1
0
mirror of https://git.dev.opencascade.org/repos/occt.git synced 2025-04-07 18:30:55 +03:00
occt/src/Convert/Convert_CompPolynomialToPoles.hxx
abv 42cf5bc1ca 0024002: Overall code and build procedure refactoring -- automatic
Automatic upgrade of OCCT code by command "occt_upgrade . -nocdl":
- WOK-generated header files from inc and sources from drv are moved to src
- CDL files removed
- All packages are converted to nocdlpack
2015-07-12 07:42:38 +03:00

151 lines
6.0 KiB
C++

// Created on: 1995-05-30
// Created by: Xavier BENVENISTE
// Copyright (c) 1995-1999 Matra Datavision
// Copyright (c) 1999-2014 OPEN CASCADE SAS
//
// This file is part of Open CASCADE Technology software library.
//
// This library is free software; you can redistribute it and/or modify it under
// the terms of the GNU Lesser General Public License version 2.1 as published
// by the Free Software Foundation, with special exception defined in the file
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
// distribution for complete text of the license and disclaimer of any warranty.
//
// Alternatively, this file may be used under the terms of Open CASCADE
// commercial license or contractual agreement.
#ifndef _Convert_CompPolynomialToPoles_HeaderFile
#define _Convert_CompPolynomialToPoles_HeaderFile
#include <Standard.hxx>
#include <Standard_DefineAlloc.hxx>
#include <Standard_Handle.hxx>
#include <TColStd_HArray1OfReal.hxx>
#include <TColStd_HArray1OfInteger.hxx>
#include <TColStd_HArray2OfReal.hxx>
#include <Standard_Integer.hxx>
#include <Standard_Boolean.hxx>
#include <TColStd_Array1OfInteger.hxx>
#include <TColStd_Array1OfReal.hxx>
#include <TColStd_Array2OfReal.hxx>
class Standard_OutOfRange;
class Standard_ConstructionError;
//! Convert a serie of Polynomial N-Dimensional Curves
//! that are have continuity CM to an N-Dimensional Bspline Curve
//! that has continuity CM.
//! (to convert an function (curve) polynomial by span in a BSpline)
//! This class uses the following arguments :
//! NumCurves : the number of Polynomial Curves
//! Continuity: the requested continuity for the n-dimensional Spline
//! Dimension : the dimension of the Spline
//! MaxDegree : maximum allowed degree for each composite
//! polynomial segment.
//! NumCoeffPerCurve : the number of coefficient per segments = degree - 1
//! Coefficients : the coefficients organized in the following way
//! [1..<myNumPolynomials>][1..myMaxDegree +1][1..myDimension]
//! that is : index [n,d,i] is at slot
//! (n-1) * (myMaxDegree + 1) * myDimension + (d-1) * myDimension + i
//! PolynomialIntervals : nth polynomial represents a polynomial between
//! myPolynomialIntervals->Value(n,0) and
//! myPolynomialIntervals->Value(n,1)
//! TrueIntervals : the nth polynomial has to be mapped linearly to be
//! defined on the following interval :
//! myTrueIntervals->Value(n) and myTrueIntervals->Value(n+1)
//! so that it represent adequatly the function with the
//! required continuity
class Convert_CompPolynomialToPoles
{
public:
DEFINE_STANDARD_ALLOC
//! Warning!
//! Continuity can be at MOST the maximum degree of
//! the polynomial functions
//! TrueIntervals :
//! this is the true parameterisation for the composite curve
//! that is : the curve has myContinuity if the nth curve
//! is parameterized between myTrueIntervals(n) and myTrueIntervals(n+1)
//!
//! Coefficients have to be the implicit "c form":
//! Coefficients[Numcurves][MaxDegree+1][Dimension]
//!
//! Warning!
//! The NumberOfCoefficient of an polynome is his degree + 1
//! Example: To convert the linear function f(x) = 2*x + 1 on the
//! domaine [2,5] to BSpline with the bound [-1,1]. Arguments are :
//! NumCurves = 1;
//! Continuity = 1;
//! Dimension = 1;
//! MaxDegree = 1;
//! NumCoeffPerCurve [1] = {2};
//! Coefficients[2] = {1, 2};
//! PolynomialIntervals[1,2] = {{2,5}}
//! TrueIntervals[2] = {-1, 1}
Standard_EXPORT Convert_CompPolynomialToPoles(const Standard_Integer NumCurves, const Standard_Integer Continuity, const Standard_Integer Dimension, const Standard_Integer MaxDegree, const Handle(TColStd_HArray1OfInteger)& NumCoeffPerCurve, const Handle(TColStd_HArray1OfReal)& Coefficients, const Handle(TColStd_HArray2OfReal)& PolynomialIntervals, const Handle(TColStd_HArray1OfReal)& TrueIntervals);
//! To Convert sevral span with different order of Continuity.
//! Warning: The Length of Continuity have to be NumCurves-1
Standard_EXPORT Convert_CompPolynomialToPoles(const Standard_Integer NumCurves, const Standard_Integer Dimension, const Standard_Integer MaxDegree, const TColStd_Array1OfInteger& Continuity, const TColStd_Array1OfInteger& NumCoeffPerCurve, const TColStd_Array1OfReal& Coefficients, const TColStd_Array2OfReal& PolynomialIntervals, const TColStd_Array1OfReal& TrueIntervals);
//! To Convert only one span.
Standard_EXPORT Convert_CompPolynomialToPoles(const Standard_Integer Dimension, const Standard_Integer MaxDegree, const Standard_Integer Degree, const TColStd_Array1OfReal& Coefficients, const TColStd_Array1OfReal& PolynomialIntervals, const TColStd_Array1OfReal& TrueIntervals);
//! number of poles of the n-dimensional BSpline
Standard_EXPORT Standard_Integer NbPoles() const;
//! returns the poles of the n-dimensional BSpline
//! in the following format :
//! [1..NumPoles][1..Dimension]
Standard_EXPORT void Poles (Handle(TColStd_HArray2OfReal)& Poles) const;
Standard_EXPORT Standard_Integer Degree() const;
//! Degree of the n-dimensional Bspline
Standard_EXPORT Standard_Integer NbKnots() const;
//! Knots of the n-dimensional Bspline
Standard_EXPORT void Knots (Handle(TColStd_HArray1OfReal)& K) const;
//! Multiplicities of the knots in the BSpline
Standard_EXPORT void Multiplicities (Handle(TColStd_HArray1OfInteger)& M) const;
Standard_EXPORT Standard_Boolean IsDone() const;
protected:
private:
Standard_EXPORT void Perform (const Standard_Integer NumCurves, const Standard_Integer MaxDegree, const Standard_Integer Dimension, const TColStd_Array1OfInteger& NumCoeffPerCurve, const TColStd_Array1OfReal& Coefficients, const TColStd_Array2OfReal& PolynomialIntervals, const TColStd_Array1OfReal& TrueIntervals);
Handle(TColStd_HArray1OfReal) myFlatKnots;
Handle(TColStd_HArray1OfReal) myKnots;
Handle(TColStd_HArray1OfInteger) myMults;
Handle(TColStd_HArray2OfReal) myPoles;
Standard_Integer myDegree;
Standard_Boolean myDone;
};
#endif // _Convert_CompPolynomialToPoles_HeaderFile