mirror of
https://git.dev.opencascade.org/repos/occt.git
synced 2025-04-04 18:06:22 +03:00
480 lines
15 KiB
C++
480 lines
15 KiB
C++
// Created on: 1997-11-04
|
|
// Created by: Roman BORISOV / Igor FEOKTISTOV
|
|
// Copyright (c) 1997-1999 Matra Datavision
|
|
// Copyright (c) 1999-2014 OPEN CASCADE SAS
|
|
//
|
|
// This file is part of Open CASCADE Technology software library.
|
|
//
|
|
// This library is free software; you can redistribute it and/or modify it under
|
|
// the terms of the GNU Lesser General Public License version 2.1 as published
|
|
// by the Free Software Foundation, with special exception defined in the file
|
|
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
|
|
// distribution for complete text of the license and disclaimer of any warranty.
|
|
//
|
|
// Alternatively, this file may be used under the terms of Open CASCADE
|
|
// commercial license or contractual agreement.
|
|
|
|
#define No_Standard_RangeError
|
|
#define No_Standard_OutOfRange
|
|
|
|
|
|
#include <FEmTool_Curve.hxx>
|
|
#include <PLib.hxx>
|
|
#include <PLib_Base.hxx>
|
|
#include <PLib_HermitJacobi.hxx>
|
|
#include <PLib_JacobiPolynomial.hxx>
|
|
#include <Standard_DimensionError.hxx>
|
|
#include <Standard_Type.hxx>
|
|
|
|
IMPLEMENT_STANDARD_RTTIEXT(FEmTool_Curve,Standard_Transient)
|
|
|
|
//=======================================================================
|
|
//function : FEmTool_Curve
|
|
//purpose :
|
|
//=======================================================================
|
|
FEmTool_Curve::FEmTool_Curve(const Standard_Integer Dimension,
|
|
const Standard_Integer NbElements,
|
|
const Handle(PLib_Base)& TheBase,
|
|
const Standard_Real) :
|
|
myNbElements(NbElements), myDimension(Dimension),
|
|
myBase(TheBase), myDegree(1, myNbElements),
|
|
myCoeff(1, myDimension*myNbElements*(myBase->WorkDegree() + 1)),
|
|
myPoly(1, myDimension*myNbElements*(myBase->WorkDegree() + 1)),
|
|
myDeri(1, myDimension*myNbElements*(myBase->WorkDegree())),
|
|
myDsecn(1, myDimension*myNbElements*(myBase->WorkDegree() - 1)),
|
|
HasPoly(1, myNbElements), HasDeri(1, myNbElements),
|
|
HasSecn(1, myNbElements), myLength(1, myNbElements),
|
|
myIndex(0)
|
|
{
|
|
myKnots = new TColStd_HArray1OfReal(1, myNbElements + 1);
|
|
myDegree.Init(myBase->WorkDegree());
|
|
HasPoly.Init(0);
|
|
HasDeri.Init(0);
|
|
HasSecn.Init(0);
|
|
myLength.Init(-1);
|
|
}
|
|
|
|
TColStd_Array1OfReal& FEmTool_Curve::Knots() const
|
|
{
|
|
return myKnots->ChangeArray1();
|
|
}
|
|
|
|
|
|
|
|
//=======================================================================
|
|
//function : SetElement
|
|
//purpose :
|
|
//=======================================================================
|
|
void FEmTool_Curve::SetElement(const Standard_Integer IndexOfElement,
|
|
const TColStd_Array2OfReal& Coeffs)
|
|
{
|
|
Standard_Integer i, j, degBase, deg;
|
|
if (IndexOfElement > myNbElements || IndexOfElement < 1) throw Standard_OutOfRange();
|
|
degBase = myBase->WorkDegree();
|
|
deg = myDegree(IndexOfElement);
|
|
Standard_Integer iBase = (IndexOfElement - 1)*(degBase + 1)*myDimension,
|
|
i1 = iBase-myDimension, i2 = Coeffs.LowerRow() - 1,
|
|
j1 = Coeffs.LowerCol() - 1;
|
|
for(i = 1; i <= deg + 1; i++) {
|
|
i1 += myDimension; i2++;
|
|
for(j = 1; j <= myDimension; j++)
|
|
myCoeff(i1 + j) = Coeffs(i2, j1 + j);
|
|
}
|
|
|
|
Standard_Real stenor = (myKnots->Value(IndexOfElement + 1) - myKnots->Value(IndexOfElement)) / 2.,
|
|
mfact;
|
|
Handle(PLib_HermitJacobi) myHermitJacobi = Handle(PLib_HermitJacobi)::DownCast (myBase);
|
|
|
|
i1 = iBase;
|
|
i2 = iBase + (myHermitJacobi->NivConstr() + 1) * myDimension;
|
|
for(i = 1; i <= myHermitJacobi->NivConstr(); i++) {
|
|
i1 += myDimension; i2 += myDimension;
|
|
mfact = Pow(stenor, i);
|
|
for(j = 1; j <= myDimension; j++) {
|
|
myCoeff(i1 + j) *= mfact;
|
|
myCoeff(i2 + j) *= mfact;
|
|
}
|
|
}
|
|
|
|
HasPoly(IndexOfElement) = HasDeri(IndexOfElement) = HasSecn(IndexOfElement) = 0;
|
|
myLength(IndexOfElement) = - 1;
|
|
}
|
|
|
|
|
|
//=======================================================================
|
|
//function : GetElement
|
|
//purpose :
|
|
//=======================================================================
|
|
void FEmTool_Curve::GetElement(const Standard_Integer IndexOfElement, TColStd_Array2OfReal& Coeffs)
|
|
{
|
|
Standard_Integer i, j, degBase, deg;
|
|
if (IndexOfElement > myNbElements || IndexOfElement < 1) throw Standard_OutOfRange();
|
|
degBase = myBase->WorkDegree();
|
|
deg = myDegree(IndexOfElement);
|
|
Standard_Integer iBase = (IndexOfElement - 1)*(degBase + 1)*myDimension,
|
|
i1 = iBase-myDimension, i2 = Coeffs.LowerRow() - 1,
|
|
j1 = Coeffs.LowerCol() - 1;
|
|
for(i = 1; i <= deg + 1; i++) {
|
|
i1 += myDimension; i2++;
|
|
for(j = 1; j <= myDimension; j++)
|
|
Coeffs(i2, j1 + j) = myCoeff.Value(i1 + j);
|
|
}
|
|
|
|
Standard_Real stenor = 2. / (myKnots->Value(IndexOfElement + 1) - myKnots->Value(IndexOfElement)),
|
|
mfact;
|
|
|
|
Handle(PLib_HermitJacobi) myHermitJacobi = Handle(PLib_HermitJacobi)::DownCast (myBase);
|
|
|
|
i2 = Coeffs.LowerRow();
|
|
Standard_Integer i3 = i2 + myHermitJacobi->NivConstr() + 1;
|
|
|
|
for(i = 1; i <= myHermitJacobi->NivConstr(); i++) {
|
|
mfact = Pow(stenor, i);
|
|
for(j = j1+1; j <= myDimension; j++) {
|
|
Coeffs(i2 + i, j) *= mfact;
|
|
Coeffs(i3 + i, j) *= mfact;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
//=======================================================================
|
|
//function : GetPolynom
|
|
//purpose :
|
|
//=======================================================================
|
|
void FEmTool_Curve::GetPolynom(TColStd_Array1OfReal& Coeffs)
|
|
|
|
{
|
|
Standard_Integer IndexOfElement, i, di = Coeffs.Lower() - myPoly.Lower();
|
|
|
|
|
|
for(IndexOfElement = 1; IndexOfElement <= myNbElements; IndexOfElement++)
|
|
if (!HasPoly.Value(IndexOfElement)) Update(IndexOfElement, 0);
|
|
|
|
for(i = myPoly.Lower(); i <= myPoly.Upper(); i++)
|
|
Coeffs(di + i) = myPoly(i);
|
|
|
|
}
|
|
|
|
|
|
//=======================================================================
|
|
//function : D0
|
|
//purpose :
|
|
//=======================================================================
|
|
void FEmTool_Curve::D0(const Standard_Real U, TColStd_Array1OfReal& Pnt)
|
|
{
|
|
Standard_Integer deg;
|
|
Standard_Real S;
|
|
|
|
if (!myIndex || (U<Uf) || (U>Ul) ||
|
|
(myKnots->Value(myIndex)!=Uf) ||
|
|
(myKnots->Value(myIndex+1)!=Ul)) {
|
|
// Search the span
|
|
if(U <= myKnots->Value(2)) myIndex = 1;
|
|
else {
|
|
for(myIndex = 2; myIndex <= myNbElements; myIndex++)
|
|
if(U >= myKnots->Value(myIndex) && U <= myKnots->Value(myIndex+1)) break;
|
|
if (myIndex > myNbElements) myIndex = myNbElements;
|
|
}
|
|
Uf = myKnots->Value(myIndex);
|
|
Ul = myKnots->Value(myIndex+1);
|
|
Denom = 1. /(Ul-Uf);
|
|
USum = Uf+Ul;
|
|
myPtr = (myIndex - 1)*(myBase->WorkDegree()+ 1)*myDimension + 1;
|
|
}
|
|
|
|
deg = myDegree(myIndex);
|
|
if (!HasPoly.Value(myIndex)) Update(myIndex, 0);
|
|
|
|
//Parameter normalization: S [-1, 1]
|
|
S = (2*U - USum)*Denom;
|
|
PLib::NoDerivativeEvalPolynomial(S, deg, myDimension, deg*myDimension,
|
|
myPoly(myPtr), Pnt(Pnt.Lower()));
|
|
}
|
|
|
|
|
|
//=======================================================================
|
|
//function : D1
|
|
//purpose :
|
|
//=======================================================================
|
|
void FEmTool_Curve::D1(const Standard_Real U, TColStd_Array1OfReal& Vec)
|
|
{
|
|
Standard_Integer deg, i;
|
|
Standard_Real S;
|
|
|
|
if (!myIndex || (U<Uf) || (U>Ul) ||
|
|
(myKnots->Value(myIndex)!=Uf) ||
|
|
(myKnots->Value(myIndex+1)!=Ul)) {
|
|
// Search the span
|
|
if(U <= myKnots->Value(2)) myIndex = 1;
|
|
else {
|
|
for(myIndex = 2; myIndex <= myNbElements; myIndex++)
|
|
if(U >= myKnots->Value(myIndex) && U <= myKnots->Value(myIndex+1)) break;
|
|
if (myIndex > myNbElements) myIndex = myNbElements;
|
|
}
|
|
Uf = myKnots->Value(myIndex);
|
|
Ul = myKnots->Value(myIndex+1);
|
|
Denom = 1. /(Ul-Uf);
|
|
USum = Uf+Ul;
|
|
myPtr = (myIndex - 1)*(myBase->WorkDegree()+ 1)*myDimension + 1;
|
|
}
|
|
|
|
deg = myDegree(myIndex);
|
|
if (!HasDeri.Value(myIndex)) Update(myIndex, 1);
|
|
|
|
//Parameter normalization: S [-1, 1]
|
|
S = (2*U - USum) * Denom;
|
|
PLib::NoDerivativeEvalPolynomial(S, deg-1, myDimension, (deg-1)*myDimension,
|
|
myDeri(1+(myIndex - 1)*myBase->WorkDegree()*
|
|
myDimension),
|
|
Vec(Vec.Lower()));
|
|
|
|
S = 2*Denom;
|
|
for(i=Vec.Lower(); i<=Vec.Upper(); i++) Vec(i) *= S;
|
|
}
|
|
|
|
|
|
|
|
//=======================================================================
|
|
//function : D2
|
|
//purpose :
|
|
//=======================================================================
|
|
void FEmTool_Curve::D2(const Standard_Real U, TColStd_Array1OfReal& Vec)
|
|
{
|
|
Standard_Integer deg, i;
|
|
Standard_Real S;
|
|
|
|
if (!myIndex || (U<Uf) || (U>Ul) ||
|
|
(myKnots->Value(myIndex)!=Uf) ||
|
|
(myKnots->Value(myIndex+1)!=Ul)) {
|
|
// Search the span
|
|
if(U <= myKnots->Value(2)) myIndex = 1;
|
|
else {
|
|
for(myIndex = 2; myIndex <= myNbElements; myIndex++)
|
|
if(U >= myKnots->Value(myIndex) && U <= myKnots->Value(myIndex+1)) break;
|
|
if (myIndex > myNbElements) myIndex = myNbElements;
|
|
}
|
|
Uf = myKnots->Value(myIndex);
|
|
Ul = myKnots->Value(myIndex+1);
|
|
Denom = 1. /(Ul-Uf);
|
|
USum = Uf+Ul;
|
|
myPtr = (myIndex - 1)*(myBase->WorkDegree()+ 1)*myDimension + 1;
|
|
}
|
|
|
|
deg = myDegree(myIndex);
|
|
if (!HasSecn.Value(myIndex)) Update(myIndex, 2);
|
|
|
|
//Parameter normalization: S [-1, 1]
|
|
S = (2*U - USum)*Denom;
|
|
PLib::NoDerivativeEvalPolynomial(S, deg-2, myDimension, (deg-2)*myDimension,
|
|
myDsecn(1+(myIndex - 1)*
|
|
(myBase->WorkDegree() - 1)*myDimension),
|
|
Vec(Vec.Lower()));
|
|
|
|
S = 4*Denom*Denom;
|
|
for(i=Vec.Lower(); i<=Vec.Upper(); i++) Vec(i) *= S;
|
|
}
|
|
|
|
|
|
|
|
//=======================================================================
|
|
//function : Length
|
|
//purpose :
|
|
//=======================================================================
|
|
void FEmTool_Curve::Length(const Standard_Real FirstU,
|
|
const Standard_Real LastU,
|
|
Standard_Real& Length)
|
|
{
|
|
Standard_Integer Low, High, deg, degBase, i, Ptr;
|
|
if(FirstU > LastU) throw Standard_OutOfRange("FEmTool_Curve::Length");
|
|
|
|
if(myKnots->Value(1) > FirstU) Low = 1;
|
|
else
|
|
for(Low = 1; Low <= myNbElements; Low++)
|
|
if(FirstU >= myKnots->Value(Low) && FirstU <= myKnots->Value(Low+1)) break;
|
|
if(Low > myNbElements) Low = myNbElements;
|
|
|
|
if(myKnots->Value(1) > LastU) High = 1;
|
|
else
|
|
for(High = Low; High <= myNbElements; High++)
|
|
if(LastU >= myKnots->Value(High) && LastU <= myKnots->Value(High+1)) break;
|
|
if(myKnots->Value(myNbElements + 1) < LastU) High = myNbElements;
|
|
|
|
Standard_Real Li;
|
|
degBase = myBase->WorkDegree();
|
|
Length = 0;
|
|
|
|
Standard_Real FirstS, LastS;
|
|
FirstS = (2*FirstU - myKnots->Value(Low) - myKnots->Value(Low + 1))/
|
|
(myKnots->Value(Low + 1) - myKnots->Value(Low));
|
|
LastS = (2*LastU - myKnots->Value(High) - myKnots->Value(High + 1))/
|
|
(myKnots->Value(High + 1) - myKnots->Value(High));
|
|
|
|
if(Low == High) {
|
|
|
|
Ptr = (Low - 1)*(degBase + 1)*myDimension + 1;
|
|
deg = myDegree(Low);
|
|
|
|
if(!HasPoly(Low)) Update(Low, 0);
|
|
PLib::EvalLength(deg, myDimension, myPoly(Ptr),
|
|
FirstS, LastS, Length);
|
|
return;
|
|
}
|
|
|
|
deg = myDegree(Low);
|
|
Ptr = (Low - 1)*(degBase + 1)*myDimension + 1;
|
|
|
|
if(!HasPoly(Low)) Update(Low, 0);
|
|
if(FirstS < -1.) {
|
|
PLib::EvalLength(deg, myDimension, myPoly(Ptr), FirstS, -1., Li);
|
|
Length += Li;
|
|
if(myLength(Low) < 0.) {
|
|
PLib::EvalLength(deg, myDimension, myPoly(Ptr), -1., 1.,Li);
|
|
myLength(Low) = Li;
|
|
}
|
|
Length += myLength(Low);
|
|
}
|
|
else {
|
|
PLib::EvalLength(deg, myDimension, myPoly(Ptr), FirstS, 1., Li);
|
|
Length += Li;
|
|
}
|
|
|
|
deg = myDegree(High);
|
|
Ptr = (High - 1)*(degBase + 1)*myDimension + 1;
|
|
|
|
if(!HasPoly(High)) Update(High, 0);
|
|
if(LastS > 1.) {
|
|
PLib::EvalLength(deg, myDimension, myPoly(Ptr), 1., LastS, Li);
|
|
Length += Li;
|
|
if(myLength(High) < 0.) {
|
|
PLib::EvalLength(deg, myDimension, myPoly(Ptr), -1., 1., Li);
|
|
myLength(High) = Li;
|
|
}
|
|
Length += myLength(High);
|
|
}
|
|
else {
|
|
PLib::EvalLength(deg, myDimension, myPoly(Ptr), -1., LastS, Li);
|
|
Length += Li;
|
|
}
|
|
|
|
|
|
for(i = Low + 1; i < High; i++) {
|
|
if (myLength.Value(i) < 0) {
|
|
Ptr = (i - 1)*(degBase + 1)*myDimension + 1;
|
|
deg = myDegree(i);
|
|
if(!HasPoly(i)) Update(i, 0);
|
|
PLib::EvalLength(deg, myDimension, myPoly(Ptr), -1., 1., Li);
|
|
myLength(i) = Li;
|
|
}
|
|
Length += myLength(i);
|
|
}
|
|
}
|
|
|
|
Standard_Integer FEmTool_Curve::NbElements() const
|
|
{
|
|
return myNbElements;
|
|
}
|
|
|
|
Standard_Integer FEmTool_Curve::Dimension() const
|
|
{
|
|
return myDimension;
|
|
}
|
|
|
|
Handle(PLib_Base) FEmTool_Curve::Base() const
|
|
{
|
|
return myBase;
|
|
}
|
|
|
|
Standard_Integer FEmTool_Curve::Degree(const Standard_Integer IndexOfElement) const
|
|
{
|
|
return myDegree.Value(IndexOfElement);
|
|
}
|
|
|
|
|
|
//=======================================================================
|
|
//function : SetDegree
|
|
//purpose :
|
|
//=======================================================================
|
|
void FEmTool_Curve::SetDegree(const Standard_Integer IndexOfElement,
|
|
const Standard_Integer Degree)
|
|
{
|
|
if (Degree <= myBase->WorkDegree()) {
|
|
myDegree(IndexOfElement) = Degree;
|
|
HasPoly(IndexOfElement) = HasDeri(IndexOfElement) = HasSecn(IndexOfElement) = 0;
|
|
myLength(IndexOfElement) = -1;
|
|
}
|
|
else if(Degree > myBase->WorkDegree()) throw Standard_OutOfRange("FEmTool_Curve::SetDegree");
|
|
}
|
|
|
|
|
|
|
|
//=======================================================================
|
|
//function : ReduceDegree
|
|
//purpose :
|
|
//=======================================================================
|
|
void FEmTool_Curve::ReduceDegree(const Standard_Integer IndexOfElement,
|
|
const Standard_Real Tol,
|
|
Standard_Integer& NewDegree,
|
|
Standard_Real& MaxError)
|
|
{
|
|
Standard_Integer deg = myDegree(IndexOfElement);
|
|
|
|
Standard_Integer Ptr = (IndexOfElement - 1)*
|
|
(myBase->WorkDegree() + 1)*myDimension + 1;
|
|
|
|
myBase->ReduceDegree(myDimension, deg, Tol, myCoeff.ChangeValue(Ptr), NewDegree, MaxError);
|
|
Handle(PLib_HermitJacobi) myHermitJacobi = Handle(PLib_HermitJacobi)::DownCast (myBase);
|
|
|
|
NewDegree = Max(NewDegree, 2 * myHermitJacobi->NivConstr() + 1);
|
|
|
|
if (NewDegree < deg) {
|
|
myDegree(IndexOfElement) = NewDegree;
|
|
HasPoly(IndexOfElement) = HasDeri(IndexOfElement) = HasSecn(IndexOfElement) = 0;
|
|
myLength(IndexOfElement) = -1;
|
|
}
|
|
}
|
|
|
|
//=======================================================================
|
|
//function : Update
|
|
//purpose :
|
|
//=======================================================================
|
|
void FEmTool_Curve::Update(const Standard_Integer Index,
|
|
const Standard_Integer Order)
|
|
{
|
|
Standard_Integer degBase = myBase->WorkDegree(), deg = myDegree(Index);
|
|
|
|
if (!HasPoly(Index)) {
|
|
Standard_Integer Ptr = (Index - 1)*(degBase + 1)*myDimension + 1;
|
|
|
|
TColStd_Array1OfReal Coeff(myPoly.ChangeValue(Ptr), 0, myDimension*(deg + 1) - 1);
|
|
TColStd_Array1OfReal BaseCoeff(myCoeff.ChangeValue(Ptr), 0, myDimension*(deg + 1) - 1);
|
|
|
|
myBase->ToCoefficients(myDimension, deg, BaseCoeff, Coeff);
|
|
HasPoly(Index) = 1;
|
|
}
|
|
|
|
if (Order >=1) {
|
|
Standard_Integer i1 = (Index - 1)*(degBase)*myDimension - myDimension,
|
|
i2 = (Index - 1)*(degBase + 1)*myDimension;
|
|
Standard_Integer i,j;
|
|
if (!HasDeri.Value(Index)) {
|
|
for(i = 1; i <= deg; i++) {
|
|
i1 += myDimension; i2 += myDimension;
|
|
for(j = 1; j<= myDimension; j++)
|
|
myDeri(i1 + j) = i*myPoly.Value(i2 + j);
|
|
}
|
|
HasDeri(Index) = 1;
|
|
}
|
|
if ((Order>=2) &&!HasSecn.Value(Index)) {
|
|
i1 = (Index - 1)*(degBase-1)*myDimension - myDimension,
|
|
i2 = (Index - 1)*(degBase)*myDimension;
|
|
for(i = 1; i < deg; i++) {
|
|
i1 += myDimension; i2 += myDimension;
|
|
for(j = 1; j<= myDimension; j++)
|
|
myDsecn(i1 + j) = i*myDeri.Value(i2 + j);
|
|
}
|
|
HasSecn(Index) = 1;
|
|
}
|
|
}
|
|
}
|