1
0
mirror of https://git.dev.opencascade.org/repos/occt.git synced 2025-04-04 18:06:22 +03:00
occt/src/NCollection/NCollection_Vec3.hxx
dpasukhi a5a7b3185b Coding - Apply .clang-format formatting #286
Update empty method guards to new style with regex (see PR).
Used clang-format 18.1.8.
New actions to validate code formatting is added.
Update .clang-format with disabling of include sorting.
  It is temporary changes, then include will be sorted.
Apply formatting for /src and /tools folder.
The files with .hxx,.cxx,.lxx,.h,.pxx,.hpp,*.cpp extensions.
2025-01-26 00:43:57 +00:00

421 lines
15 KiB
C++

// Created by: Kirill GAVRILOV
// Copyright (c) 2013-2014 OPEN CASCADE SAS
//
// This file is part of Open CASCADE Technology software library.
//
// This library is free software; you can redistribute it and/or modify it under
// the terms of the GNU Lesser General Public License version 2.1 as published
// by the Free Software Foundation, with special exception defined in the file
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
// distribution for complete text of the license and disclaimer of any warranty.
//
// Alternatively, this file may be used under the terms of Open CASCADE
// commercial license or contractual agreement.
#ifndef NCollection_Vec3_HeaderFile
#define NCollection_Vec3_HeaderFile
#include <cstring>
#include <cmath>
#include <NCollection_Vec2.hxx>
//! Auxiliary macros to define couple of similar access components as vector methods
#define NCOLLECTION_VEC_COMPONENTS_3D(theX, theY, theZ) \
const NCollection_Vec3<Element_t> theX##theY##theZ() const \
{ \
return NCollection_Vec3<Element_t>(theX(), theY(), theZ()); \
} \
const NCollection_Vec3<Element_t> theX##theZ##theY() const \
{ \
return NCollection_Vec3<Element_t>(theX(), theZ(), theY()); \
} \
const NCollection_Vec3<Element_t> theY##theX##theZ() const \
{ \
return NCollection_Vec3<Element_t>(theY(), theX(), theZ()); \
} \
const NCollection_Vec3<Element_t> theY##theZ##theX() const \
{ \
return NCollection_Vec3<Element_t>(theY(), theZ(), theX()); \
} \
const NCollection_Vec3<Element_t> theZ##theY##theX() const \
{ \
return NCollection_Vec3<Element_t>(theZ(), theY(), theX()); \
} \
const NCollection_Vec3<Element_t> theZ##theX##theY() const \
{ \
return NCollection_Vec3<Element_t>(theZ(), theX(), theY()); \
}
//! Generic 3-components vector.
//! To be used as RGB color pixel or XYZ 3D-point.
//! The main target for this class - to handle raw low-level arrays (from/to graphic driver etc.).
template <typename Element_t>
class NCollection_Vec3
{
public:
//! Returns the number of components.
static int Length() { return 3; }
//! Empty constructor. Construct the zero vector.
NCollection_Vec3() { std::memset(this, 0, sizeof(NCollection_Vec3)); }
//! Initialize ALL components of vector within specified value.
explicit NCollection_Vec3(Element_t theValue) { v[0] = v[1] = v[2] = theValue; }
//! Per-component constructor.
explicit NCollection_Vec3(const Element_t theX, const Element_t theY, const Element_t theZ)
{
v[0] = theX;
v[1] = theY;
v[2] = theZ;
}
//! Constructor from 2-components vector + optional 3rd value.
explicit NCollection_Vec3(const NCollection_Vec2<Element_t>& theVec2,
Element_t theZ = Element_t(0))
{
v[0] = theVec2[0];
v[1] = theVec2[1];
v[2] = theZ;
}
//! Conversion constructor (explicitly converts some 3-component vector with other element type
//! to a new 3-component vector with the element type Element_t,
//! whose elements are static_cast'ed corresponding elements of theOtherVec3 vector)
//! @tparam OtherElement_t the element type of the other 3-component vector theOtherVec3
//! @param theOtherVec3 the 3-component vector that needs to be converted
template <typename OtherElement_t>
explicit NCollection_Vec3(const NCollection_Vec3<OtherElement_t>& theOtherVec3)
{
v[0] = static_cast<Element_t>(theOtherVec3[0]);
v[1] = static_cast<Element_t>(theOtherVec3[1]);
v[2] = static_cast<Element_t>(theOtherVec3[2]);
}
//! Assign new values to the vector.
void SetValues(const Element_t theX, const Element_t theY, const Element_t theZ)
{
v[0] = theX;
v[1] = theY;
v[2] = theZ;
}
//! Assign new values to the vector.
void SetValues(const NCollection_Vec2<Element_t>& theVec2, Element_t theZ)
{
v[0] = theVec2.x();
v[1] = theVec2.y();
v[2] = theZ;
}
//! Alias to 1st component as X coordinate in XYZ.
Element_t x() const { return v[0]; }
//! Alias to 1st component as RED channel in RGB.
Element_t r() const { return v[0]; }
//! Alias to 2nd component as Y coordinate in XYZ.
Element_t y() const { return v[1]; }
//! Alias to 2nd component as GREEN channel in RGB.
Element_t g() const { return v[1]; }
//! Alias to 3rd component as Z coordinate in XYZ.
Element_t z() const { return v[2]; }
//! Alias to 3rd component as BLUE channel in RGB.
Element_t b() const { return v[2]; }
//! @return 2 components by their names in specified order (in GLSL-style)
NCOLLECTION_VEC_COMPONENTS_2D(x, y)
NCOLLECTION_VEC_COMPONENTS_2D(x, z)
NCOLLECTION_VEC_COMPONENTS_2D(y, z)
//! @return 3 components by their names in specified order (in GLSL-style)
NCOLLECTION_VEC_COMPONENTS_3D(x, y, z)
//! Alias to 1st component as X coordinate in XYZ.
Element_t& x() { return v[0]; }
//! Alias to 1st component as RED channel in RGB.
Element_t& r() { return v[0]; }
//! Alias to 2nd component as Y coordinate in XYZ.
Element_t& y() { return v[1]; }
//! Alias to 2nd component as GREEN channel in RGB.
Element_t& g() { return v[1]; }
//! Alias to 3rd component as Z coordinate in XYZ.
Element_t& z() { return v[2]; }
//! Alias to 3rd component as BLUE channel in RGB.
Element_t& b() { return v[2]; }
//! Check this vector with another vector for equality (without tolerance!).
bool IsEqual(const NCollection_Vec3& theOther) const
{
return v[0] == theOther.v[0] && v[1] == theOther.v[1] && v[2] == theOther.v[2];
}
//! Check this vector with another vector for equality (without tolerance!).
bool operator==(const NCollection_Vec3& theOther) const { return IsEqual(theOther); }
//! Check this vector with another vector for non-equality (without tolerance!).
bool operator!=(const NCollection_Vec3& theOther) const { return !IsEqual(theOther); }
//! Raw access to the data (for OpenGL exchange).
const Element_t* GetData() const { return v; }
Element_t* ChangeData() { return v; }
operator const Element_t*() const { return v; }
operator Element_t*() { return v; }
//! Compute per-component summary.
NCollection_Vec3& operator+=(const NCollection_Vec3& theAdd)
{
v[0] += theAdd.v[0];
v[1] += theAdd.v[1];
v[2] += theAdd.v[2];
return *this;
}
//! Compute per-component summary.
friend NCollection_Vec3 operator+(const NCollection_Vec3& theLeft,
const NCollection_Vec3& theRight)
{
NCollection_Vec3 aSumm = NCollection_Vec3(theLeft);
return aSumm += theRight;
}
//! Unary -.
NCollection_Vec3 operator-() const { return NCollection_Vec3(-x(), -y(), -z()); }
//! Compute per-component subtraction.
NCollection_Vec3& operator-=(const NCollection_Vec3& theDec)
{
v[0] -= theDec.v[0];
v[1] -= theDec.v[1];
v[2] -= theDec.v[2];
return *this;
}
//! Compute per-component subtraction.
friend NCollection_Vec3 operator-(const NCollection_Vec3& theLeft,
const NCollection_Vec3& theRight)
{
NCollection_Vec3 aSumm = NCollection_Vec3(theLeft);
return aSumm -= theRight;
}
//! Compute per-component multiplication by scale factor.
void Multiply(const Element_t theFactor)
{
v[0] *= theFactor;
v[1] *= theFactor;
v[2] *= theFactor;
}
//! Compute per-component multiplication.
NCollection_Vec3& operator*=(const NCollection_Vec3& theRight)
{
v[0] *= theRight.v[0];
v[1] *= theRight.v[1];
v[2] *= theRight.v[2];
return *this;
}
//! Compute per-component multiplication.
friend NCollection_Vec3 operator*(const NCollection_Vec3& theLeft,
const NCollection_Vec3& theRight)
{
NCollection_Vec3 aResult = NCollection_Vec3(theLeft);
return aResult *= theRight;
}
//! Compute per-component multiplication by scale factor.
NCollection_Vec3& operator*=(const Element_t theFactor)
{
Multiply(theFactor);
return *this;
}
//! Compute per-component multiplication by scale factor.
NCollection_Vec3 operator*(const Element_t theFactor) const { return Multiplied(theFactor); }
//! Compute per-component multiplication by scale factor.
NCollection_Vec3 Multiplied(const Element_t theFactor) const
{
NCollection_Vec3 aCopyVec3(*this);
aCopyVec3 *= theFactor;
return aCopyVec3;
}
//! Compute component-wise minimum of two vectors.
NCollection_Vec3 cwiseMin(const NCollection_Vec3& theVec) const
{
return NCollection_Vec3(v[0] < theVec.v[0] ? v[0] : theVec.v[0],
v[1] < theVec.v[1] ? v[1] : theVec.v[1],
v[2] < theVec.v[2] ? v[2] : theVec.v[2]);
}
//! Compute component-wise maximum of two vectors.
NCollection_Vec3 cwiseMax(const NCollection_Vec3& theVec) const
{
return NCollection_Vec3(v[0] > theVec.v[0] ? v[0] : theVec.v[0],
v[1] > theVec.v[1] ? v[1] : theVec.v[1],
v[2] > theVec.v[2] ? v[2] : theVec.v[2]);
}
//! Compute component-wise modulus of the vector.
NCollection_Vec3 cwiseAbs() const
{
return NCollection_Vec3(std::abs(v[0]), std::abs(v[1]), std::abs(v[2]));
}
//! Compute maximum component of the vector.
Element_t maxComp() const
{
return v[0] > v[1] ? (v[0] > v[2] ? v[0] : v[2]) : (v[1] > v[2] ? v[1] : v[2]);
}
//! Compute minimum component of the vector.
Element_t minComp() const
{
return v[0] < v[1] ? (v[0] < v[2] ? v[0] : v[2]) : (v[1] < v[2] ? v[1] : v[2]);
}
//! Compute per-component division by scale factor.
NCollection_Vec3& operator/=(const Element_t theInvFactor)
{
v[0] /= theInvFactor;
v[1] /= theInvFactor;
v[2] /= theInvFactor;
return *this;
}
//! Compute per-component division.
NCollection_Vec3& operator/=(const NCollection_Vec3& theRight)
{
v[0] /= theRight.v[0];
v[1] /= theRight.v[1];
v[2] /= theRight.v[2];
return *this;
}
//! Compute per-component division by scale factor.
NCollection_Vec3 operator/(const Element_t theInvFactor) const
{
NCollection_Vec3 aResult(*this);
return aResult /= theInvFactor;
}
//! Compute per-component division.
friend NCollection_Vec3 operator/(const NCollection_Vec3& theLeft,
const NCollection_Vec3& theRight)
{
NCollection_Vec3 aResult = NCollection_Vec3(theLeft);
return aResult /= theRight;
}
//! Computes the dot product.
Element_t Dot(const NCollection_Vec3& theOther) const
{
return x() * theOther.x() + y() * theOther.y() + z() * theOther.z();
}
//! Computes the vector modulus (magnitude, length).
Element_t Modulus() const { return std::sqrt(x() * x() + y() * y() + z() * z()); }
//! Computes the square of vector modulus (magnitude, length).
//! This method may be used for performance tricks.
Element_t SquareModulus() const { return x() * x() + y() * y() + z() * z(); }
//! Normalize the vector.
void Normalize()
{
Element_t aModulus = Modulus();
if (aModulus != Element_t(0)) // just avoid divide by zero
{
x() = x() / aModulus;
y() = y() / aModulus;
z() = z() / aModulus;
}
}
//! Normalize the vector.
NCollection_Vec3 Normalized() const
{
NCollection_Vec3 aCopy(*this);
aCopy.Normalize();
return aCopy;
}
//! Computes the cross product.
static NCollection_Vec3 Cross(const NCollection_Vec3& theVec1, const NCollection_Vec3& theVec2)
{
return NCollection_Vec3(theVec1.y() * theVec2.z() - theVec1.z() * theVec2.y(),
theVec1.z() * theVec2.x() - theVec1.x() * theVec2.z(),
theVec1.x() * theVec2.y() - theVec1.y() * theVec2.x());
}
//! Compute linear interpolation between to vectors.
//! @param theT - interpolation coefficient 0..1;
//! @return interpolation result.
static NCollection_Vec3 GetLERP(const NCollection_Vec3& theFrom,
const NCollection_Vec3& theTo,
const Element_t theT)
{
return theFrom * (Element_t(1) - theT) + theTo * theT;
}
//! Construct DX unit vector.
static NCollection_Vec3 DX()
{
return NCollection_Vec3(Element_t(1), Element_t(0), Element_t(0));
}
//! Construct DY unit vector.
static NCollection_Vec3 DY()
{
return NCollection_Vec3(Element_t(0), Element_t(1), Element_t(0));
}
//! Construct DZ unit vector.
static NCollection_Vec3 DZ()
{
return NCollection_Vec3(Element_t(0), Element_t(0), Element_t(1));
}
//! Dumps the content of me into the stream
void DumpJson(Standard_OStream& theOStream, Standard_Integer theDepth = -1) const
{
(void)theDepth;
OCCT_DUMP_FIELD_VALUES_NUMERICAL(theOStream, "Vec3", 3, v[0], v[1], v[2])
}
private:
Element_t v[3]; //!< define the vector as array to avoid structure alignment issues
};
//! Optimized concretization for float type.
template <>
inline NCollection_Vec3<float>& NCollection_Vec3<float>::operator/=(const float theInvFactor)
{
Multiply(1.0f / theInvFactor);
return *this;
}
//! Optimized concretization for double type.
template <>
inline NCollection_Vec3<double>& NCollection_Vec3<double>::operator/=(const double theInvFactor)
{
Multiply(1.0 / theInvFactor);
return *this;
}
#endif // _NCollection_Vec3_H__