu = 2;
|
|
break;
|
|
case GeomAbs_C3 :
|
|
decu = 3;
|
|
break;
|
|
default:
|
|
Standard_ConstructionError::Raise(
|
|
"GeomConvert_CompBezierSurfacesToBSpl:: UContinuity error");
|
|
}
|
|
|
|
switch ( VContinuity ) {
|
|
case GeomAbs_C0 :
|
|
decv = 0;
|
|
break;
|
|
case GeomAbs_C1 :
|
|
decv = 1;
|
|
break;
|
|
case GeomAbs_C2 :
|
|
decv = 2;
|
|
break;
|
|
case GeomAbs_C3 :
|
|
decv = 3;
|
|
break;
|
|
default:
|
|
Standard_ConstructionError::Raise(
|
|
"GeomConvert_CompBezierSurfacesToBSpl:: VContinuity error");
|
|
}
|
|
|
|
|
|
if ( (decu>0) || (decv>0) ) {
|
|
|
|
Standard_Integer ii;
|
|
Standard_Integer multU = myUDegree - decu;
|
|
Standard_ConstructionError_Raise_if(
|
|
((multU <= 0) && (myUKnots->Length()>2)) ,
|
|
"GeomConvert_CompBezierSurfacesToBSpl:: UContinuity or Udeg error");
|
|
|
|
Standard_Integer multV = myVDegree - decv;
|
|
Standard_ConstructionError_Raise_if(
|
|
((multV <= 0) && (myVKnots->Length()>2)) ,
|
|
"GeomConvert_CompBezierSurfacesToBSpl:: VContinuity or Vdeg error");
|
|
|
|
Handle(Geom_BSplineSurface) Surface = new (Geom_BSplineSurface)
|
|
(myPoles->Array2(),
|
|
myUKnots->Array1(),
|
|
myVKnots->Array1(),
|
|
myUMults->Array1(),
|
|
myVMults->Array1(),
|
|
myUDegree,
|
|
myVDegree);
|
|
|
|
|
|
if (decu>0) {
|
|
for (ii=2; ii<myUKnots->Length(); ii++) {
|
|
Ok = Surface->RemoveUKnot(ii, multU, Tolerance);
|
|
if (!Ok) {myDone = Ok;}
|
|
}
|
|
}
|
|
|
|
if (decv>0) {
|
|
for (ii=2; ii<myVKnots->Length(); ii++) {
|
|
Ok = Surface->RemoveVKnot(ii, multV, Tolerance);
|
|
if (!Ok) {myDone = Ok;}
|
|
}
|
|
}
|
|
|
|
// Les nouveaux champs sont arrivees ....
|
|
myPoles = new (TColgp_HArray2OfPnt) (1, Surface->NbUPoles(), 1, Surface->NbVPoles());
|
|
Surface->Poles( myPoles->ChangeArray2());
|
|
Surface->UMultiplicities( myUMults->ChangeArray1());
|
|
Surface->VMultiplicities( myVMults->ChangeArray1());
|
|
}
|
|
}
|
|
|
|
|
|
// ================================================================================
|
|
void GeomConvert_CompBezierSurfacesToBSplineSurface::Perform(
|
|
const TColGeom_Array2OfBezierSurface& Beziers)
|
|
// ================================================================================
|
|
{
|
|
Standard_Integer IU, IV;
|
|
|
|
// (1) Determination des degrees et si le resultat est rationnel.
|
|
isrational = Standard_False;
|
|
myUDegree = 1;
|
|
myVDegree = 1;
|
|
|
|
for (IU=Beziers.LowerRow(); IU <=Beziers.UpperRow(); IU++) {
|
|
for (IV=Beziers.LowerCol(); IV <=Beziers.UpperCol(); IV++) {
|
|
if ( Beziers(IU, IV)-> IsURational()
|
|
|| Beziers(IU, IV)-> IsVRational()) { isrational = Standard_True;}
|
|
|
|
myUDegree = ( Beziers(IU, IV)->UDegree() > myUDegree ) ?
|
|
Beziers(IU, IV)->UDegree() : myUDegree;
|
|
|
|
myVDegree = ( Beziers(IU, IV)->VDegree() > myVDegree ) ?
|
|
Beziers(IU, IV)->VDegree() : myVDegree;
|
|
}
|
|
}
|
|
|
|
Standard_NotImplemented_Raise_if(isrational,
|
|
"CompBezierSurfacesToBSpl : rational !");
|
|
|
|
|
|
// (2) Boucle sur les carreaux -----------------------------
|
|
|
|
Handle(Geom_BezierSurface) Patch;
|
|
Standard_Integer UIndex, VIndex, uindex, vindex, udeb, vdeb;
|
|
Standard_Integer upol, vpol, ii;
|
|
|
|
|
|
myPoles = new (TColgp_HArray2OfPnt)
|
|
( 1, (myUDegree+1)*Beziers.ColLength() - myUKnots->Length() + 2 ,
|
|
1, (myVDegree+1)*Beziers.RowLength() - myVKnots->Length() + 2 );
|
|
|
|
for (IU=Beziers.LowerRow(); IU <=Beziers.UpperRow(); IU++) {
|
|
UIndex = (IU-1)*myUDegree + 1;
|
|
for (IV=Beziers.LowerCol(); IV <=Beziers.UpperCol(); IV++) {
|
|
|
|
Patch = Beziers(IU, IV);
|
|
VIndex = (IV-1)*myVDegree + 1;
|
|
|
|
// (2.1) Augmentation du degree
|
|
Patch->Increase(myUDegree, myVDegree);
|
|
|
|
// (2.2) Poles a recopier
|
|
if (IU==1) {udeb = 1;}
|
|
else {udeb = 2;}
|
|
if (IV==1) {vdeb = 1;}
|
|
else {vdeb = 2;}
|
|
|
|
uindex = UIndex + udeb -1;
|
|
|
|
for (upol = udeb; upol <= myUDegree+1; upol++, uindex++ ) {
|
|
vindex = VIndex + vdeb - 1;
|
|
for (vpol = vdeb; vpol <= myVDegree+1; vpol++, vindex++) {
|
|
myPoles->ChangeValue(uindex, vindex) = Patch->Pole(upol, vpol);
|
|
}
|
|
}
|
|
|
|
// (2.3) Poles a sommer
|
|
if (udeb==2) {
|
|
vindex = VIndex + vdeb - 1;
|
|
for (vpol = vdeb; vpol <= myVDegree+1; vpol++, vindex++) {
|
|
myPoles->ChangeValue(UIndex, vindex).ChangeCoord() +=
|
|
Patch->Pole(1, vpol).Coord();
|
|
}
|
|
}
|
|
|
|
if (vdeb==2) {
|
|
uindex = UIndex + udeb - 1;
|
|
for (upol = udeb; upol <= myUDegree+1; upol++, uindex++) {
|
|
myPoles->ChangeValue(uindex, VIndex).ChangeCoord() +=
|
|
Patch->Pole(upol, 1).Coord();
|
|
}
|
|
}
|
|
|
|
if (udeb==2 && vdeb==2) {
|
|
myPoles->ChangeValue(UIndex, VIndex).ChangeCoord() +=
|
|
Patch->Pole(1, 1).Coord();
|
|
}
|
|
}
|
|
}
|
|
|
|
// (3) Elimination des redondances
|
|
// car dans la boucle precedente on compte :
|
|
// - 2 fois les poles associes aux noeuds simples
|
|
// - 4 fois les poles associes aux doubles noeuds (en U et V)
|
|
|
|
// (3.1) Elimination en U
|
|
for ( UIndex = myUDegree+1, ii=2;
|
|
ii< myUKnots->Length();
|
|
ii++, UIndex+=myUDegree) {
|
|
for (vpol = 1; vpol<=myPoles->UpperCol(); vpol++) {
|
|
myPoles->ChangeValue(UIndex, vpol).ChangeCoord() *= 0.5;
|
|
}
|
|
}
|
|
|
|
// (3.2) Elimination en V
|
|
for ( VIndex = myVDegree+1, ii=2;
|
|
ii< myVKnots->Length();
|
|
ii++, VIndex += myVDegree) {
|
|
for (upol = 1; upol<=myPoles->UpperRow(); upol++) {
|
|
myPoles->ChangeValue(upol, VIndex).ChangeCoord() *= 0.5;
|
|
}
|
|
}
|
|
|
|
// (4) Init des multiplicites
|
|
myUMults = new (TColStd_HArray1OfInteger) (1, myUKnots->Length());
|
|
myUMults->Init( myUDegree);
|
|
myUMults->SetValue(1, myUDegree+1);
|
|
myUMults->SetValue( myUMults->Upper(), myUDegree+1);
|
|
|
|
myVMults = new (TColStd_HArray1OfInteger) (1, myVKnots->Length());
|
|
myVMults->Init( myVDegree);
|
|
myVMults->SetValue(1, myVDegree+1);
|
|
myVMults->SetValue(myVMults->Upper(), myVDegree+1);
|
|
}
|
|
|
|
// ========================================================================
|
|
Standard_Boolean GeomConvert_CompBezierSurfacesToBSplineSurface::IsDone() const
|
|
// ========================================================================
|
|
{
|
|
return myDone;
|
|
}
|
|
|