1
0
mirror of https://git.dev.opencascade.org/repos/occt.git synced 2025-04-26 10:19:45 +03:00
occt/src/Approx/Approx_CurvlinFunc.cxx
abv b1811c1d2b 0029151: GCC 7.1 warnings "this statement may fall through" [-Wimplicit-fallthrough=]
New macro Standard_FALLTHROUGH is defined for use in a switch statement immediately before a case label, if code associated with the previous case label may fall through to that
next label (i.e. does not end with "break" or "return" etc.).
This macro indicates that the fall through is intentional and should not be diagnosed by a compiler that warns on fallthrough.

The macro is inserted in places that currently generate such warning message and where fallthrough is intentional.

Doxygen comments are provided for this and other macros in Standard_Macro.hxx.
2017-10-04 15:28:02 +03:00

708 lines
20 KiB
C++

// Created on: 1998-05-12
// Created by: Roman BORISOV
// Copyright (c) 1998-1999 Matra Datavision
// Copyright (c) 1999-2014 OPEN CASCADE SAS
//
// This file is part of Open CASCADE Technology software library.
//
// This library is free software; you can redistribute it and/or modify it under
// the terms of the GNU Lesser General Public License version 2.1 as published
// by the Free Software Foundation, with special exception defined in the file
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
// distribution for complete text of the license and disclaimer of any warranty.
//
// Alternatively, this file may be used under the terms of Open CASCADE
// commercial license or contractual agreement.
#include <Adaptor2d_HCurve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_CurveOnSurface.hxx>
#include <Adaptor3d_HCurve.hxx>
#include <Adaptor3d_HCurveOnSurface.hxx>
#include <Adaptor3d_HSurface.hxx>
#include <Approx_CurvlinFunc.hxx>
#include <GCPnts_AbscissaPoint.hxx>
#include <GeomLib.hxx>
#include <Precision.hxx>
#include <Standard_ConstructionError.hxx>
#include <Standard_DomainError.hxx>
#include <Standard_OutOfRange.hxx>
#include <Standard_Type.hxx>
#include <TColStd_SequenceOfReal.hxx>
IMPLEMENT_STANDARD_RTTIEXT(Approx_CurvlinFunc,Standard_Transient)
#ifdef OCCT_DEBUG_CHRONO
#include <OSD_Timer.hxx>
static OSD_Chronometer chr_uparam;
Standard_EXPORT Standard_Integer uparam_count;
Standard_EXPORT Standard_Real t_uparam;
//Standard_IMPORT extern void InitChron(OSD_Chronometer& ch);
Standard_IMPORT void InitChron(OSD_Chronometer& ch);
//Standard_IMPORT extern void ResultChron( OSD_Chronometer & ch, Standard_Real & time);
Standard_IMPORT void ResultChron( OSD_Chronometer & ch, Standard_Real & time);
#endif
static Standard_Real cubic(const Standard_Real X, const Standard_Real *Xi, const Standard_Real *Yi)
{
Standard_Real I1, I2, I3, I21, I22, I31, Result;
I1 = (Yi[0] - Yi[1])/(Xi[0] - Xi[1]);
I2 = (Yi[1] - Yi[2])/(Xi[1] - Xi[2]);
I3 = (Yi[2] - Yi[3])/(Xi[2] - Xi[3]);
I21 = (I1 - I2)/(Xi[0] - Xi[2]);
I22 = (I2 - I3)/(Xi[1] - Xi[3]);
I31 = (I21 - I22)/(Xi[0] - Xi[3]);
Result = Yi[0] + (X - Xi[0])*(I1 + (X - Xi[1])*(I21 + (X - Xi[2])*I31));
return Result;
}
//static void findfourpoints(const Standard_Real S,
static void findfourpoints(const Standard_Real ,
Standard_Integer NInterval,
const Handle(TColStd_HArray1OfReal)& Si,
Handle(TColStd_HArray1OfReal)& Ui,
const Standard_Real prevS,
const Standard_Real prevU, Standard_Real *Xi,
Standard_Real *Yi)
{
Standard_Integer i, j;
Standard_Integer NbInt = Si->Length() - 1;
if (NbInt < 3) throw Standard_ConstructionError("Approx_CurvlinFunc::GetUParameter");
if(NInterval < 1) NInterval = 1;
else if(NInterval > NbInt - 2) NInterval = NbInt - 2;
for(i = 0; i < 4; i++) {
Xi[i] = Si->Value(NInterval - 1 + i);
Yi[i] = Ui->Value(NInterval - 1 + i);
}
// try to insert (S, U)
for(i = 0; i < 3; i++) {
if(Xi[i] < prevS && prevS < Xi[i+1]) {
for(j = 0; j < i; j++) {
Xi[j] = Xi[j+1];
Yi[j] = Yi[j+1];
}
Xi[i] = prevS;
Yi[i] = prevU;
break;
}
}
}
/*static Standard_Real curvature(const Standard_Real U, const Adaptor3d_Curve& C)
{
Standard_Real k, tau, mod1, mod2, OMEGA;
gp_Pnt P;
gp_Vec D1, D2, D3;
C.D3(U, P, D1, D2, D3);
mod1 = D1.Magnitude();
mod2 = D1.Crossed(D2).Magnitude();
k = mod2/(mod1*mod1*mod1);
tau = D1.Dot(D2.Crossed(D3));
tau /= mod2*mod2;
OMEGA = Sqrt(k*k + tau*tau);
return OMEGA;
}
*/
Approx_CurvlinFunc::Approx_CurvlinFunc(const Handle(Adaptor3d_HCurve)& C, const Standard_Real Tol) : myC3D(C),
myCase(1),
myFirstS(0),
myLastS(1),
myTolLen(Tol),
myPrevS (0.0),
myPrevU (0.0)
{
Init();
}
Approx_CurvlinFunc::Approx_CurvlinFunc(const Handle(Adaptor2d_HCurve2d)& C2D, const Handle(Adaptor3d_HSurface)& S, const Standard_Real Tol) :
myC2D1(C2D),
mySurf1(S),
myCase(2),
myFirstS(0),
myLastS(1),
myTolLen(Tol),
myPrevS (0.0),
myPrevU (0.0)
{
Init();
}
Approx_CurvlinFunc::Approx_CurvlinFunc(const Handle(Adaptor2d_HCurve2d)& C2D1, const Handle(Adaptor2d_HCurve2d)& C2D2, const Handle(Adaptor3d_HSurface)& S1, const Handle(Adaptor3d_HSurface)& S2, const Standard_Real Tol) :
myC2D1(C2D1),
myC2D2(C2D2),
mySurf1(S1),
mySurf2(S2),
myCase(3),
myFirstS(0),
myLastS(1),
myTolLen(Tol),
myPrevS (0.0),
myPrevU (0.0)
{
Init();
}
void Approx_CurvlinFunc::Init()
{
Adaptor3d_CurveOnSurface CurOnSur;
switch(myCase) {
case 1:
Init(myC3D->GetCurve(), mySi_1, myUi_1);
myFirstU1 = myC3D->FirstParameter();
myLastU1 = myC3D->LastParameter();
myFirstU2 = myLastU2 = 0;
break;
case 2:
CurOnSur.Load(myC2D1);
CurOnSur.Load(mySurf1);
Init(CurOnSur, mySi_1, myUi_1);
myFirstU1 = CurOnSur.FirstParameter();
myLastU1 = CurOnSur.LastParameter();
myFirstU2 = myLastU2 = 0;
break;
case 3:
CurOnSur.Load(myC2D1);
CurOnSur.Load(mySurf1);
Init(CurOnSur, mySi_1, myUi_1);
myFirstU1 = CurOnSur.FirstParameter();
myLastU1 = CurOnSur.LastParameter();
CurOnSur.Load(myC2D2);
CurOnSur.Load(mySurf2);
Init(CurOnSur, mySi_2, myUi_2);
myFirstU2 = CurOnSur.FirstParameter();
myLastU2 = CurOnSur.LastParameter();
}
Length();
}
//=======================================================================
//function : Init
//purpose : Init the values
//history : 23/10/1998 PMN : Cut at curve's discontinuities
//=======================================================================
void Approx_CurvlinFunc::Init(Adaptor3d_Curve& C, Handle(TColStd_HArray1OfReal)& Si,
Handle(TColStd_HArray1OfReal)& Ui) const
{
Standard_Real Step, FirstU, LastU;
Standard_Integer i, j, k, NbInt, NbIntC3;
FirstU = C.FirstParameter();
LastU = C.LastParameter();
NbInt = 10;
NbIntC3 = C.NbIntervals(GeomAbs_C3);
TColStd_Array1OfReal Disc(1, NbIntC3+1);
if (NbIntC3 >1) {
C.Intervals(Disc, GeomAbs_C3);
}
else {
Disc(1) = FirstU;
Disc(2) = LastU;
}
Ui = new TColStd_HArray1OfReal (0,NbIntC3*NbInt);
Si = new TColStd_HArray1OfReal (0,NbIntC3*NbInt);
Ui->SetValue(0, FirstU);
Si->SetValue(0, 0);
for(j = 1, i=1; j<=NbIntC3; j++) {
Step = (Disc(j+1) - Disc(j))/NbInt;
for(k = 1; k <= NbInt; k++, i++) {
Ui->ChangeValue(i) = Ui->Value(i-1) + Step;
Si->ChangeValue(i) = Si->Value(i-1) + Length(C, Ui->Value(i-1), Ui->Value(i));
}
}
Standard_Real Len = Si->Value(Si->Upper());
for(i = Si->Lower(); i<= Si->Upper(); i++)
Si->ChangeValue(i) /= Len;
// TODO - fields should be mutable
const_cast<Approx_CurvlinFunc*>(this)->myPrevS = myFirstS;
const_cast<Approx_CurvlinFunc*>(this)->myPrevU = FirstU;
}
void Approx_CurvlinFunc::SetTol(const Standard_Real Tol)
{
myTolLen = Tol;
}
Standard_Real Approx_CurvlinFunc::FirstParameter() const
{
return myFirstS;
}
Standard_Real Approx_CurvlinFunc::LastParameter() const
{
return myLastS;
}
Standard_Integer Approx_CurvlinFunc::NbIntervals(const GeomAbs_Shape S) const
{
Adaptor3d_CurveOnSurface CurOnSur;
switch(myCase) {
case 1:
return myC3D->NbIntervals(S);
case 2:
CurOnSur.Load(myC2D1);
CurOnSur.Load(mySurf1);
return CurOnSur.NbIntervals(S);
case 3:
Standard_Integer NbInt;
CurOnSur.Load(myC2D1);
CurOnSur.Load(mySurf1);
NbInt = CurOnSur.NbIntervals(S);
TColStd_Array1OfReal T1(1, NbInt+1);
CurOnSur.Intervals(T1, S);
CurOnSur.Load(myC2D2);
CurOnSur.Load(mySurf2);
NbInt = CurOnSur.NbIntervals(S);
TColStd_Array1OfReal T2(1, NbInt+1);
CurOnSur.Intervals(T2, S);
TColStd_SequenceOfReal Fusion;
GeomLib::FuseIntervals(T1, T2, Fusion);
return Fusion.Length() - 1;
}
//POP pour WNT
return 1;
}
void Approx_CurvlinFunc::Intervals(TColStd_Array1OfReal& T, const GeomAbs_Shape S) const
{
Adaptor3d_CurveOnSurface CurOnSur;
Standard_Integer i;
switch(myCase) {
case 1:
myC3D->Intervals(T, S);
break;
case 2:
CurOnSur.Load(myC2D1);
CurOnSur.Load(mySurf1);
CurOnSur.Intervals(T, S);
break;
case 3:
Standard_Integer NbInt;
CurOnSur.Load(myC2D1);
CurOnSur.Load(mySurf1);
NbInt = CurOnSur.NbIntervals(S);
TColStd_Array1OfReal T1(1, NbInt+1);
CurOnSur.Intervals(T1, S);
CurOnSur.Load(myC2D2);
CurOnSur.Load(mySurf2);
NbInt = CurOnSur.NbIntervals(S);
TColStd_Array1OfReal T2(1, NbInt+1);
CurOnSur.Intervals(T2, S);
TColStd_SequenceOfReal Fusion;
GeomLib::FuseIntervals(T1, T2, Fusion);
for (i = 1; i <= Fusion.Length(); i++)
T.ChangeValue(i) = Fusion.Value(i);
}
for(i = 1; i <= T.Length(); i++)
T.ChangeValue(i) = GetSParameter(T.Value(i));
}
void Approx_CurvlinFunc::Trim(const Standard_Real First, const Standard_Real Last, const Standard_Real Tol)
{
if (First < 0 || Last >1) throw Standard_OutOfRange("Approx_CurvlinFunc::Trim");
if ((Last - First) < Tol) return;
Standard_Real FirstU, LastU;
Adaptor3d_CurveOnSurface CurOnSur;
Handle(Adaptor3d_HCurve) HCurOnSur;
switch(myCase) {
case 1:
myC3D = myC3D->Trim(myFirstU1, myLastU1, Tol);
FirstU = GetUParameter(myC3D->GetCurve(), First, 1);
LastU = GetUParameter(myC3D->GetCurve(), Last, 1);
myC3D = myC3D->Trim(FirstU, LastU, Tol);
break;
case 3:
CurOnSur.Load(myC2D2);
CurOnSur.Load(mySurf2);
HCurOnSur = CurOnSur.Trim(myFirstU2, myLastU2, Tol);
myC2D2 = ((Adaptor3d_CurveOnSurface *)(&(HCurOnSur->Curve())))->GetCurve();
mySurf2 = ((Adaptor3d_CurveOnSurface *)(&(HCurOnSur->Curve())))->GetSurface();
CurOnSur.Load(myC2D2);
CurOnSur.Load(mySurf2);
FirstU = GetUParameter(CurOnSur, First, 1);
LastU = GetUParameter(CurOnSur, Last, 1);
HCurOnSur = CurOnSur.Trim(FirstU, LastU, Tol);
myC2D2 = ((Adaptor3d_CurveOnSurface *)(&(HCurOnSur->Curve())))->GetCurve();
mySurf2 = ((Adaptor3d_CurveOnSurface *)(&(HCurOnSur->Curve())))->GetSurface();
Standard_FALLTHROUGH
case 2:
CurOnSur.Load(myC2D1);
CurOnSur.Load(mySurf1);
HCurOnSur = CurOnSur.Trim(myFirstU1, myLastU1, Tol);
myC2D1 = ((Adaptor3d_CurveOnSurface *)(&(HCurOnSur->Curve())))->GetCurve();
mySurf1 = ((Adaptor3d_CurveOnSurface *)(&(HCurOnSur->Curve())))->GetSurface();
CurOnSur.Load(myC2D1);
CurOnSur.Load(mySurf1);
FirstU = GetUParameter(CurOnSur, First, 1);
LastU = GetUParameter(CurOnSur, Last, 1);
HCurOnSur = CurOnSur.Trim(FirstU, LastU, Tol);
myC2D1 = ((Adaptor3d_CurveOnSurface *)(&(HCurOnSur->Curve())))->GetCurve();
mySurf1 = ((Adaptor3d_CurveOnSurface *)(&(HCurOnSur->Curve())))->GetSurface();
}
myFirstS = First;
myLastS = Last;
}
void Approx_CurvlinFunc::Length()
{
Adaptor3d_CurveOnSurface CurOnSur;
Standard_Real FirstU, LastU;
switch(myCase){
case 1:
FirstU = myC3D->FirstParameter();
LastU = myC3D->LastParameter();
myLength = Length(myC3D->GetCurve(), FirstU, LastU);
myLength1 = myLength2 = 0;
break;
case 2:
CurOnSur.Load(myC2D1);
CurOnSur.Load(mySurf1);
FirstU = CurOnSur.FirstParameter();
LastU = CurOnSur.LastParameter();
myLength = Length(CurOnSur, FirstU, LastU);
myLength1 = myLength2 = 0;
break;
case 3:
CurOnSur.Load(myC2D1);
CurOnSur.Load(mySurf1);
FirstU = CurOnSur.FirstParameter();
LastU = CurOnSur.LastParameter();
myLength1 = Length(CurOnSur, FirstU, LastU);
CurOnSur.Load(myC2D2);
CurOnSur.Load(mySurf2);
FirstU = CurOnSur.FirstParameter();
LastU = CurOnSur.LastParameter();
myLength2 = Length(CurOnSur, FirstU, LastU);
myLength = (myLength1 + myLength2)/2;
}
}
Standard_Real Approx_CurvlinFunc::Length(Adaptor3d_Curve& C, const Standard_Real FirstU, const Standard_Real LastU) const
{
Standard_Real Length;
Length = GCPnts_AbscissaPoint::Length(C, FirstU, LastU, myTolLen);
return Length;
}
Standard_Real Approx_CurvlinFunc::GetLength() const
{
return myLength;
}
Standard_Real Approx_CurvlinFunc::GetSParameter(const Standard_Real U) const
{
Standard_Real S=0, S1, S2;
Adaptor3d_CurveOnSurface CurOnSur;
switch (myCase) {
case 1:
S = GetSParameter(myC3D->GetCurve(), U, myLength);
break;
case 2:
CurOnSur.Load(myC2D1);
CurOnSur.Load(mySurf1);
S = GetSParameter(CurOnSur, U, myLength);
break;
case 3:
CurOnSur.Load(myC2D1);
CurOnSur.Load(mySurf1);
S1 = GetSParameter(CurOnSur, U, myLength1);
CurOnSur.Load(myC2D2);
CurOnSur.Load(mySurf2);
S2 = GetSParameter(CurOnSur, U, myLength2);
S = (S1 + S2)/2;
}
return S;
}
Standard_Real Approx_CurvlinFunc::GetUParameter(Adaptor3d_Curve& C,
const Standard_Real S,
const Standard_Integer NumberOfCurve) const
{
Standard_Real deltaS, base, U, Length;
Standard_Integer NbInt, NInterval, i;
Handle(TColStd_HArray1OfReal) InitUArray, InitSArray;
#ifdef OCCT_DEBUG_CHRONO
InitChron(chr_uparam);
#endif
if(S < 0 || S > 1) throw Standard_ConstructionError("Approx_CurvlinFunc::GetUParameter");
if(NumberOfCurve == 1) {
InitUArray = myUi_1;
InitSArray = mySi_1;
if(myCase == 3)
Length = myLength1;
else
Length = myLength;
}
else {
InitUArray = myUi_2;
InitSArray = mySi_2;
Length = myLength2;
}
NbInt = InitUArray->Length() - 1;
if(S == 1) NInterval = NbInt - 1;
else {
for(i = 0; i < NbInt; i++) {
if((InitSArray->Value(i) <= S && S < InitSArray->Value(i+1)))
break;
}
NInterval = i;
}
if(S==InitSArray->Value(NInterval)) {
return InitUArray->Value(NInterval);
}
if(S==InitSArray->Value(NInterval+1)) {
return InitUArray->Value(NInterval+1);
}
base = InitUArray->Value(NInterval);
deltaS = (S - InitSArray->Value(NInterval))*Length;
// to find an initial point
Standard_Real Xi[4], Yi[4], UGuess;
findfourpoints(S, NInterval, InitSArray, InitUArray, myPrevS, myPrevU, Xi, Yi);
UGuess = cubic(S , Xi, Yi);
U = GCPnts_AbscissaPoint(C, deltaS, base, UGuess, myTolLen).Parameter();
// TODO - fields should be mutable
const_cast<Approx_CurvlinFunc*>(this)->myPrevS = S;
const_cast<Approx_CurvlinFunc*>(this)->myPrevU = U;
#ifdef OCCT_DEBUG_CHRONO
ResultChron(chr_uparam, t_uparam);
uparam_count++;
#endif
return U;
}
Standard_Real Approx_CurvlinFunc::GetSParameter(Adaptor3d_Curve& C, const Standard_Real U, const Standard_Real Len) const
{
Standard_Real S, Origin;
Origin = C.FirstParameter();
S = myFirstS + Length(C, Origin, U)/Len;
return S;
}
Standard_Boolean Approx_CurvlinFunc::EvalCase1(const Standard_Real S, const Standard_Integer Order, TColStd_Array1OfReal& Result) const
{
if(myCase != 1) throw Standard_ConstructionError("Approx_CurvlinFunc::EvalCase1");
gp_Pnt C;
gp_Vec dC_dU, dC_dS, d2C_dU2, d2C_dS2;
Standard_Real U, Mag, dU_dS, d2U_dS2;
U = GetUParameter(myC3D->GetCurve(), S, 1);
switch(Order) {
case 0:
myC3D->D0(U, C);
Result(0) = C.X();
Result(1) = C.Y();
Result(2) = C.Z();
break;
case 1:
myC3D->D1(U, C, dC_dU);
Mag = dC_dU.Magnitude();
dU_dS = myLength/Mag;
dC_dS = dC_dU*dU_dS;
Result(0) = dC_dS.X();
Result(1) = dC_dS.Y();
Result(2) = dC_dS.Z();
break;
case 2:
myC3D->D2(U, C, dC_dU, d2C_dU2);
Mag = dC_dU.Magnitude();
dU_dS = myLength/Mag;
d2U_dS2 = -myLength*dC_dU.Dot(d2C_dU2)*dU_dS/(Mag*Mag*Mag);
d2C_dS2 = d2C_dU2*dU_dS*dU_dS + dC_dU*d2U_dS2;
Result(0) = d2C_dS2.X();
Result(1) = d2C_dS2.Y();
Result(2) = d2C_dS2.Z();
break;
default: Result(0) = Result(1) = Result(2) = 0;
return Standard_False;
}
return Standard_True;
}
Standard_Boolean Approx_CurvlinFunc::EvalCase2(const Standard_Real S, const Standard_Integer Order, TColStd_Array1OfReal& Result) const
{
if(myCase != 2) throw Standard_ConstructionError("Approx_CurvlinFunc::EvalCase2");
Standard_Boolean Done;
Done = EvalCurOnSur(S, Order, Result, 1);
return Done;
}
Standard_Boolean Approx_CurvlinFunc::EvalCase3(const Standard_Real S, const Standard_Integer Order, TColStd_Array1OfReal& Result)
{
if(myCase != 3) throw Standard_ConstructionError("Approx_CurvlinFunc::EvalCase3");
TColStd_Array1OfReal tmpRes1(0, 4), tmpRes2(0, 4);
Standard_Boolean Done;
Done = EvalCurOnSur(S, Order, tmpRes1, 1);
Done = EvalCurOnSur(S, Order, tmpRes2, 2) && Done;
Result(0) = tmpRes1(0);
Result(1) = tmpRes1(1);
Result(2) = tmpRes2(0);
Result(3) = tmpRes2(1);
Result(4) = 0.5*(tmpRes1(2) + tmpRes2(2));
Result(5) = 0.5*(tmpRes1(3) + tmpRes2(3));
Result(6) = 0.5*(tmpRes1(4) + tmpRes2(4));
return Done;
}
Standard_Boolean Approx_CurvlinFunc::EvalCurOnSur(const Standard_Real S, const Standard_Integer Order, TColStd_Array1OfReal& Result, const Standard_Integer NumberOfCurve) const
{
Handle(Adaptor2d_HCurve2d) Cur2D;
Handle(Adaptor3d_HSurface) Surf;
Standard_Real U=0, Length=0;
if (NumberOfCurve == 1) {
Cur2D = myC2D1;
Surf = mySurf1;
Adaptor3d_CurveOnSurface CurOnSur(myC2D1, mySurf1);
U = GetUParameter(CurOnSur, S, 1);
if(myCase == 3) Length = myLength1;
else Length = myLength;
}
else if (NumberOfCurve == 2) {
Cur2D = myC2D2;
Surf = mySurf2;
Adaptor3d_CurveOnSurface CurOnSur(myC2D2, mySurf2);
U = GetUParameter(CurOnSur, S, 2);
Length = myLength2;
}
else
throw Standard_ConstructionError("Approx_CurvlinFunc::EvalCurOnSur");
Standard_Real Mag, dU_dS, d2U_dS2, dV_dU, dW_dU, dV_dS, dW_dS, d2V_dS2, d2W_dS2, d2V_dU2, d2W_dU2;
gp_Pnt2d C2D;
gp_Pnt C;
gp_Vec2d dC2D_dU, d2C2D_dU2;
gp_Vec dC_dU, d2C_dU2, dC_dS, d2C_dS2, dS_dV, dS_dW, d2S_dV2, d2S_dW2, d2S_dVdW;
switch(Order) {
case 0:
Cur2D->D0(U, C2D);
Surf->D0(C2D.X(), C2D.Y(), C);
Result(0) = C2D.X();
Result(1) = C2D.Y();
Result(2) = C.X();
Result(3) = C.Y();
Result(4) = C.Z();
break;
case 1:
Cur2D->D1(U, C2D, dC2D_dU);
dV_dU = dC2D_dU.X();
dW_dU = dC2D_dU.Y();
Surf->D1(C2D.X(), C2D.Y(), C, dS_dV, dS_dW);
dC_dU = dS_dV*dV_dU + dS_dW*dW_dU;
Mag = dC_dU.Magnitude();
dU_dS = Length/Mag;
dV_dS = dV_dU*dU_dS;
dW_dS = dW_dU*dU_dS;
dC_dS = dC_dU*dU_dS;
Result(0) = dV_dS;
Result(1) = dW_dS;
Result(2) = dC_dS.X();
Result(3) = dC_dS.Y();
Result(4) = dC_dS.Z();
break;
case 2:
Cur2D->D2(U, C2D, dC2D_dU, d2C2D_dU2);
dV_dU = dC2D_dU.X();
dW_dU = dC2D_dU.Y();
d2V_dU2 = d2C2D_dU2.X();
d2W_dU2 = d2C2D_dU2.Y();
Surf->D2(C2D.X(), C2D.Y(), C, dS_dV, dS_dW, d2S_dV2, d2S_dW2, d2S_dVdW);
dC_dU = dS_dV*dV_dU + dS_dW*dW_dU;
d2C_dU2 = (d2S_dV2*dV_dU + d2S_dVdW*dW_dU)*dV_dU + dS_dV*d2V_dU2 +
(d2S_dVdW*dV_dU + d2S_dW2*dW_dU)*dW_dU + dS_dW*d2W_dU2;
Mag = dC_dU.Magnitude();
dU_dS = Length/Mag;
d2U_dS2 = -Length*dC_dU.Dot(d2C_dU2)*dU_dS/(Mag*Mag*Mag);
dV_dS = dV_dU * dU_dS;
dW_dS = dW_dU * dU_dS;
d2V_dS2 = d2V_dU2*dU_dS*dU_dS + dV_dU*d2U_dS2;
d2W_dS2 = d2W_dU2*dU_dS*dU_dS + dW_dU*d2U_dS2;
d2U_dS2 = -dC_dU.Dot(d2C_dU2)*dU_dS/(Mag*Mag);
d2C_dS2 = (d2S_dV2 * dV_dS + d2S_dVdW * dW_dS) * dV_dS + dS_dV * d2V_dS2 +
(d2S_dW2 * dW_dS + d2S_dVdW * dV_dS) * dW_dS + dS_dW * d2W_dS2;
Result(0) = d2V_dS2;
Result(1) = d2W_dS2;
Result(2) = d2C_dS2.X();
Result(3) = d2C_dS2.Y();
Result(4) = d2C_dS2.Z();
break;
default: Result(0) = Result(1) = Result(2) = Result(3) = Result(4) = 0;
return Standard_False;
}
return Standard_True;
}