mirror of
https://git.dev.opencascade.org/repos/occt.git
synced 2025-05-01 10:26:12 +03:00
328 lines
9.4 KiB
C++
Executable File
328 lines
9.4 KiB
C++
Executable File
// Copyright (c) 1995-1999 Matra Datavision
|
|
// Copyright (c) 1999-2012 OPEN CASCADE SAS
|
|
//
|
|
// The content of this file is subject to the Open CASCADE Technology Public
|
|
// License Version 6.5 (the "License"). You may not use the content of this file
|
|
// except in compliance with the License. Please obtain a copy of the License
|
|
// at http://www.opencascade.org and read it completely before using this file.
|
|
//
|
|
// The Initial Developer of the Original Code is Open CASCADE S.A.S., having its
|
|
// main offices at: 1, place des Freres Montgolfier, 78280 Guyancourt, France.
|
|
//
|
|
// The Original Code and all software distributed under the License is
|
|
// distributed on an "AS IS" basis, without warranty of any kind, and the
|
|
// Initial Developer hereby disclaims all such warranties, including without
|
|
// limitation, any warranties of merchantability, fitness for a particular
|
|
// purpose or non-infringement. Please see the License for the specific terms
|
|
// and conditions governing the rights and limitations under the License.
|
|
|
|
//JCV 16/10/91
|
|
|
|
#include <Convert_SphereToBSplineSurface.ixx>
|
|
|
|
#include <gp.hxx>
|
|
#include <gp_Trsf.hxx>
|
|
|
|
static const Standard_Integer TheUDegree = 2;
|
|
static const Standard_Integer TheVDegree = 2;
|
|
static const Standard_Integer MaxNbUKnots = 4;
|
|
static const Standard_Integer MaxNbVKnots = 3;
|
|
static const Standard_Integer MaxNbUPoles = 7;
|
|
static const Standard_Integer MaxNbVPoles = 5;
|
|
|
|
|
|
static void ComputePoles ( const Standard_Real R,
|
|
const Standard_Real U1,
|
|
const Standard_Real U2,
|
|
const Standard_Real V1,
|
|
const Standard_Real V2,
|
|
TColgp_Array2OfPnt& Poles)
|
|
{
|
|
Standard_Real deltaU = U2 - U1;
|
|
Standard_Real deltaV = V2 - V1;
|
|
|
|
Standard_Integer i, j;
|
|
|
|
// Number of spans : maximum opening = 150 degrees ( = PI / 1.2 rds)
|
|
Standard_Integer
|
|
nbUSpans = (Standard_Integer)IntegerPart( 1.2 * deltaU / M_PI) + 1;
|
|
Standard_Integer
|
|
nbVSpans = (Standard_Integer)IntegerPart( 1.2 * deltaV / M_PI) + 1;
|
|
Standard_Real AlfaU = deltaU / ( nbUSpans * 2);
|
|
Standard_Real AlfaV = deltaV / ( nbVSpans * 2);
|
|
|
|
Standard_Integer nbVP = 2 * nbVSpans + 1;
|
|
|
|
Standard_Real x[MaxNbVPoles];
|
|
Standard_Real z[MaxNbVPoles];
|
|
|
|
x[0] = R * Cos( V1);
|
|
z[0] = R * Sin( V1);
|
|
|
|
Standard_Real VStart = V1;
|
|
for ( i = 1; i <= nbVSpans; i++) {
|
|
x[2*i-1] = R * Cos( VStart + AlfaV) / Cos( AlfaV);
|
|
z[2*i-1] = R * Sin( VStart + AlfaV) / Cos( AlfaV);
|
|
x[2*i] = R * Cos( VStart + 2 * AlfaV);
|
|
z[2*i] = R * Sin( VStart + 2 * AlfaV);
|
|
VStart += 2*AlfaV;
|
|
}
|
|
|
|
Standard_Real UStart = U1;
|
|
for ( j = 0; j <= nbVP-1; j++) {
|
|
Poles( 1, j+1) = gp_Pnt(x[j]*Cos(UStart),x[j]*Sin(UStart),z[j]);
|
|
}
|
|
|
|
for ( i = 1; i <= nbUSpans; i++) {
|
|
for ( j = 0; j<= nbVP-1; j++) {
|
|
Poles( 2*i, j+1) = gp_Pnt( x[j] * Cos(UStart+AlfaU) / Cos(AlfaU),
|
|
x[j] * Sin(UStart+AlfaU) / Cos(AlfaU),
|
|
z[j] );
|
|
Poles(2*i+1,j+1) = gp_Pnt( x[j] * Cos(UStart+2*AlfaU),
|
|
x[j] * Sin(UStart+2*AlfaU),
|
|
z[j] );
|
|
}
|
|
UStart += 2*AlfaU;
|
|
}
|
|
}
|
|
|
|
//=======================================================================
|
|
//function : Convert_SphereToBSplineSurface
|
|
//purpose :
|
|
//=======================================================================
|
|
|
|
Convert_SphereToBSplineSurface::Convert_SphereToBSplineSurface
|
|
(const gp_Sphere& Sph,
|
|
const Standard_Real U1 ,
|
|
const Standard_Real U2 ,
|
|
const Standard_Real V1 ,
|
|
const Standard_Real V2 )
|
|
: Convert_ElementarySurfaceToBSplineSurface (MaxNbUPoles, MaxNbVPoles,
|
|
MaxNbUKnots, MaxNbVKnots,
|
|
TheUDegree , TheVDegree)
|
|
{
|
|
Standard_Real deltaU = U2 - U1;
|
|
Standard_Real deltaV = V2 - V1;
|
|
Standard_DomainError_Raise_if( (deltaU>2*M_PI) || (deltaU<0.) ||
|
|
(V1 < -M_PI/2.0) || (V2 > M_PI/2),
|
|
"Convert_SphereToBSplineSurface");
|
|
|
|
isuperiodic = Standard_False;
|
|
isvperiodic = Standard_False;
|
|
|
|
Standard_Integer i,j;
|
|
// construction of the sphere in the reference mark xOy.
|
|
|
|
// Number of spans : maximum opening = 150 degrees ( = PI / 1.2 rds)
|
|
Standard_Integer
|
|
nbUSpans = (Standard_Integer)IntegerPart( 1.2 * deltaU / M_PI) + 1;
|
|
Standard_Integer
|
|
nbVSpans = (Standard_Integer)IntegerPart( 1.2 * deltaV / M_PI) + 1;
|
|
Standard_Real AlfaU = deltaU / ( nbUSpans * 2);
|
|
Standard_Real AlfaV = deltaV / ( nbVSpans * 2);
|
|
|
|
nbUPoles = 2 * nbUSpans + 1;
|
|
nbVPoles = 2 * nbVSpans + 1;
|
|
nbUKnots = nbUSpans + 1;
|
|
nbVKnots = nbVSpans + 1;
|
|
|
|
Standard_Real R = Sph.Radius();
|
|
|
|
ComputePoles( R, U1, U2, V1, V2, poles);
|
|
|
|
for ( i = 1; i<= nbUKnots; i++) {
|
|
uknots(i) = U1 + (i-1) * 2 * AlfaU;
|
|
umults(i) = 2;
|
|
}
|
|
umults(1)++; umults(nbUKnots)++;
|
|
for ( i = 1; i<= nbVKnots; i++) {
|
|
vknots(i) = V1 + (i-1) * 2 * AlfaV;
|
|
vmults(i) = 2;
|
|
}
|
|
vmults(1)++; vmults(nbVKnots)++;
|
|
|
|
|
|
// Replace the bspline in the reference of the sphere.
|
|
// and calculate the weight of the bspline.
|
|
Standard_Real W1, W2;
|
|
gp_Trsf Trsf;
|
|
Trsf.SetTransformation( Sph.Position(), gp::XOY());
|
|
|
|
for ( i = 1; i <= nbUPoles; i++) {
|
|
if ( i % 2 == 0) W1 = Cos(AlfaU);
|
|
else W1 = 1.;
|
|
|
|
for ( j = 1; j <= nbVPoles; j++) {
|
|
if ( j % 2 == 0) W2 = Cos(AlfaV);
|
|
else W2 = 1.;
|
|
|
|
weights( i, j) = W1 * W2;
|
|
poles( i, j).Transform( Trsf);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
//=======================================================================
|
|
//function : Convert_SphereToBSplineSurface
|
|
//purpose :
|
|
//=======================================================================
|
|
|
|
Convert_SphereToBSplineSurface::Convert_SphereToBSplineSurface
|
|
(const gp_Sphere& Sph ,
|
|
const Standard_Real Param1,
|
|
const Standard_Real Param2,
|
|
const Standard_Boolean UTrim )
|
|
: Convert_ElementarySurfaceToBSplineSurface (MaxNbUPoles, MaxNbVPoles,
|
|
MaxNbUKnots, MaxNbVKnots,
|
|
TheUDegree , TheVDegree)
|
|
{
|
|
#ifndef No_Exception
|
|
Standard_Real delta = Param2 - Param1;
|
|
#endif
|
|
Standard_DomainError_Raise_if( (delta>2*M_PI) || (delta<0.),
|
|
"Convert_SphereToBSplineSurface");
|
|
|
|
Standard_Integer i, j;
|
|
Standard_Real deltaU, deltaV;
|
|
|
|
isuperiodic = !UTrim;
|
|
isvperiodic = Standard_False;
|
|
|
|
Standard_Real R = Sph.Radius();
|
|
|
|
Standard_Real W1, W2, CosU, CosV;
|
|
|
|
if ( isuperiodic) {
|
|
ComputePoles(R, 0., 2.*M_PI, Param1, Param2, poles);
|
|
|
|
nbUPoles = 6;
|
|
nbUKnots = 4;
|
|
|
|
deltaV = Param2 - Param1;
|
|
Standard_Integer
|
|
nbVSpans = (Standard_Integer)IntegerPart( 1.2 * deltaV / M_PI) + 1;
|
|
Standard_Real AlfaV = deltaV / ( nbVSpans * 2);
|
|
nbVPoles = 2 * nbVSpans + 1;
|
|
nbVKnots = nbVSpans + 1;
|
|
|
|
for ( i = 1; i <= nbUKnots; i++) {
|
|
uknots(i) = ( i-1) * 2. * M_PI /3.;
|
|
umults(i) = 2;
|
|
}
|
|
for ( i = 1; i <= nbVKnots; i++) {
|
|
vknots(i) = Param1 + (i-1) * 2 * AlfaV;
|
|
vmults(i) = 2;
|
|
}
|
|
vmults(1)++; vmults(nbVKnots)++;
|
|
|
|
CosU = 0.5; // = Cos(pi /3)
|
|
CosV = Cos(AlfaV);
|
|
}
|
|
else {
|
|
ComputePoles(R, Param1, Param2, -M_PI/2., M_PI/2., poles);
|
|
|
|
nbVPoles = 5;
|
|
nbVKnots = 3;
|
|
|
|
deltaU = Param2 - Param1;
|
|
Standard_Integer
|
|
nbUSpans = (Standard_Integer)IntegerPart( 1.2 * deltaU / M_PI) + 1;
|
|
Standard_Real AlfaU = deltaU / ( nbUSpans * 2);
|
|
nbUPoles = 2 * nbUSpans + 1;
|
|
nbUKnots = nbUSpans + 1;
|
|
|
|
vknots(1) = -M_PI/2.; vmults(1) = 3;
|
|
vknots(2) = 0.; vmults(2) = 2;
|
|
vknots(3) = M_PI/2.; vmults(3) = 3;
|
|
for ( i = 1; i <= nbUKnots; i++) {
|
|
uknots(i) = Param1 + (i-1) * 2 * AlfaU;
|
|
umults(i) = 2;
|
|
}
|
|
umults(1)++; umults(nbUKnots)++;
|
|
|
|
CosV = 0.5; // = Cos(pi /3)
|
|
CosU = Cos(AlfaU);
|
|
}
|
|
|
|
// Replace the bspline in the mark of the sphere.
|
|
// and calculate the weight of bspline.
|
|
gp_Trsf Trsf;
|
|
Trsf.SetTransformation( Sph.Position(), gp::XOY());
|
|
|
|
for ( i = 1; i <= nbUPoles; i++) {
|
|
if ( i % 2 == 0) W1 = CosU;
|
|
else W1 = 1.;
|
|
|
|
for ( j = 1; j <= nbVPoles; j++) {
|
|
if ( j % 2 == 0) W2 = CosV;
|
|
else W2 = 1.;
|
|
|
|
weights( i, j) = W1 * W2;
|
|
poles( i, j).Transform( Trsf);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
//=======================================================================
|
|
//function : Convert_SphereToBSplineSurface
|
|
//purpose :
|
|
//=======================================================================
|
|
|
|
Convert_SphereToBSplineSurface::Convert_SphereToBSplineSurface
|
|
(const gp_Sphere& Sph)
|
|
: Convert_ElementarySurfaceToBSplineSurface (MaxNbUPoles, MaxNbVPoles,
|
|
MaxNbUKnots, MaxNbVKnots,
|
|
TheUDegree , TheVDegree)
|
|
{
|
|
isuperiodic = Standard_True;
|
|
isvperiodic = Standard_False;
|
|
|
|
Standard_Real W1, W2;
|
|
Standard_Integer i, j;
|
|
|
|
nbUPoles = 6;
|
|
nbVPoles = 5;
|
|
nbUKnots = 4;
|
|
nbVKnots = 3;
|
|
|
|
// Construction of the sphere in the reference mark xOy.
|
|
|
|
Standard_Real R = Sph.Radius();
|
|
|
|
ComputePoles( R, 0., 2.*M_PI, -M_PI/2., M_PI/2., poles);
|
|
|
|
uknots( 1) = 0.;
|
|
uknots( 2) = 2. * M_PI / 3.;
|
|
uknots( 3) = 4. * M_PI / 3.;
|
|
uknots( 4) = 2. * M_PI;
|
|
vknots( 1) = -M_PI/2.;
|
|
vknots( 2) = 0.;
|
|
vknots( 3) = M_PI/2.;
|
|
for ( i = 1; i <= 4; i++) {
|
|
umults( i) = 2;
|
|
}
|
|
vmults(1) = vmults(3) = 3;
|
|
vmults(2) = 2;
|
|
|
|
// Replace the bspline in the mark of the sphere.
|
|
// and calculate the weight of the bspline.
|
|
gp_Trsf Trsf;
|
|
Trsf.SetTransformation( Sph.Position(), gp::XOY());
|
|
|
|
for ( i = 1; i <= nbUPoles; i++) {
|
|
if ( i % 2 == 0) W1 = 0.5;
|
|
else W1 = 1.;
|
|
|
|
for ( j = 1; j <= nbVPoles; j++) {
|
|
if ( j % 2 == 0) W2 = Sqrt(2.) /2.;
|
|
else W2 = 1.;
|
|
|
|
weights( i, j) = W1 * W2;
|
|
poles( i, j).Transform( Trsf);
|
|
}
|
|
}
|
|
}
|
|
|