1
0
mirror of https://git.dev.opencascade.org/repos/occt.git synced 2025-07-30 13:05:50 +03:00
occt/src/BlendFunc/BlendFunc_CSCircular.cxx
abv d5f74e42d6 0024624: Lost word in license statement in source files
License statement text corrected; compiler warnings caused by Bison 2.41 disabled for MSVC; a few other compiler warnings on 54-bit Windows eliminated by appropriate type cast
Wrong license statements corrected in several files.
Copyright and license statements added in XSD and GLSL files.
Copyright year updated in some files.
Obsolete documentation files removed from DrawResources.
2014-02-20 16:15:17 +04:00

1062 lines
29 KiB
C++

// Created on: 1995-01-04
// Created by: Jacques GOUSSARD
// Copyright (c) 1995-1999 Matra Datavision
// Copyright (c) 1999-2014 OPEN CASCADE SAS
//
// This file is part of Open CASCADE Technology software library.
//
// This library is free software; you can redistribute it and/or modify it under
// the terms of the GNU Lesser General Public License version 2.1 as published
// by the Free Software Foundation, with special exception defined in the file
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
// distribution for complete text of the license and disclaimer of any warranty.
//
// Alternatively, this file may be used under the terms of Open CASCADE
// commercial license or contractual agreement.
// Modified 10/09/1996 PMN Ajout de (Nb)Intervalles, IsRationnal
// + Utilisation de GeomFill::GetCircle dans Section.
// Modified 23/06/1997 PMN : Pb de division par 0.
#include <BlendFunc_CSCircular.ixx>
#include <math_Gauss.hxx>
#include <ElCLib.hxx>
#include <gp.hxx>
#include <BlendFunc.hxx>
#include <GeomFill.hxx>
#include <Standard_NotImplemented.hxx>
#include <Standard_DomainError.hxx>
#include <Precision.hxx>
#define Eps 1.e-15
//=======================================================================
//function : BlendFunc_CSCircular
//purpose :
//=======================================================================
BlendFunc_CSCircular::BlendFunc_CSCircular(const Handle(Adaptor3d_HSurface)& S,
const Handle(Adaptor3d_HCurve)& C,
const Handle(Adaptor3d_HCurve)& CGuide,
const Handle(Law_Function)& L) :
surf(S),curv(C),guide(CGuide),law(L),istangent(Standard_True),
//prmc, dprmc, istangent, ray, choix, normtg,
maxang(RealFirst()),minang(RealLast()),mySShape(BlendFunc_Rational)
//myTConv
{
law = L;
}
//=======================================================================
//function : NbVariables
//purpose :
//=======================================================================
Standard_Integer BlendFunc_CSCircular::NbVariables () const
{
return 2;
}
//=======================================================================
//function : NbEquations
//purpose :
//=======================================================================
Standard_Integer BlendFunc_CSCircular::NbEquations () const
{
return 2;
}
//=======================================================================
//function : Set
//purpose :
//=======================================================================
void BlendFunc_CSCircular::Set(const Standard_Real Radius, const Standard_Integer Choix)
{
choix = Choix;
switch (Choix)
{
case 3 :
case 4 :
ray = Abs(Radius);
break;
default :
ray = -Abs(Radius);
break;
}
}
//=======================================================================
//function : Set
//purpose :
//=======================================================================
void BlendFunc_CSCircular::Set(const BlendFunc_SectionShape TypeSection)
{
mySShape = TypeSection;
}
//=======================================================================
//function : Set
//purpose :
//=======================================================================
void BlendFunc_CSCircular::Set(const Standard_Real Param)
{
gp_Pnt ptgui;
guide->D2(Param,ptgui,d1gui,d2gui);
law->D1(Param,prmc,dprmc);
normtg = d1gui.Magnitude();
nplan = d1gui.Normalized();
}
//=======================================================================
//function : Set
//purpose :
//=======================================================================
void BlendFunc_CSCircular::Set(const Standard_Real, const Standard_Real)
{
Standard_NotImplemented::Raise("BlendFunc_CSCircular::Set");
}
//=======================================================================
//function : GetTolerance
//purpose :
//=======================================================================
void BlendFunc_CSCircular::GetTolerance(math_Vector& Tolerance, const Standard_Real Tol) const
{
Tolerance(1) = surf->UResolution(Tol);
Tolerance(2) = surf->VResolution(Tol);
}
//=======================================================================
//function : GetBounds
//purpose :
//=======================================================================
void BlendFunc_CSCircular::GetBounds(math_Vector& InfBound, math_Vector& SupBound) const
{
InfBound(1) = surf->FirstUParameter();
InfBound(2) = surf->FirstVParameter();
SupBound(1) = surf->LastUParameter();
SupBound(2) = surf->LastVParameter();
if(!Precision::IsInfinite(InfBound(1)) &&
!Precision::IsInfinite(SupBound(1))) {
const Standard_Real range = (SupBound(1) - InfBound(1));
InfBound(1) -= range;
SupBound(1) += range;
}
if(!Precision::IsInfinite(InfBound(2)) &&
!Precision::IsInfinite(SupBound(2))) {
const Standard_Real range = (SupBound(2) - InfBound(2));
InfBound(2) -= range;
SupBound(2) += range;
}
}
//=======================================================================
//function : IsSolution
//purpose :
//=======================================================================
Standard_Boolean BlendFunc_CSCircular::IsSolution(const math_Vector& Sol, const Standard_Real Tol)
{
math_Vector valsol(1,2),secmember(1,2);
math_Matrix gradsol(1,2,1,2);
gp_Vec dnplan,d1u1,d1v1,d1c,d2c,temp,ns,ncrossns,resul,nc;
Standard_Real norm,ndotns,grosterme;
Standard_Real Cosa,Sina,Angle;
Values(Sol,valsol,gradsol);
if (Abs(valsol(1)) <= Tol &&
Abs(valsol(2)) <= Tol*Tol) {
// Calcul des tangentes
pt2d = gp_Pnt2d(Sol(1),Sol(2));
surf->D1(Sol(1),Sol(2),pts,d1u1,d1v1);
curv->D2(prmc,ptc,d1c,d2c);
dnplan.SetLinearForm(1./normtg,d2gui,
-1./normtg*(nplan.Dot(d2gui)),nplan);
ns = d1u1.Crossed(d1v1);
ncrossns = nplan.Crossed(ns);
ndotns = nplan.Dot(ns);
norm = ncrossns.Magnitude();
if (norm < Eps) {
norm = 1.;
//#if DEB
// cout << "CSCircular : Surface singuliere !" << endl;
//#endif
}
temp.SetXYZ(pts.XYZ() - ptc.XYZ());
secmember(1) = dprmc*(nplan.Dot(d1c)) - dnplan.Dot(temp);
grosterme = ncrossns.Dot(dnplan.Crossed(ns))/norm/norm;
temp.SetLinearForm(ray/norm*(dnplan.Dot(ns)-grosterme*ndotns),nplan,
ray*ndotns/norm,dnplan,
ray*grosterme/norm,ns);
temp -= dprmc*d1c;
ns.SetLinearForm(ndotns/norm,nplan, -1./norm,ns);
resul.SetLinearForm(ray,ns,gp_Vec(ptc,pts));
secmember(2) = -2.*(resul.Dot(temp));
math_Gauss Resol(gradsol);
if (Resol.IsDone()) {
Resol.Solve(secmember);
tgs.SetLinearForm(secmember(1),d1u1,secmember(2),d1v1);
tgc = dprmc*d1c;
tg2d.SetCoord(secmember(1),secmember(2));
istangent = Standard_False;
}
else {
istangent = Standard_True;
}
// mise a jour de maxang
if(ray > 0.) ns.Reverse();
nc = -resul.Normalized();
Cosa = ns.Dot(nc);
Sina = nplan.Dot(ns.Crossed(nc));
if (choix%2 != 0) {
Sina = -Sina; //nplan est change en -nplan
}
Angle = ACos(Cosa);
if (Sina <0.) {
Angle = 2.*M_PI - Angle;
}
if (Angle>maxang) {maxang = Angle;}
if (Angle<minang) {minang = Angle;}
return Standard_True;
}
istangent = Standard_True;
return Standard_False;
}
//=======================================================================
//function : Value
//purpose :
//=======================================================================
Standard_Boolean BlendFunc_CSCircular::Value(const math_Vector& X, math_Vector& F)
{
gp_Vec d1u1,d1v1,d1c;
surf->D1(X(1),X(2),pts,d1u1,d1v1);
curv->D1(prmc,ptc,d1c);
F(1) = nplan.XYZ().Dot(pts.XYZ()-ptc.XYZ());
gp_Vec ns = d1u1.Crossed(d1v1);
Standard_Real norm = nplan.Crossed(ns).Magnitude();
if (norm < Eps) {
norm = 1.;
//#if DEB
// cout << "CSCircular : Surface singuliere !" << endl;
//#endif
}
ns.SetLinearForm(nplan.Dot(ns)/norm,nplan, -1./norm,ns);
gp_Vec vref;
vref.SetLinearForm(ray,ns,gp_Vec(ptc,pts));
F(2) = vref.SquareMagnitude() - ray*ray;
pt2d = gp_Pnt2d(X(1),X(2));
return Standard_True;
}
//=======================================================================
//function : Derivatives
//purpose :
//=======================================================================
Standard_Boolean BlendFunc_CSCircular::Derivatives(const math_Vector& X, math_Matrix& D)
{
gp_Vec d1u1,d1v1,d2u1,d2v1,d2uv1,d1c;
gp_Vec ns,ncrossns,resul,temp,nsov,vref;
Standard_Real norm,ndotns,grosterme;
surf->D2(X(1),X(2),pts,d1u1,d1v1,d2u1,d2v1,d2uv1);
curv->D1(prmc,ptc,d1c);
D(1,1) = nplan.Dot(d1u1);
D(1,2) = nplan.Dot(d1v1);
ns = d1u1.Crossed(d1v1);
ncrossns = nplan.Crossed(ns);
norm = ncrossns.Magnitude();
if (norm < Eps) {
norm = 1.;
//#if DEB
// cout << "CSCircular : Surface singuliere !" << endl;
//#endif
}
ndotns = nplan.Dot(ns);
nsov.SetLinearForm(nplan.Dot(ns)/norm,nplan, -1./norm,ns);
vref.SetLinearForm(ray,nsov,gp_Vec(ptc,pts));
// Derivee par rapport a u de Ps + ray*ns
temp = d2u1.Crossed(d1v1).Added(d1u1.Crossed(d2uv1));
grosterme = ncrossns.Dot(nplan.Crossed(temp))/norm/norm;
resul.SetLinearForm(-ray/norm*(grosterme*ndotns-nplan.Dot(temp)),nplan,
ray*grosterme/norm,ns,
-ray/norm,temp,
d1u1);
D(2,1) = 2.*(resul.Dot(vref));
// Derivee par rapport a v
temp = d2uv1.Crossed(d1v1).Added(d1u1.Crossed(d2v1));
grosterme = ncrossns.Dot(nplan.Crossed(temp))/norm/norm;
resul.SetLinearForm(-ray/norm*(grosterme*ndotns-nplan.Dot(temp)),nplan,
ray*grosterme/norm,ns,
-ray/norm,temp,
d1v1);
D(2,2) = 2.*(resul.Dot(vref));
pt2d = gp_Pnt2d(X(1),X(2));
return Standard_True;
}
//=======================================================================
//function : Values
//purpose :
//=======================================================================
Standard_Boolean BlendFunc_CSCircular::Values(const math_Vector& X, math_Vector& F, math_Matrix& D)
{
gp_Vec d1u1,d1v1,d1c;
gp_Vec d2u1,d2v1,d2uv1;
gp_Vec ns,ncrossns,resul,temp,vref,nsov;
Standard_Real norm,ndotns,grosterme;
surf->D2(X(1),X(2),pts,d1u1,d1v1,d2u1,d2v1,d2uv1);
curv->D1(prmc,ptc,d1c);
ns = d1u1.Crossed(d1v1);
ncrossns = nplan.Crossed(ns);
norm = ncrossns.Magnitude();
if (norm < Eps) {
norm = 1.;
//#if DEB
// cout << "CSCircular : Surface singuliere !" << endl;
//#endif
}
ndotns = nplan.Dot(ns);
nsov.SetLinearForm(ndotns/norm,nplan,-1./norm,ns);
vref.SetLinearForm(ray,nsov,gp_Vec(ptc,pts));
F(1) = nplan.XYZ().Dot(pts.XYZ()-ptc.XYZ());
F(2) = vref.SquareMagnitude() - ray*ray;
D(1,1) = nplan.Dot(d1u1);
D(1,2) = nplan.Dot(d1v1);
// Derivee par rapport a u
temp = d2u1.Crossed(d1v1).Added(d1u1.Crossed(d2uv1));
grosterme = ncrossns.Dot(nplan.Crossed(temp))/norm/norm;
resul.SetLinearForm(-ray/norm*(grosterme*ndotns-nplan.Dot(temp)),nplan,
ray*grosterme/norm,ns,
-ray/norm,temp,
d1u1);
D(2,1) = 2.*(resul.Dot(vref));
// Derivee par rapport a v
temp = d2uv1.Crossed(d1v1).Added(d1u1.Crossed(d2v1));
grosterme = ncrossns.Dot(nplan.Crossed(temp))/norm/norm;
resul.SetLinearForm(-ray/norm*(grosterme*ndotns-nplan.Dot(temp)),nplan,
ray*grosterme/norm,ns,
-ray/norm,temp,
d1v1);
D(2,2) = 2.*(resul.Dot(vref));
pt2d = gp_Pnt2d(X(1),X(2));
return Standard_True;
}
//=======================================================================
//function : PointOnS
//purpose :
//=======================================================================
const gp_Pnt& BlendFunc_CSCircular::PointOnS () const
{
return pts;
}
//=======================================================================
//function : PointOnC
//purpose :
//=======================================================================
const gp_Pnt& BlendFunc_CSCircular::PointOnC () const
{
return ptc;
}
//=======================================================================
//function : Pnt2d
//purpose :
//=======================================================================
const gp_Pnt2d& BlendFunc_CSCircular::Pnt2d () const
{
return pt2d;
}
//=======================================================================
//function : ParameterOnC
//purpose :
//=======================================================================
Standard_Real BlendFunc_CSCircular::ParameterOnC () const
{
return prmc;
}
//=======================================================================
//function : IsTangencyPoint
//purpose :
//=======================================================================
Standard_Boolean BlendFunc_CSCircular::IsTangencyPoint () const
{
return istangent;
}
//=======================================================================
//function : TangentOnS
//purpose :
//=======================================================================
const gp_Vec& BlendFunc_CSCircular::TangentOnS () const
{
if (istangent)
Standard_DomainError::Raise("BlendFunc_CSCircular::TangentOnS");
return tgs;
}
//=======================================================================
//function : TangentOnC
//purpose :
//=======================================================================
const gp_Vec& BlendFunc_CSCircular::TangentOnC () const
{
if (istangent)
Standard_DomainError::Raise("BlendFunc_CSCircular::TangentOnC");
return tgc;
}
//=======================================================================
//function : Tangent2d
//purpose :
//=======================================================================
const gp_Vec2d& BlendFunc_CSCircular::Tangent2d () const
{
if (istangent)
Standard_DomainError::Raise("BlendFunc_CSCircular::Tangent2d");
return tg2d;
}
//=======================================================================
//function : Tangent
//purpose :
//=======================================================================
void BlendFunc_CSCircular::Tangent(const Standard_Real U, const Standard_Real V,
gp_Vec& TgS, gp_Vec& NmS) const
{
gp_Pnt bid;
gp_Vec d1u,d1v,ns;
surf->D1(U,V,bid,d1u,d1v);
NmS = ns = d1u.Crossed(d1v);
const Standard_Real norm = nplan.Crossed(ns).Magnitude();
ns.SetLinearForm(nplan.Dot(ns)/norm,nplan, -1./norm,ns);
if(ray > 0.) ns.Reverse();
TgS = nplan.Crossed(ns);
if (choix%2 == 1)
TgS.Reverse();
}
//=======================================================================
//function : Section
//purpose :
//=======================================================================
void BlendFunc_CSCircular::Section(const Standard_Real Param,
const Standard_Real U,
const Standard_Real V,
const Standard_Real W,
Standard_Real& Pdeb,
Standard_Real& Pfin,
gp_Circ& C)
{
gp_Vec d1u1,d1v1;
gp_Vec ns;//,temp;
Standard_Real norm;
gp_Pnt Center;
gp_Pnt ptgui;
guide->D1(Param,ptgui,d1gui);
nplan = d1gui.Normalized();
surf->D1(U,V,pts,d1u1,d1v1);
ptc = curv->Value(W);
ns = d1u1.Crossed(d1v1);
norm = nplan.Crossed(ns).Magnitude();
ns.SetLinearForm(nplan.Dot(ns)/norm,nplan, -1./norm,ns);
Center.SetXYZ(pts.XYZ()+ray*ns.XYZ());
C.SetRadius(Abs(ray));
if(ray > 0.) ns.Reverse();
if (choix%2 == 0) {
C.SetPosition(gp_Ax2(Center,nplan,ns));
}
else {
C.SetPosition(gp_Ax2(Center,nplan.Reversed(),ns));
}
Pdeb = 0.;
Pfin = ElCLib::Parameter(C,ptc);
}
Standard_Boolean BlendFunc_CSCircular::Section(const Blend_Point& P,
TColgp_Array1OfPnt& Poles,
TColgp_Array1OfVec& DPoles,
TColgp_Array1OfVec& D2Poles,
TColgp_Array1OfPnt2d& Poles2d,
TColgp_Array1OfVec2d& DPoles2d,
TColgp_Array1OfVec2d& D2Poles2d,
TColStd_Array1OfReal& Weigths,
TColStd_Array1OfReal& DWeigths,
TColStd_Array1OfReal& D2Weigths)
{
return Blend_CSFunction::Section(P,Poles,DPoles,D2Poles,Poles2d,DPoles2d,D2Poles2d,Weigths,DWeigths,D2Weigths);
}
//=======================================================================
//function : GetSection
//purpose :
//=======================================================================
Standard_Boolean BlendFunc_CSCircular::GetSection(const Standard_Real Param,
const Standard_Real U,
const Standard_Real V,
const Standard_Real /*W*/,
TColgp_Array1OfPnt& tabP,
TColgp_Array1OfVec& tabV)
{
Standard_Integer NbPoint=tabP.Length();
if (NbPoint != tabV.Length() || NbPoint < 2) {Standard_RangeError::Raise();}
Standard_Integer i, lowp = tabP.Lower(), lowv = tabV.Lower();
gp_Vec d1u1,d1v1,d2u1,d2v1,d2uv1,d1c,d2c; //,d1u2,d1v2;
gp_Vec ns,dnplan,dnw,dn2w,ncrn,dncrn,ns2;
gp_Vec ncrossns,resul;
gp_Vec resulu,resulv,temp;
Standard_Real norm,ndotns,grosterme;
Standard_Real lambda,Cosa,Sina;
Standard_Real Angle = 0.,Dangle = 0.;
math_Vector sol(1,2),valsol(1,2),secmember(1,2);
math_Matrix gradsol(1,2,1,2);
Set(Param);
dnplan.SetLinearForm(1./normtg,d2gui,
-1./normtg*(nplan.Dot(d2gui)),nplan);
curv->D2(prmc,ptc,d1c,d2c);
surf->D2(U,V,pts,d1u1,d1v1,d2u1,d2v1,d2uv1);
ns = d1u1.Crossed(d1v1);
ncrossns = nplan.Crossed(ns);
ndotns = nplan.Dot(ns);
norm = ncrossns.Magnitude();
temp.SetXYZ(pts.XYZ() - ptc.XYZ());
secmember(1) = dprmc*(nplan.Dot(d1c)) - dnplan.Dot(temp);
ns2.SetLinearForm(ndotns/norm,nplan, -1./norm,ns);
// Derivee de n1 par rapport a w (param sur ligne guide)
grosterme = ncrossns.Dot(dnplan.Crossed(ns))/norm/norm;
dnw.SetLinearForm((dnplan.Dot(ns)-grosterme*ndotns)/norm,nplan,
ndotns/norm,dnplan,
grosterme/norm,ns);
temp.SetLinearForm(ray,dnw,-dprmc,d1c);
resul.SetLinearForm(ray,ns2,gp_Vec(ptc,pts));
secmember(2) = -2.*(resul.Dot(temp));
sol(1) = U; sol(2) = V;
Values(sol,valsol,gradsol);
math_Gauss Resol(gradsol);
if (Resol.IsDone()) {
Resol.Solve(secmember);
tgs.SetLinearForm(secmember(1),d1u1,secmember(2),d1v1);
tgc = dprmc*d1c;
// Derivee de n1 par rapport a u1
temp = d2u1.Crossed(d1v1).Added(d1u1.Crossed(d2uv1));
grosterme = ncrossns.Dot(nplan.Crossed(temp))/norm/norm;
resulu.SetLinearForm(-(grosterme*ndotns-nplan.Dot(temp))/norm,nplan,
grosterme/norm,ns,
-1./norm,temp);
// Derivee de n1 par rapport a v1
temp = d2uv1.Crossed(d1v1).Added(d1u1.Crossed(d2v1));
grosterme = ncrossns.Dot(nplan.Crossed(temp))/norm/norm;
resulv.SetLinearForm(-(grosterme*ndotns-nplan.Dot(temp))/norm,nplan,
grosterme/norm,ns,
-1./norm,temp);
dnw.SetLinearForm(secmember(1),resulu,secmember(2),resulv,dnw);
ns = ns2;
dn2w.SetLinearForm(ray, dnw, -1., tgc, tgs);
norm = resul.Magnitude();
dn2w.Divide(norm);
ns2 = -resul.Normalized();
dn2w.SetLinearForm(ns2.Dot(dn2w),ns2,-1.,dn2w);
if(ray > 0.) {
ns.Reverse();
dnw.Reverse();
}
if (choix%2 != 0) {
nplan.Reverse();
dnplan.Reverse();
}
tabP(lowp) = pts;
tabP(lowp+NbPoint-1) = ptc;
tabV(lowv) = tgs;
tabV(lowv+NbPoint-1) = tgc;
if (NbPoint >2) {
Cosa = ns.Dot(ns2);
Sina = nplan.Dot(ns.Crossed(ns2));
Angle = ACos(Cosa);
if (Sina <0.) {
Angle = 2.*M_PI - Angle;
}
Dangle = -(dnw.Dot(ns2) + ns.Dot(dn2w))/Sina;
ncrn = nplan.Crossed(ns);
dncrn = dnplan.Crossed(ns).Added(nplan.Crossed(dnw));
}
for (i=2; i <= NbPoint-1; i++) {
lambda = (Standard_Real)(i-1)/(Standard_Real)(NbPoint-1);
Cosa = Cos(lambda*Angle);
Sina = Sin(lambda*Angle);
tabP(lowp+i-1).SetXYZ(pts.XYZ()
+Abs(ray)*((Cosa-1)*ns.XYZ() + Sina*ncrn.XYZ()));
temp.SetLinearForm(-Sina,ns,Cosa,ncrn);
temp.Multiply(lambda*Dangle);
temp.Add(((Cosa-1)*dnw).Added(Sina*dncrn));
temp.Multiply(Abs(ray));
temp.Add(tgs);
tabV(lowv+i-1)= temp;
}
return Standard_True;
}
return Standard_False;
}
//=======================================================================
//function : IsRational
//purpose :
//=======================================================================
Standard_Boolean BlendFunc_CSCircular::IsRational() const
{
return (mySShape==BlendFunc_Rational || mySShape==BlendFunc_QuasiAngular);
}
//=======================================================================
//function : GetSectionSize
//purpose :
//=======================================================================
Standard_Real BlendFunc_CSCircular::GetSectionSize() const
{
return maxang*Abs(ray);
}
//=======================================================================
//function : GetMinimalWeight
//purpose :
//=======================================================================
void BlendFunc_CSCircular::GetMinimalWeight(TColStd_Array1OfReal& Weigths) const
{
BlendFunc::GetMinimalWeights(mySShape, myTConv,minang,maxang,Weigths);
// On suppose que cela ne depend pas du Rayon!
}
//=======================================================================
//function : NbIntervals
//purpose :
//=======================================================================
Standard_Integer BlendFunc_CSCircular::NbIntervals (const GeomAbs_Shape S) const
{
return curv->NbIntervals(BlendFunc::NextShape(S));
}
//=======================================================================
//function : Intervals
//purpose :
//=======================================================================
void BlendFunc_CSCircular::Intervals (TColStd_Array1OfReal& T, const GeomAbs_Shape S) const
{
curv->Intervals(T, BlendFunc::NextShape(S));
}
//=======================================================================
//function : GetShape
//purpose :
//=======================================================================
void BlendFunc_CSCircular::GetShape (Standard_Integer& NbPoles,
Standard_Integer& NbKnots,
Standard_Integer& Degree,
Standard_Integer& NbPoles2d)
{
NbPoles2d = 1;
BlendFunc::GetShape(mySShape,maxang,NbPoles,NbKnots,Degree,myTConv);
}
//=======================================================================
//function : GetTolerance
//purpose : Determine les Tolerances a utiliser dans les approximations.
//=======================================================================
void BlendFunc_CSCircular::GetTolerance(const Standard_Real BoundTol,
const Standard_Real SurfTol,
const Standard_Real AngleTol,
math_Vector& Tol3d,
math_Vector& Tol1d) const
{
const Standard_Integer low = Tol3d.Lower();
const Standard_Integer up = Tol3d.Upper();
const Standard_Real Tol = GeomFill::GetTolerance(myTConv, minang, ray, AngleTol, SurfTol);
Tol1d.Init(SurfTol);
Tol3d.Init(SurfTol);
Tol3d(low+1) = Tol3d(up-1) = Min( Tol, SurfTol);
Tol3d(low) = Tol3d(up) = Min( Tol, BoundTol);
}
//=======================================================================
//function : Knots
//purpose :
//=======================================================================
void BlendFunc_CSCircular::Knots(TColStd_Array1OfReal& TKnots)
{
GeomFill::Knots(myTConv,TKnots);
}
//=======================================================================
//function : Mults
//purpose :
//=======================================================================
void BlendFunc_CSCircular::Mults(TColStd_Array1OfInteger& TMults)
{
GeomFill::Mults(myTConv,TMults);
}
//=======================================================================
//function : Section
//purpose :
//=======================================================================
void BlendFunc_CSCircular::Section(const Blend_Point& P,
TColgp_Array1OfPnt& Poles,
TColgp_Array1OfPnt2d& Poles2d,
TColStd_Array1OfReal& Weights)
{
gp_Vec d1u1,d1v1;//,d1;
gp_Vec ns,ns2;//,temp,np2;
gp_Pnt Center;
Standard_Real norm,u1,v1;
Standard_Real prm = P.Parameter();
Standard_Integer low = Poles.Lower();
Standard_Integer upp = Poles.Upper();
Set(prm);
P.ParametersOnS(u1,v1);
surf->D1(u1,v1,pts,d1u1,d1v1);
ptc = curv->Value(prmc);
Poles2d(Poles2d.Lower()).SetCoord(u1,v1);
// Cas Linear
if (mySShape == BlendFunc_Linear) {
Poles(low) = pts;
Poles(upp) = ptc;
Weights(low) = 1.0;
Weights(upp) = 1.0;
return;
}
ns = d1u1.Crossed(d1v1);
norm = nplan.Crossed(ns).Magnitude();
ns.SetLinearForm(nplan.Dot(ns)/norm,nplan, -1./norm,ns);
Center.SetXYZ(pts.XYZ()+ray*ns.XYZ());
ns2 = gp_Vec(Center,ptc).Normalized();
if(ray > 0.) ns.Reverse();
if (choix%2 != 0) {
nplan.Reverse();
}
GeomFill::GetCircle(myTConv,
ns, ns2,
nplan, pts, ptc,
Abs(ray), Center,
Poles, Weights);
}
//=======================================================================
//function : Section
//purpose :
//=======================================================================
Standard_Boolean BlendFunc_CSCircular::Section
(const Blend_Point& P,
TColgp_Array1OfPnt& Poles,
TColgp_Array1OfVec& DPoles,
TColgp_Array1OfPnt2d& Poles2d,
TColgp_Array1OfVec2d& DPoles2d,
TColStd_Array1OfReal& Weights,
TColStd_Array1OfReal& DWeights)
{
gp_Vec d1u1,d1v1,d2u1,d2v1,d2uv1,d1,d2;
gp_Vec ns,ns2,dnplan,dnw,dn2w; //,np2,dnp2;
gp_Vec ncrossns;;
gp_Vec resulu,resulv,temp,tgct,resul;
gp_Pnt Center;
Standard_Real norm,ndotns,grosterme;;
math_Vector sol(1,2),valsol(1,2),secmember(1,2);
math_Matrix gradsol(1,2,1,2);
Standard_Real prm = P.Parameter();
Standard_Integer low = Poles.Lower();
Standard_Integer upp = Poles.Upper();
Standard_Boolean istgt;
Set(prm);
dnplan.SetLinearForm(1./normtg,d2gui,
-1./normtg*(nplan.Dot(d2gui)),nplan);
curv->D2(prmc,ptc,d1,d2);
P.ParametersOnS(sol(1),sol(2));
surf->D2(sol(1),sol(2),pts,d1u1,d1v1,d2u1,d2v1,d2uv1);
ns = d1u1.Crossed(d1v1);
ncrossns = nplan.Crossed(ns);
ndotns = nplan.Dot(ns);
norm = ncrossns.Magnitude();
ns2.SetLinearForm(ndotns/norm,nplan, -1./norm,ns);
temp.SetXYZ(pts.XYZ() - ptc.XYZ());
secmember(1) = dprmc*(nplan.Dot(d1)) - dnplan.Dot(temp);
// Derivee de n1 par rapport a w
grosterme = ncrossns.Dot(dnplan.Crossed(ns))/norm/norm;
dnw.SetLinearForm((dnplan.Dot(ns)-grosterme*ndotns)/norm,nplan,
ndotns/norm,dnplan,
grosterme/norm,ns);
temp.SetLinearForm(ray,dnw,-dprmc,d1);
resul.SetLinearForm(ray,ns2,gp_Vec(ptc,pts));
secmember(2) = -2.*(resul.Dot(temp));
Values(sol,valsol,gradsol);
math_Gauss Resol(gradsol);
if (Resol.IsDone()) {
Resol.Solve(secmember);
tgs.SetLinearForm(secmember(1),d1u1,secmember(2),d1v1);
tgc = dprmc*d1;
// Derivee de n1 par rapport a u1
temp = d2u1.Crossed(d1v1).Added(d1u1.Crossed(d2uv1));
grosterme = ncrossns.Dot(nplan.Crossed(temp))/norm/norm;
resulu.SetLinearForm(-(grosterme*ndotns-nplan.Dot(temp))/norm,nplan,
grosterme/norm,ns,
-1./norm,temp);
// Derivee de n1 par rapport a v1
temp = d2uv1.Crossed(d1v1).Added(d1u1.Crossed(d2v1));
grosterme = ncrossns.Dot(nplan.Crossed(temp))/norm/norm;
resulv.SetLinearForm(-(grosterme*ndotns-nplan.Dot(temp))/norm,nplan,
grosterme/norm,ns,
-1./norm,temp);
dnw.SetLinearForm(secmember(1),resulu,secmember(2),resulv,dnw);
ns = ns2;
dn2w.SetLinearForm(ray, dnw,-1., tgc, tgs);
norm = resul.Magnitude();
dn2w.Divide(norm);
ns2 = -resul.Normalized();
dn2w.SetLinearForm(ns2.Dot(dn2w),ns2,-1.,dn2w);
istgt = Standard_False;
}
else {
ns.SetLinearForm(ndotns/norm,nplan, -1./norm,ns);
ns2 = -resul.Normalized();
istgt = Standard_True;
}
// Les poles 2d
Poles2d(Poles2d.Lower()).SetCoord(sol(1),sol(2));
if (!istgt) {
DPoles2d(Poles2d.Lower()).SetCoord(secmember(1),secmember(2));
}
if (mySShape == BlendFunc_Linear) {
Poles(low) = pts;
Poles(upp) = ptc;
Weights(low) = 1.0;
Weights(upp) = 1.0;
if (!istgt) {
DPoles(low) = tgs;
DPoles(upp) = tgc;
DWeights(low) = 0.0;
DWeights(upp) = 0.0;
}
return (!istgt);
}
// Cas du cercle
Center.SetXYZ(pts.XYZ()+ray*ns.XYZ());
if (!istgt) {
tgct = tgs.Added(ray*dnw);
}
if(ray > 0.) {
ns.Reverse();
if(!istgt) { dnw.Reverse(); }
}
if (choix%2 != 0) {
nplan.Reverse();
dnplan.Reverse();
}
if (!istgt) {
return GeomFill::GetCircle(myTConv,
ns, ns2,
dnw, dn2w,
nplan, dnplan,
pts, ptc,
tgs, tgc,
Abs(ray), 0,
Center, tgct,
Poles,
DPoles,
Weights,
DWeights);
}
else {
GeomFill::GetCircle(myTConv,
ns, ns2,
nplan, pts, ptc,
Abs(ray), Center,
Poles, Weights);
return Standard_False;
}
}
void BlendFunc_CSCircular::Resolution(const Standard_Integer , const Standard_Real Tol,
Standard_Real& TolU, Standard_Real& TolV) const
{
TolU = surf->UResolution(Tol);
TolV = surf->VResolution(Tol);
}