1
0
mirror of https://git.dev.opencascade.org/repos/occt.git synced 2025-04-06 18:26:22 +03:00
occt/src/Geom2dGcc/Geom2dGcc_Circ2d2TanRad.cxx
ski 9775fa6110 0026937: Eliminate NO_CXX_EXCEPTION macro support
Macro NO_CXX_EXCEPTION was removed from code.
Method Raise() was replaced by explicit throw statement.
Method Standard_Failure::Caught() was replaced by normal C++mechanism of exception transfer.
Method Standard_Failure::Caught() is deprecated now.
Eliminated empty constructors.
Updated samples.
Eliminate empty method ChangeValue from NCollection_Map class.
Removed not operable methods from NCollection classes.
2017-02-02 16:35:54 +03:00

516 lines
17 KiB
C++

// Created on: 1992-10-21
// Created by: Remi GILET
// Copyright (c) 1992-1999 Matra Datavision
// Copyright (c) 1999-2014 OPEN CASCADE SAS
//
// This file is part of Open CASCADE Technology software library.
//
// This library is free software; you can redistribute it and/or modify it under
// the terms of the GNU Lesser General Public License version 2.1 as published
// by the Free Software Foundation, with special exception defined in the file
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
// distribution for complete text of the license and disclaimer of any warranty.
//
// Alternatively, this file may be used under the terms of Open CASCADE
// commercial license or contractual agreement.
#include <GccAna_Circ2d2TanRad.hxx>
#include <GccEnt_BadQualifier.hxx>
#include <GccEnt_QualifiedCirc.hxx>
#include <GccEnt_QualifiedLin.hxx>
#include <Geom2d_Circle.hxx>
#include <Geom2d_Line.hxx>
#include <Geom2d_Point.hxx>
#include <Geom2dAdaptor_Curve.hxx>
#include <Geom2dGcc_Circ2d2TanRad.hxx>
#include <Geom2dGcc_Circ2d2TanRadGeo.hxx>
#include <Geom2dGcc_QCurve.hxx>
#include <Geom2dGcc_QualifiedCurve.hxx>
#include <gp_Circ2d.hxx>
#include <gp_Lin2d.hxx>
#include <gp_Pnt2d.hxx>
#include <Standard_NegativeValue.hxx>
#include <Standard_OutOfRange.hxx>
#include <StdFail_NotDone.hxx>
static const Standard_Integer aNbSolMAX = 16;
// circulaire tangent a deux cercles et de rayon donne
//====================================================
//========================================================================
// On initialise WellDone a false. +
// On recupere le cercle C1 et le cercle C2. +
// On sort en erreur dans les cas ou la construction est impossible. +
// On distingue les cas limites pour les triater separement. +
// On fait la parallele a C1 dans le bon sens. +
// On fait la parallele a C2 dans le bon sens. +
// On intersecte les paralleles ==> point de centre de la solution. +
// On cree la solution qu on ajoute aux solutions deja trouvees. +
// On remplit les champs. +
//========================================================================
Geom2dGcc_Circ2d2TanRad::
Geom2dGcc_Circ2d2TanRad (const Geom2dGcc_QualifiedCurve& Qualified1 ,
const Geom2dGcc_QualifiedCurve& Qualified2 ,
const Standard_Real Radius ,
const Standard_Real Tolerance ):
cirsol(1,aNbSolMAX) ,
qualifier1(1,aNbSolMAX),
qualifier2(1,aNbSolMAX),
TheSame1(1,aNbSolMAX) ,
TheSame2(1,aNbSolMAX) ,
pnttg1sol(1,aNbSolMAX),
pnttg2sol(1,aNbSolMAX),
par1sol(1,aNbSolMAX) ,
par2sol(1,aNbSolMAX) ,
pararg1(1,aNbSolMAX) ,
pararg2(1,aNbSolMAX)
{
if (Radius < 0.) { throw Standard_NegativeValue(); }
else {
Geom2dAdaptor_Curve C1 = Qualified1.Qualified();
Geom2dAdaptor_Curve C2 = Qualified2.Qualified();
Handle(Geom2d_Curve) CC1 = C1.Curve();
Handle(Geom2d_Curve) CC2 = C2.Curve();
GeomAbs_CurveType Type1 = C1.GetType();
GeomAbs_CurveType Type2 = C2.GetType();
//=============================================================================
// Appel a GccAna. +
//=============================================================================
Invert = Standard_False;
NbrSol = 0;
if ((Type1 == GeomAbs_Line || Type1 == GeomAbs_Circle) &&
(Type2 == GeomAbs_Line || Type2 == GeomAbs_Circle)) {
if (Type1 == GeomAbs_Circle) {
Handle(Geom2d_Circle) CCC1 = Handle(Geom2d_Circle)::DownCast(CC1);
gp_Circ2d c1(CCC1->Circ2d());
GccEnt_QualifiedCirc Qc1 = GccEnt_QualifiedCirc(c1,
Qualified1.Qualifier());
if (Type2 == GeomAbs_Circle) {
Handle(Geom2d_Circle) CCC2 = Handle(Geom2d_Circle)::DownCast(CC2);
gp_Circ2d c2(CCC2->Circ2d());
GccAna_Circ2d2TanRad CircAna(Qc1,
GccEnt_QualifiedCirc(c2,Qualified2.Qualifier()),
Radius,Tolerance);
WellDone = CircAna.IsDone();
NbrSol = CircAna.NbSolutions();
for(Standard_Integer i=1; i<=NbrSol; i++) {
CircAna.WhichQualifier(i,qualifier1(i),qualifier2(i));
}
Results(CircAna);
}
else {
Handle(Geom2d_Line) LL2 = Handle(Geom2d_Line)::DownCast(CC2);
gp_Lin2d l2(LL2->Lin2d());
if (!Qualified2.IsEnclosing()) {
GccAna_Circ2d2TanRad CircAna(Qc1,
GccEnt_QualifiedLin(l2,Qualified2.Qualifier()),
Radius,Tolerance);
WellDone = CircAna.IsDone();
NbrSol = CircAna.NbSolutions();
for(Standard_Integer i=1; i<=NbrSol; i++) {
CircAna.WhichQualifier(i,qualifier1(i),qualifier2(i));
}
Results(CircAna);
}
else {
WellDone = Standard_False;
throw GccEnt_BadQualifier();
}
}
}
else {
Handle(Geom2d_Line) LL1 = Handle(Geom2d_Line)::DownCast(CC1);
gp_Lin2d l1(LL1->Lin2d());
if (Qualified1.IsEnclosing()) {
WellDone = Standard_False;
throw GccEnt_BadQualifier();
}
else {
GccEnt_QualifiedLin Ql1 = GccEnt_QualifiedLin(l1,
Qualified1.Qualifier());
if (Type2 == GeomAbs_Circle) {
Handle(Geom2d_Circle) CCC2 = Handle(Geom2d_Circle)::DownCast(CC2);
gp_Circ2d c2(CCC2->Circ2d());
Invert = Standard_True;
GccAna_Circ2d2TanRad CircAna(GccEnt_QualifiedCirc(c2,
Qualified2.Qualifier()),
Ql1,Radius,Tolerance);
WellDone = CircAna.IsDone();
NbrSol = CircAna.NbSolutions();
for(Standard_Integer i=1; i<=NbrSol; i++) {
CircAna.WhichQualifier(i,qualifier1(i),qualifier2(i));
}
Results(CircAna);
}
else {
Handle(Geom2d_Line) LL2 = Handle(Geom2d_Line)::DownCast(CC2);
gp_Lin2d l2(LL2->Lin2d());
if (!Qualified2.IsEnclosing()) {
GccAna_Circ2d2TanRad CircAna(Ql1,
GccEnt_QualifiedLin(l2,Qualified2.Qualifier()),
Radius,Tolerance);
WellDone = CircAna.IsDone();
NbrSol = CircAna.NbSolutions();
for(Standard_Integer i=1; i<=NbrSol; i++) {
CircAna.WhichQualifier(i,qualifier1(i),qualifier2(i));
}
Results(CircAna);
}
else {
WellDone = Standard_False;
throw GccEnt_BadQualifier();
}
}
}
}
}
//=============================================================================
// Appel a GccGeo. +
//=============================================================================
else {
if (Type1 == GeomAbs_Line) {
Handle(Geom2d_Line) LL1 = Handle(Geom2d_Line)::DownCast(CC1);
gp_Lin2d l1(LL1->Lin2d());
if (Qualified1.IsEnclosing()) {
WellDone = Standard_False;
throw GccEnt_BadQualifier();
}
else {
GccEnt_QualifiedLin Ql1 = GccEnt_QualifiedLin(l1,
Qualified1.Qualifier());
Geom2dGcc_QCurve Qc2(C2,Qualified2.Qualifier());
Geom2dGcc_Circ2d2TanRadGeo CircGeo(Ql1,Qc2,Radius,Tolerance);
WellDone = CircGeo.IsDone();
NbrSol = CircGeo.NbSolutions();
for(Standard_Integer i=1; i<=NbrSol; i++) {
CircGeo.WhichQualifier(i,qualifier1(i),qualifier2(i));
}
Results(CircGeo);
}
}
else if (Type1 == GeomAbs_Circle) {
Handle(Geom2d_Circle) CCC1 = Handle(Geom2d_Circle)::DownCast(CC1);
gp_Circ2d c1(CCC1->Circ2d());
GccEnt_QualifiedCirc Qc1 = GccEnt_QualifiedCirc(c1,
Qualified1.Qualifier());
Geom2dGcc_QCurve Qc2(C2,Qualified2.Qualifier());
Geom2dGcc_Circ2d2TanRadGeo CircGeo(Qc1,Qc2,Radius,Tolerance);
WellDone = CircGeo.IsDone();
NbrSol = CircGeo.NbSolutions();
for(Standard_Integer i=1; i<=NbrSol; i++) {
CircGeo.WhichQualifier(i,qualifier1(i),qualifier2(i));
}
Results(CircGeo);
}
else if (Type2 == GeomAbs_Line) {
Invert = Standard_True;
Handle(Geom2d_Line) LL2 = Handle(Geom2d_Line)::DownCast(CC2);
gp_Lin2d l2(LL2->Lin2d());
if (Qualified2.IsEnclosing()) {
WellDone = Standard_False;
throw GccEnt_BadQualifier();
}
else {
GccEnt_QualifiedLin Ql2 = GccEnt_QualifiedLin(l2,
Qualified2.Qualifier());
Geom2dGcc_QCurve Qc1(C1,Qualified1.Qualifier());
Geom2dGcc_Circ2d2TanRadGeo CircGeo(Ql2,Qc1,Radius,Tolerance);
WellDone = CircGeo.IsDone();
NbrSol = CircGeo.NbSolutions();
for(Standard_Integer i=1; i<=NbrSol; i++) {
CircGeo.WhichQualifier(i,qualifier1(i),qualifier2(i));
}
Results(CircGeo);
}
}
else if (Type2 == GeomAbs_Circle) {
Invert = Standard_True;
Handle(Geom2d_Circle) CCC2 = Handle(Geom2d_Circle)::DownCast(CC2);
gp_Circ2d c2(CCC2->Circ2d());
GccEnt_QualifiedCirc Qc2 = GccEnt_QualifiedCirc(c2,
Qualified2.Qualifier());
Geom2dGcc_QCurve Qc1(C1,Qualified1.Qualifier());
Geom2dGcc_Circ2d2TanRadGeo CircGeo(Qc2,Qc1,Radius,Tolerance);
WellDone = CircGeo.IsDone();
NbrSol = CircGeo.NbSolutions();
for(Standard_Integer i=1; i<=NbrSol; i++) {
CircGeo.WhichQualifier(i,qualifier1(i),qualifier2(i));
}
Results(CircGeo);
}
else {
Geom2dGcc_QCurve Qc1(C1,Qualified1.Qualifier());
Geom2dGcc_QCurve Qc2(C2,Qualified2.Qualifier());
Geom2dGcc_Circ2d2TanRadGeo CircGeo(Qc1,Qc2,Radius,Tolerance);
WellDone = CircGeo.IsDone();
NbrSol = CircGeo.NbSolutions();
for(Standard_Integer i=1; i<=NbrSol; i++) {
CircGeo.WhichQualifier(i,qualifier1(i),qualifier2(i));
}
Results(CircGeo);
}
}
}
}
Geom2dGcc_Circ2d2TanRad::
Geom2dGcc_Circ2d2TanRad (const Geom2dGcc_QualifiedCurve& Qualified1 ,
const Handle(Geom2d_Point)& Point ,
const Standard_Real Radius ,
const Standard_Real Tolerance ):
cirsol(1,8) ,
qualifier1(1,8),
qualifier2(1,8),
TheSame1(1,8) ,
TheSame2(1,8) ,
pnttg1sol(1,8),
pnttg2sol(1,8),
par1sol(1,8) ,
par2sol(1,8) ,
pararg1(1,8) ,
pararg2(1,8)
{
if (Radius < 0.) { throw Standard_NegativeValue(); }
else {
Geom2dAdaptor_Curve C1 = Qualified1.Qualified();
Handle(Geom2d_Curve) CC1 = C1.Curve();
GeomAbs_CurveType Type1 = C1.GetType();
//=============================================================================
// Appel a GccAna. +
//=============================================================================
Invert = Standard_False;
NbrSol = 0;
if (Type1 == GeomAbs_Line || Type1 == GeomAbs_Circle) {
if (Type1 == GeomAbs_Circle) {
Handle(Geom2d_Circle) CCC1 = Handle(Geom2d_Circle)::DownCast(CC1);
gp_Circ2d c1(CCC1->Circ2d());
GccEnt_QualifiedCirc Qc1(c1,Qualified1.Qualifier());
GccAna_Circ2d2TanRad CircAna(Qc1,Point->Pnt2d(),Radius,Tolerance);
WellDone = CircAna.IsDone();
NbrSol = CircAna.NbSolutions();
for(Standard_Integer i=1; i<=NbrSol; i++) {
CircAna.WhichQualifier(i,qualifier1(i),qualifier2(i));
}
Results(CircAna);
}
else {
Handle(Geom2d_Line) LLL1 = Handle(Geom2d_Line)::DownCast(CC1);
gp_Lin2d l1(LLL1->Lin2d());
GccEnt_QualifiedLin Ql1(l1,Qualified1.Qualifier());
GccAna_Circ2d2TanRad CircAna(Ql1,Point->Pnt2d(),Radius,Tolerance);
WellDone = CircAna.IsDone();
NbrSol = CircAna.NbSolutions();
for(Standard_Integer i=1; i<=NbrSol; i++) {
CircAna.WhichQualifier(i,qualifier1(i),qualifier2(i));
}
Results(CircAna);
}
}
//=============================================================================
// Appel a GccGeo. +
//=============================================================================
else {
Geom2dGcc_QCurve Qc1(C1,Qualified1.Qualifier());
Geom2dGcc_Circ2d2TanRadGeo CircGeo(Qc1,Point->Pnt2d(),Radius,Tolerance);
WellDone = CircGeo.IsDone();
NbrSol = CircGeo.NbSolutions();
for(Standard_Integer i=1; i<=NbrSol; i++) {
CircGeo.WhichQualifier(i,qualifier1(i),qualifier2(i));
}
Results(CircGeo);
}
}
}
Geom2dGcc_Circ2d2TanRad::
Geom2dGcc_Circ2d2TanRad (const Handle(Geom2d_Point)& Point1 ,
const Handle(Geom2d_Point)& Point2 ,
const Standard_Real Radius ,
const Standard_Real Tolerance ):
cirsol(1,2) ,
qualifier1(1,2),
qualifier2(1,2),
TheSame1(1,2) ,
TheSame2(1,2) ,
pnttg1sol(1,2),
pnttg2sol(1,2),
par1sol(1,2) ,
par2sol(1,2) ,
pararg1(1,2) ,
pararg2(1,2)
{
if (Radius < 0.) { throw Standard_NegativeValue(); }
else {
//=============================================================================
// Appel a GccAna. +
//=============================================================================
Invert = Standard_False;
NbrSol = 0;
GccAna_Circ2d2TanRad CircAna(Point1->Pnt2d(),Point2->Pnt2d(),
Radius,Tolerance);
WellDone = CircAna.IsDone();
NbrSol = CircAna.NbSolutions();
for(Standard_Integer i=1; i<=NbrSol; i++) {
CircAna.WhichQualifier(i,qualifier1(i),qualifier2(i));
}
Results(CircAna);
}
}
void Geom2dGcc_Circ2d2TanRad::Results(const GccAna_Circ2d2TanRad& Circ)
{
for (Standard_Integer j = 1; j <= NbrSol; j++) {
cirsol(j) = Circ.ThisSolution(j);
if (Circ.IsTheSame1(j)) { TheSame1(j) = 1; }
else {TheSame1(j) = 0; }
if (Circ.IsTheSame2(j)) { TheSame2(j) = 1; }
else {TheSame2(j) = 0; }
Circ.Tangency1(j,par1sol(j),pararg1(j),pnttg1sol(j));
Circ.Tangency2(j,par2sol(j),pararg2(j),pnttg2sol(j));
}
}
void Geom2dGcc_Circ2d2TanRad::Results(const Geom2dGcc_Circ2d2TanRadGeo& Circ)
{
for (Standard_Integer j = 1; j <= NbrSol; j++) {
cirsol(j) = Circ.ThisSolution(j);
if (Circ.IsTheSame1(j)) { TheSame1(j) = 1; }
else {TheSame1(j) = 0; }
if (Circ.IsTheSame2(j)) { TheSame2(j) = 1; }
else {TheSame2(j) = 0; }
Circ.Tangency1(j,par1sol(j),pararg1(j),pnttg1sol(j));
Circ.Tangency2(j,par2sol(j),pararg2(j),pnttg2sol(j));
}
}
Standard_Boolean Geom2dGcc_Circ2d2TanRad::
IsDone () const { return WellDone; }
Standard_Integer Geom2dGcc_Circ2d2TanRad::
NbSolutions () const
{
return NbrSol;
}
gp_Circ2d Geom2dGcc_Circ2d2TanRad::
ThisSolution (const Standard_Integer Index) const
{
if (!WellDone) { throw StdFail_NotDone(); }
if (Index <= 0 ||Index > NbrSol) { throw Standard_OutOfRange(); }
return cirsol(Index);
}
void Geom2dGcc_Circ2d2TanRad::
WhichQualifier (const Standard_Integer Index ,
GccEnt_Position& Qualif1 ,
GccEnt_Position& Qualif2) const
{
if (!WellDone) { throw StdFail_NotDone(); }
else if (Index <= 0 ||Index > NbrSol) { throw Standard_OutOfRange(); }
else {
if (Invert) {
Qualif1 = qualifier2(Index);
Qualif2 = qualifier1(Index);
}
else {
Qualif1 = qualifier1(Index);
Qualif2 = qualifier2(Index);
}
}
}
void Geom2dGcc_Circ2d2TanRad::
Tangency1 (const Standard_Integer Index,
Standard_Real& ParSol,
Standard_Real& ParArg,
gp_Pnt2d& PntSol) const
{
if (!WellDone) { throw StdFail_NotDone(); }
else if (Index <= 0 ||Index > NbrSol) { throw Standard_OutOfRange(); }
else {
if (Invert) {
if (TheSame2(Index) == 0) {
ParSol = par2sol(Index);
ParArg = pararg2(Index);
PntSol = pnttg2sol(Index);
}
else { throw StdFail_NotDone(); }
}
else {
if (TheSame1(Index) == 0) {
ParSol = par1sol(Index);
ParArg = pararg1(Index);
PntSol = pnttg1sol(Index);
}
else { throw StdFail_NotDone(); }
}
}
}
void Geom2dGcc_Circ2d2TanRad::
Tangency2 (const Standard_Integer Index,
Standard_Real& ParSol,
Standard_Real& ParArg,
gp_Pnt2d& PntSol) const
{
if (!WellDone) { throw StdFail_NotDone(); }
else if (Index <= 0 ||Index > NbrSol) { throw Standard_OutOfRange(); }
else {
if (!Invert) {
if (TheSame2(Index) == 0) {
ParSol = par2sol(Index);
ParArg = pararg2(Index);
PntSol = pnttg2sol(Index);
}
else { throw StdFail_NotDone(); }
}
else {
if (TheSame1(Index) == 0) {
ParSol = par1sol(Index);
ParArg = pararg1(Index);
PntSol = pnttg1sol(Index);
}
else { throw StdFail_NotDone(); }
}
}
}
Standard_Boolean Geom2dGcc_Circ2d2TanRad::
IsTheSame1 (const Standard_Integer Index) const
{
if (!WellDone) { throw StdFail_NotDone(); }
if (Index <= 0 ||Index > NbrSol) { throw Standard_OutOfRange(); }
if (Invert) {
if (TheSame2(Index) == 0) { return Standard_False; }
else { return Standard_True; }
}
else {
if (TheSame1(Index) == 0) { return Standard_False; }
else { return Standard_True; }
}
}
Standard_Boolean Geom2dGcc_Circ2d2TanRad::
IsTheSame2 (const Standard_Integer Index) const
{
if (!WellDone) { throw StdFail_NotDone(); }
if (Index <= 0 ||Index > NbrSol) { throw Standard_OutOfRange(); }
if (!Invert) {
if (TheSame2(Index) == 0) { return Standard_False; }
else { return Standard_True; }
}
else {
if (TheSame1(Index) == 0) { return Standard_False; }
else { return Standard_True; }
}
// return Standard_True;
}