1
0
mirror of https://git.dev.opencascade.org/repos/occt.git synced 2025-04-10 18:51:21 +03:00
occt/src/GeomFill/GeomFill_GuideTrihedronPlan.cxx
omy 1d47d8d066 0024059: Eliminate compiler warning C4701 in MSVC++ with warning level 4
Removing pPotentially uninitialized local variable
Got rid of most of warnings C4701: Potentially uninitialized local variable
Removed redundant variable definitions.
Refactored a part of AppParCurves_ResolConstraint CTOR.
Replaced 0. to Precision::Confusion for tolerance vars;
Changed values for min and max parameter vars;
Got rid of redundant variables' initialization.
2013-08-22 12:08:59 +04:00

657 lines
18 KiB
C++
Executable File

// Created on: 1998-07-02
// Created by: Stephanie HUMEAU
// Copyright (c) 1998-1999 Matra Datavision
// Copyright (c) 1999-2012 OPEN CASCADE SAS
//
// The content of this file is subject to the Open CASCADE Technology Public
// License Version 6.5 (the "License"). You may not use the content of this file
// except in compliance with the License. Please obtain a copy of the License
// at http://www.opencascade.org and read it completely before using this file.
//
// The Initial Developer of the Original Code is Open CASCADE S.A.S., having its
// main offices at: 1, place des Freres Montgolfier, 78280 Guyancourt, France.
//
// The Original Code and all software distributed under the License is
// distributed on an "AS IS" basis, without warranty of any kind, and the
// Initial Developer hereby disclaims all such warranties, including without
// limitation, any warranties of merchantability, fitness for a particular
// purpose or non-infringement. Please see the License for the specific terms
// and conditions governing the rights and limitations under the License.
#include <GeomFill_GuideTrihedronPlan.ixx>
#include <gp_Pnt.hxx>
#include <gp_Pnt2d.hxx>
//#include <gp_Trsf2d.hxx>
//#include <Bnd_Box2d.hxx>
#include <ElCLib.hxx>
#include <Adaptor3d_Curve.hxx>
#include <GeomAdaptor_HCurve.hxx>
#include <GeomAdaptor_HSurface.hxx>
#include <Geom_Plane.hxx>
#include <IntCurveSurface_IntersectionPoint.hxx>
#include <IntCurveSurface_HInter.hxx>
#include <GeomFill_Frenet.hxx>
#include <GeomFill_PlanFunc.hxx>
#include <math_Vector.hxx>
#include <math_FunctionRoot.hxx>
#include <math_Matrix.hxx>
#include <Precision.hxx>
#if DRAW
#include <DrawTrSurf.hxx>
#endif
#if DEB
static void TracePlan(const Handle(Geom_Surface)& /*Plan*/)
{
cout << "Pas d'intersection Guide/Plan" << endl;
#if DRAW
char* Temp = "ThePlan" ;
DrawTrSurf::Set(Temp, Plan);
// DrawTrSurf::Set("ThePlan", Plan);
#endif
}
#endif
//==================================================================
//Function: InGoodPeriod
//Purpose : Recadre un paramtere
//==================================================================
static void InGoodPeriod(const Standard_Real Prec,
const Standard_Real Period,
Standard_Real& Current)
{
Standard_Real Diff=Current-Prec;
Standard_Integer nb = (Standard_Integer ) IntegerPart(Diff/Period);
Current -= nb*Period;
Diff = Current-Prec;
if (Diff > Period/2) Current -= Period;
else if (Diff < -Period/2) Current += Period;
}
//=======================================================================
//function : GuideTrihedronPlan
//purpose : Constructor
//=======================================================================
GeomFill_GuideTrihedronPlan::GeomFill_GuideTrihedronPlan (const Handle(Adaptor3d_HCurve)& theGuide) :
X(1,1),
XTol(1,1),
Inf(1,1), Sup(1,1),
myStatus(GeomFill_PipeOk)
{
myCurve.Nullify();
myGuide = theGuide; // guide
myTrimG = theGuide;
myNbPts = 20; // nb points pour calculs
Pole = new (TColgp_HArray2OfPnt2d)(1,1,1,myNbPts);//tab pr stocker Pprime (pt sur guide)
frenet = new (GeomFill_Frenet)();
XTol.Init(1.e-6);
XTol(1) = myGuide->Resolution(1.e-6);
}
//=======================================================================
//function : Init
//purpose : calcule myNbPts points sur la courbe guide (<=> normale)
//=======================================================================
void GeomFill_GuideTrihedronPlan::Init()
{
myStatus = GeomFill_PipeOk;
gp_Pnt P;
// Bnd_Box2d Box;
// Box.Update(-0.1, -0.1, 0.1, 0.1); // Taille minimal
gp_Vec Tangent,Normal,BiNormal;
Standard_Integer ii;
Standard_Real t, DeltaG, w = 0.;
Standard_Real f = myCurve->FirstParameter();
Standard_Real l = myCurve->LastParameter();
Handle(Geom_Plane) Plan;
Handle(GeomAdaptor_HSurface) Pl;
IntCurveSurface_IntersectionPoint PInt;
IntCurveSurface_HInter Int;
frenet->SetCurve(myCurve);
DeltaG = (myGuide->LastParameter() - myGuide->FirstParameter())/2;
Inf(1) = myGuide->FirstParameter() - DeltaG;
Sup(1) = myGuide->LastParameter() + DeltaG;
if (!myGuide->IsPeriodic()) {
myTrimG = myGuide->Trim(myGuide->FirstParameter()- DeltaG/100,
myGuide->LastParameter() + DeltaG/100,
DeltaG*1.e-7);
}
else {
myTrimG = myGuide;
}
// Standard_Real Step = DeltaG/100;
DeltaG /= 3;
for (ii=1; ii<=myNbPts; ii++)
{
t = Standard_Real(myNbPts - ii)*f + Standard_Real(ii - 1)*l;
t /= (myNbPts-1);
myCurve->D0(t, P);
frenet->D0(t, Tangent, Normal, BiNormal);
Plan = new (Geom_Plane) (P, Tangent);
Pl = new(GeomAdaptor_HSurface) (Plan);
Int.Perform(myTrimG, Pl); // intersection plan / guide
if (Int.NbPoints() == 0) {
#if DEB
TracePlan(Plan);
#endif
w = (fabs(myGuide->LastParameter() -w) > fabs(myGuide->FirstParameter()-w) ? myGuide->FirstParameter() : myGuide->LastParameter());
myStatus = GeomFill_PlaneNotIntersectGuide;
//return;
}
else
{
gp_Pnt Pmin;
PInt = Int.Point(1);
Pmin = PInt.Pnt();
Standard_Real Dmin = P.Distance(Pmin);
for (Standard_Integer jj=2;jj<=Int.NbPoints();jj++)
{
Pmin = Int.Point(jj).Pnt();
if (P.Distance(Pmin) < Dmin)
{
PInt = Int.Point(jj);
Dmin = P.Distance(Pmin);
}
}//for_jj
w = PInt.W();
}
if (ii>1) {
Standard_Real Diff = w - Pole->Value(1, ii-1).Y();
if (Abs(Diff) > DeltaG) {
if (myGuide->IsPeriodic()) {
InGoodPeriod (Pole->Value(1, ii-1).Y(),
myGuide->Period(), w);
Diff = w - Pole->Value(1, ii-1).Y();
}
}
#if DEB
if (Abs(Diff) > DeltaG) {
cout << "Trihedron Plan Diff on Guide : " <<
Diff << endl;
}
#endif
}
gp_Pnt2d p1(t, w); // on stocke les parametres
Pole->SetValue(1, ii, p1);
}// for_ii
}
//=======================================================================
//function : SetCurve
//purpose : calculation of trihedron
//=======================================================================
void GeomFill_GuideTrihedronPlan::SetCurve(const Handle(Adaptor3d_HCurve)& C)
{
myCurve = C;
if (!myCurve.IsNull()) Init();
}
//=======================================================================
//function : Guide
//purpose : calculation of trihedron
//=======================================================================
Handle(Adaptor3d_HCurve) GeomFill_GuideTrihedronPlan::Guide()const
{
return myGuide;
}
//=======================================================================
//function : D0
//purpose : calculation of trihedron
//=======================================================================
Standard_Boolean GeomFill_GuideTrihedronPlan::D0(const Standard_Real Param,
gp_Vec& Tangent,
gp_Vec& Normal,
gp_Vec& BiNormal)
{
gp_Pnt P, Pprime;
// gp_Vec To;
myCurve->D0(Param, P);
frenet->D0(Param,Tangent,Normal,BiNormal);
//initialisation de la recherche
InitX(Param);
Standard_Integer Iter = 50;
// fonction dont il faut trouver la racine : G(W)-Pl(U,V)=0
GeomFill_PlanFunc E(P, Tangent, myGuide);
// resolution
math_FunctionRoot Result(E, X(1), XTol(1),
Inf(1), Sup(1), Iter);
if (Result.IsDone())
{
Standard_Real Res = Result.Root();
// R = Result.Root(); // solution
Pprime = myTrimG->Value(Res); // pt sur courbe guide
gp_Vec n (P, Pprime); // vecteur definissant la normale du triedre
Normal = n.Normalized();
BiNormal = Tangent.Crossed(Normal);
BiNormal.Normalized();
}
else { // Erreur...
#if DEB
cout << "D0 :";
// plan ortho a la trajectoire pour determiner Pprime
Handle(Geom_Plane) Plan = new (Geom_Plane)(P, Tangent);
TracePlan(Plan);
#endif
myStatus = GeomFill_PlaneNotIntersectGuide;
return Standard_False;
}
return Standard_True;
}
//=======================================================================
//function : D1
//purpose : calculation of trihedron and first derivative
//=======================================================================
Standard_Boolean GeomFill_GuideTrihedronPlan::D1(const Standard_Real Param,
gp_Vec& Tangent,
gp_Vec& DTangent,
gp_Vec& Normal,
gp_Vec& DNormal,
gp_Vec& BiNormal,
gp_Vec& DBiNormal)
{
// return Standard_False;
gp_Pnt P, PG;
gp_Vec To,TG;
// triedre de frenet sur la trajectoire
myCurve->D1(Param, P, To);
frenet->D1(Param,Tangent,DTangent,Normal,DNormal,BiNormal,DBiNormal);
// tolerance sur E
Standard_Integer Iter = 50;
// fonction dont il faut trouver la racine : G(W)-Pl(U,V)=0
InitX(Param);
GeomFill_PlanFunc E(P, Tangent, myGuide);
// resolution
math_FunctionRoot Result(E, X(1), XTol(1),
Inf(1), Sup(1), Iter);
if (Result.IsDone())
{
Standard_Real Res = Result.Root();
// R = Result.Root(); // solution
myTrimG->D1(Res, PG, TG);
gp_Vec n (P, PG), dn; // vecteur definissant la normale du triedre
Standard_Real Norm = n.Magnitude();
if (Norm < 1.e-12) {
Norm = 1.0;
}
n /=Norm;
Normal = n;
BiNormal = Tangent.Crossed(Normal);
// derivee premiere du triedre
Standard_Real dedx, dedt, dtg_dt;
E.Derivative(Res, dedx);
E.DEDT(Res, To, DTangent, dedt);
dtg_dt = -dedt/dedx;
/* Standard_Real h=1.e-7, e, etg, etc;
E.Value(Res, e);
E.Value(Res+h, etg);
if ( Abs( (etg-e)/h - dedx) > 1.e-4) {
cout << "err :" << (etg-e)/h - dedx << endl;
}
gp_Pnt pdbg;
gp_Vec td, nb, bnb;
myCurve->D0(Param+h, pdbg);
frenet->D0(Param+h,td, nb, bnb);
GeomFill_PlanFunc Edeb(pdbg, td, myGuide);
Edeb.Value(Res, etc);
if ( Abs( (etc-e)/h - dedt) > 1.e-4) {
cout << "err :" << (etc-e)/h - dedt << endl;
} */
dn.SetLinearForm(dtg_dt, TG, -1, To);
DNormal.SetLinearForm(-(n*dn), n, dn);
DNormal /= Norm;
DBiNormal.SetLinearForm(Tangent.Crossed(DNormal),
DTangent.Crossed(Normal));
}
else {// Erreur...
#if DEB
cout << "D1 :";
// plan ortho a la trajectoire
Handle(Geom_Plane) Plan = new (Geom_Plane)(P, Tangent);
TracePlan(Plan);
#endif
myStatus = GeomFill_PlaneNotIntersectGuide;
return Standard_False;
}
return Standard_True;
}
//=======================================================================
//function : D2
//purpose : calculation of trihedron and derivatives
//=======================================================================
Standard_Boolean GeomFill_GuideTrihedronPlan::D2(const Standard_Real Param,
gp_Vec& Tangent,
gp_Vec& DTangent,
gp_Vec& D2Tangent,
gp_Vec& Normal,
gp_Vec& DNormal,
gp_Vec& D2Normal,
gp_Vec& BiNormal,
gp_Vec& DBiNormal,
gp_Vec& D2BiNormal)
{
// gp_Pnt P, PG;
gp_Pnt P;
// gp_Vec To,DTo,TG,DTG;
gp_Vec To,DTo;
myCurve->D2(Param, P, To, DTo);
// triedre de Frenet sur la trajectoire
frenet->D2(Param,Tangent,DTangent,D2Tangent,
Normal,DNormal,D2Normal,
BiNormal,DBiNormal,D2BiNormal);
/*
// plan ortho a Tangent pour trouver la pt Pprime sur le guide
Handle(Geom_Plane) Plan = new (Geom_Plane)(P, Tangent);
Handle(GeomAdaptor_HSurface) Pl= new(GeomAdaptor_HSurface)(Plan);
Standard_Integer Iter = 50;
// fonction dont il faut trouver la racine : G(W) - Pl(U,V)=0
GeomFill_FunctionPipe E(Pl , myGuide);
InitX(Param);
// resolution
math_FunctionSetRoot Result(E, X, XTol,
Inf, Sup, Iter);
if (Result.IsDone())
{
math_Vector R(1,3);
R = Result.Root(); // solution
myTrimG->D2(R(1), PG, TG, DTG);
gp_Vec n (P, PG); // vecteur definissant la normale du triedre
Standard_Real Norm = n.Magnitude();
n /= Norm;
Normal = n.Normalized();
BiNormal = Tangent.Crossed(Normal);
// derivee premiere du triedre
Standard_Real dtp_dt;
dtp_dt = (To*Tangent - Norm*(n*DTangent))/(Tangent*TG);
gp_Vec dn, d2n;
dn.SetLinearForm(dtp_dt, TG, -1, To);
DNormal.SetLinearForm(-(n*dn), n, dn);
DNormal /= Norm;
DBiNormal = Tangent.Crossed(DNormal) + DTangent.Crossed(Normal);
// derivee seconde du triedre
Standard_Real d2tp_dt2;
d2tp_dt2 = (DTo*Tangent+To*DTangent - dn*DTangent-Norm*n*D2Tangent)/(TG*Tangent)
- (To*Tangent-Norm*n*DTangent) * (DTG*dtp_dt*Tangent+TG*DTangent)
/ ((TG*Tangent)*(TG*Tangent));
d2n.SetLinearForm(dtp_dt*dtp_dt, DTG, d2tp_dt2, TG, -DTo);
dn/=Norm;
d2n/=Norm;
D2Normal.SetLinearForm(3*Pow(n*dn,2)- (dn.SquareMagnitude() + n*d2n), n,
-2*(n*dn), dn,
d2n);
D2BiNormal.SetLinearForm(1, D2Tangent.Crossed(Normal),
2, DTangent.Crossed(DNormal),
Tangent.Crossed(D2Normal));
}
else {// Erreur...
#if DEB
cout << "D2 :";
TracePlan(Plan);
#endif
myStatus = GeomFill_PlaneNotIntersectGuide;
return Standard_False;
}
*/
// return Standard_True;
return Standard_False;
}
//=======================================================================
//function : Copy
//purpose :
//=======================================================================
Handle(GeomFill_TrihedronLaw) GeomFill_GuideTrihedronPlan::Copy() const
{
Handle(GeomFill_GuideTrihedronPlan) copy =
new (GeomFill_GuideTrihedronPlan) (myGuide);
copy->SetCurve(myCurve);
return copy;
}
//=======================================================================
//function : ErrorStatus
//purpose :
//=======================================================================
GeomFill_PipeError GeomFill_GuideTrihedronPlan::ErrorStatus() const
{
return myStatus;
}
//=======================================================================
//function : NbIntervals
//purpose : Version provisoire : Il faut tenir compte du guide
//=======================================================================
Standard_Integer GeomFill_GuideTrihedronPlan::NbIntervals(const GeomAbs_Shape S)const
{
Standard_Integer Nb;
GeomAbs_Shape tmpS;
switch (S) {
case GeomAbs_C0: tmpS = GeomAbs_C1; break;
case GeomAbs_C1: tmpS = GeomAbs_C2; break;
case GeomAbs_C2: tmpS = GeomAbs_C3; break;
default: tmpS = GeomAbs_CN;
}
Nb = myCurve->NbIntervals(tmpS);
return Nb;
}
//======================================================================
//function :Intervals
//purpose :
//=======================================================================
void GeomFill_GuideTrihedronPlan::Intervals(TColStd_Array1OfReal& TT,
const GeomAbs_Shape S) const
{
GeomAbs_Shape tmpS;
switch (S) {
case GeomAbs_C0: tmpS = GeomAbs_C1; break;
case GeomAbs_C1: tmpS = GeomAbs_C2; break;
case GeomAbs_C2: tmpS = GeomAbs_C3; break;
default: tmpS = GeomAbs_CN;
}
myCurve->Intervals(TT, tmpS);
}
//======================================================================
//function :SetInterval
//purpose :
//=======================================================================
void GeomFill_GuideTrihedronPlan::SetInterval(const Standard_Real First,
const Standard_Real Last)
{
myTrimmed = myCurve->Trim(First, Last, Precision::Confusion());
}
//=======================================================================
//function : GetAverageLaw
//purpose :
//=======================================================================
void GeomFill_GuideTrihedronPlan::GetAverageLaw(gp_Vec& ATangent,
gp_Vec& ANormal,
gp_Vec& ABiNormal)
{
Standard_Integer ii;
Standard_Real t, Delta = (myCurve->LastParameter() -
myCurve->FirstParameter())/20.001;
ATangent.SetCoord(0.,0.,0.);
ANormal.SetCoord(0.,0.,0.);
ABiNormal.SetCoord(0.,0.,0.);
gp_Vec T, N, B;
for (ii=1, T; ii<=20; ii++) {
t = myCurve->FirstParameter() +(ii-1)*Delta;
D0(t, T, N, B);
ATangent +=T;
ANormal +=N;
ABiNormal+=B;
}
ATangent /= 20;
ANormal /= 20;
ABiNormal /= 20;
}
//=======================================================================
//function : IsConstant
//purpose :
//=======================================================================
Standard_Boolean GeomFill_GuideTrihedronPlan::IsConstant() const
{
if ((myCurve->GetType() == GeomAbs_Line) &&
(myGuide->GetType() == GeomAbs_Line)) {
Standard_Real Angle;
Angle = myCurve->Line().Angle(myGuide->Line());
if ((Angle<1.e-12) || ((2*M_PI-Angle)<1.e-12) )
return Standard_True;
}
return Standard_False;
}
//=======================================================================
//function : IsOnlyBy3dCurve
//purpose :
//=======================================================================
Standard_Boolean GeomFill_GuideTrihedronPlan::IsOnlyBy3dCurve() const
{
return Standard_False;
}
//=======================================================================
//function : Origine
//purpose : Nothing!!
//=======================================================================
void GeomFill_GuideTrihedronPlan::Origine(const Standard_Real ,
const Standard_Real )
{
}
//==================================================================
//Function : InitX
//Purpose : recherche par interpolation d'une valeur initiale
//==================================================================
void GeomFill_GuideTrihedronPlan::InitX(const Standard_Real Param)
{
Standard_Integer Ideb = 1, Ifin = Pole->RowLength(), Idemi;
Standard_Real Valeur, t1, t2;
Valeur = Pole->Value(1, Ideb).X();
if (Param == Valeur) {
Ifin = Ideb+1;
}
Valeur = Pole->Value(1, Ifin).X();
if (Param == Valeur) {
Ideb = Ifin-1;
}
while ( Ideb+1 != Ifin) {
Idemi = (Ideb+Ifin)/2;
Valeur = Pole->Value(1, Idemi).X();
if (Valeur < Param) {
Ideb = Idemi;
}
else {
if ( Valeur > Param) { Ifin = Idemi;}
else {
Ideb = Idemi;
Ifin = Ideb+1;
}
}
}
t1 = Pole->Value(1,Ideb).X();
t2 = Pole->Value(1,Ifin).X();
Standard_Real diff = t2-t1;
if (diff > 1.e-7) {
Standard_Real b = (Param-t1) / diff,
a = (t2-Param) / diff;
X(1) = Pole->Value(1,Ideb).Coord(2) * a
+ Pole->Value(1,Ifin).Coord(2) * b; //param guide
}
else {
X(1) = (Pole->Value(1, Ideb).Coord(2) +
Pole->Value(1, Ifin).Coord(2)) / 2;
}
if (myGuide->IsPeriodic()) {
X(1) = ElCLib::InPeriod(X(1), myGuide->FirstParameter(),
myGuide->LastParameter());
}
}