1
0
mirror of https://git.dev.opencascade.org/repos/occt.git synced 2025-04-05 18:16:23 +03:00
occt/src/ProjLib/ProjLib_ProjectedCurve.cxx

1342 lines
41 KiB
C++

// Created on: 1993-08-25
// Created by: Bruno DUMORTIER
// Copyright (c) 1993-1999 Matra Datavision
// Copyright (c) 1999-2014 OPEN CASCADE SAS
//
// This file is part of Open CASCADE Technology software library.
//
// This library is free software; you can redistribute it and/or modify it under
// the terms of the GNU Lesser General Public License version 2.1 as published
// by the Free Software Foundation, with special exception defined in the file
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
// distribution for complete text of the license and disclaimer of any warranty.
//
// Alternatively, this file may be used under the terms of Open CASCADE
// commercial license or contractual agreement.
// Modified by skv - Wed Aug 11 15:45:58 2004 OCC6272
#include <Standard_NoSuchObject.hxx>
#include <Standard_NotImplemented.hxx>
#include <ProjLib_ProjectedCurve.hxx>
#include <ProjLib_HCompProjectedCurve.hxx>
#include <ProjLib_ComputeApproxOnPolarSurface.hxx>
#include <ProjLib_ComputeApprox.hxx>
#include <ProjLib_Projector.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Approx_CurveOnSurface.hxx>
#include <ProjLib_Plane.hxx>
#include <ProjLib_Cylinder.hxx>
#include <ProjLib_Cone.hxx>
#include <ProjLib_Sphere.hxx>
#include <ProjLib_Torus.hxx>
#include <Precision.hxx>
#include <Geom2d_BezierCurve.hxx>
#include <gp_Vec2d.hxx>
#include <StdFail_NotDone.hxx>
#include <Geom2dConvert_CompCurveToBSplineCurve.hxx>
#include <Geom2dConvert.hxx>
#include <TColStd_Array1OfReal.hxx>
#include <GeomAbs_IsoType.hxx>
#include <Geom2d_Line.hxx>
#include <Geom2d_TrimmedCurve.hxx>
#include <GeomLib.hxx>
#include <Extrema_ExtPC.hxx>
#include <NCollection_DataMap.hxx>
#include <ElSLib.hxx>
#include <ElCLib.hxx>
IMPLEMENT_STANDARD_RTTIEXT(ProjLib_ProjectedCurve, Adaptor2d_Curve2d)
//=======================================================================
//function : ComputeTolU
//purpose :
//=======================================================================
static Standard_Real ComputeTolU(const Handle(Adaptor3d_Surface)& theSurf,
const Standard_Real theTolerance)
{
Standard_Real aTolU = theSurf->UResolution(theTolerance);
if (theSurf->IsUPeriodic())
{
aTolU = Min(aTolU, 0.01*theSurf->UPeriod());
}
return aTolU;
}
//=======================================================================
//function : ComputeTolV
//purpose :
//=======================================================================
static Standard_Real ComputeTolV(const Handle(Adaptor3d_Surface)& theSurf,
const Standard_Real theTolerance)
{
Standard_Real aTolV = theSurf->VResolution(theTolerance);
if (theSurf->IsVPeriodic())
{
aTolV = Min(aTolV, 0.01*theSurf->VPeriod());
}
return aTolV;
}
//=======================================================================
//function : IsoIsDeg
//purpose :
//=======================================================================
static Standard_Boolean IsoIsDeg (const Adaptor3d_Surface& S,
const Standard_Real Param,
const GeomAbs_IsoType IT,
const Standard_Real TolMin,
const Standard_Real TolMax)
{
Standard_Real U1=0.,U2=0.,V1=0.,V2=0.,T;
Standard_Boolean Along = Standard_True;
U1 = S.FirstUParameter();
U2 = S.LastUParameter();
V1 = S.FirstVParameter();
V2 = S.LastVParameter();
gp_Vec D1U,D1V;
gp_Pnt P;
Standard_Real Step,D1NormMax;
if (IT == GeomAbs_IsoV)
{
Step = (U2 - U1)/10;
D1NormMax=0.;
for (T=U1;T<=U2;T=T+Step)
{
S.D1(T,Param,P,D1U,D1V);
D1NormMax=Max(D1NormMax,D1U.Magnitude());
}
if (D1NormMax >TolMax || D1NormMax < TolMin )
Along = Standard_False;
}
else
{
Step = (V2 - V1)/10;
D1NormMax=0.;
for (T=V1;T<=V2;T=T+Step)
{
S.D1(Param,T,P,D1U,D1V);
D1NormMax=Max(D1NormMax,D1V.Magnitude());
}
if (D1NormMax >TolMax || D1NormMax < TolMin )
Along = Standard_False;
}
return Along;
}
//=======================================================================
//function : TrimC3d
//purpose :
//=======================================================================
static void TrimC3d(Handle(Adaptor3d_Curve)& myCurve,
Standard_Boolean* IsTrimmed,
const Standard_Real dt,
const gp_Pnt& Pole,
Standard_Integer* SingularCase,
const Standard_Integer NumberOfSingularCase,
const Standard_Real TolConf)
{
Standard_Real f = myCurve->FirstParameter();
Standard_Real l = myCurve->LastParameter();
gp_Pnt P = myCurve->Value(f);
if(P.Distance(Pole) <= TolConf) {
IsTrimmed[0] = Standard_True;
f = f+dt;
myCurve = myCurve->Trim(f, l, Precision::Confusion());
SingularCase[0] = NumberOfSingularCase;
}
P = myCurve->Value(l);
if(P.Distance(Pole) <= TolConf) {
IsTrimmed[1] = Standard_True;
l = l-dt;
myCurve = myCurve->Trim(f, l, Precision::Confusion());
SingularCase[1] = NumberOfSingularCase;
}
}
//=======================================================================
//function : ExtendC2d
//purpose :
//=======================================================================
static void ExtendC2d (Handle(Geom2d_BSplineCurve)& aRes,
const Standard_Real /*t*/,
const Standard_Real /*dt*/,
const Standard_Real u1,
const Standard_Real u2,
const Standard_Real v1,
const Standard_Real v2,
const Standard_Integer FirstOrLast,
const Standard_Integer NumberOfSingularCase)
{
Standard_Real theParam = (FirstOrLast == 0)? aRes->FirstParameter()
: aRes->LastParameter();
gp_Pnt2d aPBnd;
gp_Vec2d aVBnd;
gp_Dir2d aDBnd;
Handle(Geom2d_TrimmedCurve) aSegment;
Geom2dConvert_CompCurveToBSplineCurve aCompCurve(aRes, Convert_RationalC1);
Standard_Real aTol = Precision::Confusion();
aRes->D1(theParam, aPBnd, aVBnd);
aDBnd.SetXY(aVBnd.XY());
gp_Lin2d aLin(aPBnd, aDBnd); //line in direction of derivative
gp_Pnt2d thePole;
gp_Dir2d theBoundDir;
switch (NumberOfSingularCase)
{
case 1:
{
thePole.SetCoord(u1, v1);
theBoundDir.SetCoord(0., 1.);
break;
}
case 2:
{
thePole.SetCoord(u2, v1);
theBoundDir.SetCoord(0., 1.);
break;
}
case 3:
{
thePole.SetCoord(u1, v1);
theBoundDir.SetCoord(1., 0.);
break;
}
case 4:
{
thePole.SetCoord(u1, v2);
theBoundDir.SetCoord(1., 0.);
break;
}
}
gp_Lin2d BoundLin(thePole, theBoundDir); //one of the bounds of rectangle
Standard_Real ParOnLin = 0.;
if (theBoundDir.IsParallel(aDBnd, 100.*Precision::Angular()))
{
ParOnLin = ElCLib::Parameter(aLin, thePole);
}
else
{
Standard_Real U1x = BoundLin.Direction().X();
Standard_Real U1y = BoundLin.Direction().Y();
Standard_Real U2x = aLin.Direction().X();
Standard_Real U2y = aLin.Direction().Y();
Standard_Real Uo21x = aLin.Location().X() - BoundLin.Location().X();
Standard_Real Uo21y = aLin.Location().Y() - BoundLin.Location().Y();
Standard_Real D = U1y*U2x - U1x*U2y;
ParOnLin = (Uo21y * U1x - Uo21x * U1y) / D; //parameter of intersection point
}
Handle(Geom2d_Line) aSegLine = new Geom2d_Line(aLin);
aSegment = (FirstOrLast == 0)?
new Geom2d_TrimmedCurve(aSegLine, ParOnLin, 0.) :
new Geom2d_TrimmedCurve(aSegLine, 0., ParOnLin);
Standard_Boolean anAfter = FirstOrLast != 0;
aCompCurve.Add(aSegment, aTol, anAfter);
aRes = aCompCurve.BSplineCurve();
}
//=======================================================================
//function : Project
//purpose :
//=======================================================================
static void Project(ProjLib_Projector& P, Handle(Adaptor3d_Curve)& C)
{
GeomAbs_CurveType CType = C->GetType();
switch (CType) {
case GeomAbs_Line:
P.Project(C->Line());
break;
case GeomAbs_Circle:
P.Project(C->Circle());
break;
case GeomAbs_Ellipse:
P.Project(C->Ellipse());
break;
case GeomAbs_Hyperbola:
P.Project(C->Hyperbola());
break;
case GeomAbs_Parabola:
P.Project(C->Parabola());
break;
case GeomAbs_BSplineCurve:
case GeomAbs_BezierCurve:
case GeomAbs_OffsetCurve:
case GeomAbs_OtherCurve: // try the approximation
break;
default:
throw Standard_NoSuchObject(" ");
}
}
//=======================================================================
//function : ProjLib_ProjectedCurve
//purpose :
//=======================================================================
ProjLib_ProjectedCurve::ProjLib_ProjectedCurve() :
myTolerance(Precision::Confusion()),
myDegMin(-1), myDegMax(-1),
myMaxSegments(-1),
myMaxDist(-1.),
myBndPnt(AppParCurves_TangencyPoint)
{
}
//=======================================================================
//function : ProjLib_ProjectedCurve
//purpose :
//=======================================================================
ProjLib_ProjectedCurve::ProjLib_ProjectedCurve
(const Handle(Adaptor3d_Surface)& S) :
myTolerance(Precision::Confusion()),
myDegMin(-1), myDegMax(-1),
myMaxSegments(-1),
myMaxDist(-1.),
myBndPnt(AppParCurves_TangencyPoint)
{
Load(S);
}
//=======================================================================
//function : ProjLib_ProjectedCurve
//purpose :
//=======================================================================
ProjLib_ProjectedCurve::ProjLib_ProjectedCurve
(const Handle(Adaptor3d_Surface)& S,
const Handle(Adaptor3d_Curve)& C) :
myTolerance(Precision::Confusion()),
myDegMin(-1), myDegMax(-1),
myMaxSegments(-1),
myMaxDist(-1.),
myBndPnt(AppParCurves_TangencyPoint)
{
Load(S);
Perform(C);
}
//=======================================================================
//function : ProjLib_ProjectedCurve
//purpose :
//=======================================================================
ProjLib_ProjectedCurve::ProjLib_ProjectedCurve
(const Handle(Adaptor3d_Surface)& S,
const Handle(Adaptor3d_Curve)& C,
const Standard_Real Tol) :
myTolerance(Max(Tol, Precision::Confusion())),
myDegMin(-1), myDegMax(-1),
myMaxSegments(-1),
myMaxDist(-1.),
myBndPnt(AppParCurves_TangencyPoint)
{
Load(S);
Perform(C);
}
//=======================================================================
//function : ShallowCopy
//purpose :
//=======================================================================
Handle(Adaptor2d_Curve2d) ProjLib_ProjectedCurve::ShallowCopy() const
{
Handle(ProjLib_ProjectedCurve) aCopy = new ProjLib_ProjectedCurve();
aCopy->myTolerance = myTolerance;
if (!mySurface.IsNull())
{
aCopy->mySurface = mySurface->ShallowCopy();
}
if (!myCurve.IsNull())
{
aCopy->myCurve = myCurve->ShallowCopy();
}
aCopy->myResult = myResult;
aCopy->myDegMin = myDegMin;
aCopy->myDegMax = myDegMax;
aCopy->myMaxSegments = myMaxSegments;
aCopy->myMaxDist = myMaxDist;
aCopy->myBndPnt = myBndPnt;
return aCopy;
}
//=======================================================================
//function : Load
//purpose :
//=======================================================================
void ProjLib_ProjectedCurve::Load(const Handle(Adaptor3d_Surface)& S)
{
mySurface = S ;
}
//=======================================================================
//function : Load
//purpose :
//=======================================================================
void ProjLib_ProjectedCurve::Load(const Standard_Real theTol)
{
myTolerance = theTol;
}
//=======================================================================
//function : Perform
//purpose :
//=======================================================================
void ProjLib_ProjectedCurve::Perform(const Handle(Adaptor3d_Curve)& C)
{
myTolerance = Max(myTolerance, Precision::Confusion());
myCurve = C;
Standard_Real FirstPar = C->FirstParameter();
Standard_Real LastPar = C->LastParameter();
GeomAbs_SurfaceType SType = mySurface->GetType();
GeomAbs_CurveType CType = myCurve->GetType();
Standard_Boolean isAnalyticalSurf = Standard_True;
Standard_Boolean IsTrimmed[2] = { Standard_False, Standard_False };
Standard_Integer SingularCase[2];
const Standard_Real eps = 0.01;
Standard_Real TolConf = Precision::Confusion();
Standard_Real dt = (LastPar - FirstPar) * eps;
Standard_Real U1 = 0.0, U2 = 0.0, V1 = 0.0, V2 = 0.0;
U1 = mySurface->FirstUParameter();
U2 = mySurface->LastUParameter();
V1 = mySurface->FirstVParameter();
V2 = mySurface->LastVParameter();
switch (SType)
{
case GeomAbs_Plane:
{
ProjLib_Plane P(mySurface->Plane());
Project(P,myCurve);
myResult = P;
}
break;
case GeomAbs_Cylinder:
{
ProjLib_Cylinder P(mySurface->Cylinder());
Project(P,myCurve);
myResult = P;
}
break;
case GeomAbs_Cone:
{
ProjLib_Cone P(mySurface->Cone());
Project(P,myCurve);
myResult = P;
}
break;
case GeomAbs_Sphere:
{
ProjLib_Sphere P(mySurface->Sphere());
Project(P,myCurve);
if ( P.IsDone())
{
// on met dans la pseudo-periode ( car Sphere n'est pas
// periodique en V !)
P.SetInBounds(myCurve->FirstParameter());
}
else
{
const Standard_Real Vmax = M_PI / 2.;
const Standard_Real Vmin = -Vmax;
const Standard_Real minang = 1.e-5 * M_PI;
gp_Sphere aSph = mySurface->Sphere();
Standard_Real anR = aSph.Radius();
Standard_Real f = myCurve->FirstParameter();
Standard_Real l = myCurve->LastParameter();
gp_Pnt Pf = myCurve->Value(f);
gp_Pnt Pl = myCurve->Value(l);
gp_Pnt aLoc = aSph.Position().Location();
Standard_Real maxdist = Max(Pf.Distance(aLoc), Pl.Distance(aLoc));
TolConf = Max(anR * minang, Abs(anR - maxdist));
//Surface has pole at V = Vmin and Vmax
gp_Pnt Pole = mySurface->Value(U1, Vmin);
TrimC3d(myCurve, IsTrimmed, dt, Pole, SingularCase, 3, TolConf);
Pole = mySurface->Value(U1, Vmax);
TrimC3d(myCurve, IsTrimmed, dt, Pole, SingularCase, 4, TolConf);
}
myResult = P;
}
break;
case GeomAbs_Torus:
{
ProjLib_Torus P(mySurface->Torus());
Project(P,myCurve);
myResult = P;
}
break;
case GeomAbs_BezierSurface:
case GeomAbs_BSplineSurface:
{
isAnalyticalSurf = Standard_False;
Standard_Real f, l;
f = myCurve->FirstParameter();
l = myCurve->LastParameter();
dt = (l - f) * eps;
const Adaptor3d_Surface& S = *mySurface;
U1 = S.FirstUParameter();
U2 = S.LastUParameter();
V1 = S.FirstVParameter();
V2 = S.LastVParameter();
if(IsoIsDeg(S, U1, GeomAbs_IsoU, 0., myTolerance))
{
//Surface has pole at U = Umin
gp_Pnt Pole = mySurface->Value(U1, V1);
TrimC3d(myCurve, IsTrimmed, dt, Pole, SingularCase, 1, TolConf);
}
if(IsoIsDeg(S, U2, GeomAbs_IsoU, 0., myTolerance))
{
//Surface has pole at U = Umax
gp_Pnt Pole = mySurface->Value(U2, V1);
TrimC3d(myCurve, IsTrimmed, dt, Pole, SingularCase, 2, TolConf);
}
if(IsoIsDeg(S, V1, GeomAbs_IsoV, 0., myTolerance))
{
//Surface has pole at V = Vmin
gp_Pnt Pole = mySurface->Value(U1, V1);
TrimC3d(myCurve, IsTrimmed, dt, Pole, SingularCase, 3, TolConf);
}
if(IsoIsDeg(S, V2, GeomAbs_IsoV, 0., myTolerance))
{
//Surface has pole at V = Vmax
gp_Pnt Pole = mySurface->Value(U1, V2);
TrimC3d(myCurve, IsTrimmed, dt, Pole, SingularCase, 4, TolConf);
}
ProjLib_ComputeApproxOnPolarSurface polar;
polar.SetTolerance(myTolerance);
polar.SetDegree(myDegMin, myDegMax);
polar.SetMaxSegments(myMaxSegments);
polar.SetBndPnt(myBndPnt);
polar.SetMaxDist(myMaxDist);
polar.Perform(myCurve, mySurface);
Handle(Geom2d_BSplineCurve) aRes = polar.BSpline();
if (!aRes.IsNull())
{
myTolerance = polar.Tolerance();
if( (IsTrimmed[0] || IsTrimmed[1]))
{
if(IsTrimmed[0])
{
//Add segment before start of curve
f = myCurve->FirstParameter();
ExtendC2d(aRes, f, -dt, U1, U2, V1, V2, 0, SingularCase[0]);
}
if(IsTrimmed[1])
{
//Add segment after end of curve
l = myCurve->LastParameter();
ExtendC2d(aRes, l, dt, U1, U2, V1, V2, 1, SingularCase[1]);
}
Handle(Geom2d_Curve) NewCurve2d;
GeomLib::SameRange(Precision::PConfusion(), aRes,
aRes->FirstParameter(), aRes->LastParameter(),
FirstPar, LastPar, NewCurve2d);
aRes = Handle(Geom2d_BSplineCurve)::DownCast(NewCurve2d);
}
myResult.SetBSpline(aRes);
myResult.Done();
myResult.SetType(GeomAbs_BSplineCurve);
}
}
break;
default:
{
isAnalyticalSurf = Standard_False;
Standard_Real Vsingular[2] = {0.0 , 0.0}; //for surfaces of revolution
Standard_Real f = 0.0, l = 0.0;
dt = 0.0;
if(mySurface->GetType() == GeomAbs_SurfaceOfRevolution)
{
//Check possible singularity
gp_Pnt P = mySurface->AxeOfRevolution().Location();
gp_Dir N = mySurface->AxeOfRevolution().Direction();
gp_Lin L(P, N);
f = myCurve->FirstParameter();
l = myCurve->LastParameter();
dt = (l - f) * eps;
P = myCurve->Value(f);
if(L.Distance(P) < Precision::Confusion())
{
IsTrimmed[0] = Standard_True;
f = f + dt;
myCurve = myCurve->Trim(f, l, Precision::Confusion());
// Searching the parameter on the basis curve for surface of revolution
Extrema_ExtPC anExtr(P, *mySurface->BasisCurve(), myTolerance);
if (anExtr.IsDone())
{
Standard_Real aMinDist = RealLast();
for(Standard_Integer anIdx = 1; anIdx <= anExtr.NbExt(); anIdx++)
{
if (anExtr.IsMin(anIdx) &&
anExtr.SquareDistance(anIdx) < aMinDist)
{
aMinDist = anExtr.SquareDistance(anIdx);
Vsingular[0] = anExtr.Point(anIdx).Parameter();
}
}
}
else
Vsingular[0] = ElCLib::Parameter(L, P);
//SingularCase[0] = 3;
}
P = myCurve->Value(l);
if(L.Distance(P) < Precision::Confusion())
{
IsTrimmed[1] = Standard_True;
l = l - dt;
myCurve = myCurve->Trim(f, l, Precision::Confusion());
// Searching the parameter on the basis curve for surface of revolution
Extrema_ExtPC anExtr(P, *mySurface->BasisCurve(), myTolerance);
if (anExtr.IsDone())
{
Standard_Real aMinDist = RealLast();
for(Standard_Integer anIdx = 1; anIdx <= anExtr.NbExt(); anIdx++)
{
if (anExtr.IsMin(anIdx) &&
anExtr.SquareDistance(anIdx) < aMinDist)
{
aMinDist = anExtr.SquareDistance(anIdx);
Vsingular[1] = anExtr.Point(anIdx).Parameter();
}
}
}
else
Vsingular[1] = ElCLib::Parameter(L, P);
//SingularCase[1] = 4;
}
}
Standard_Real aTolU = Max(ComputeTolU(mySurface, myTolerance), Precision::Confusion());
Standard_Real aTolV = Max(ComputeTolV(mySurface, myTolerance), Precision::Confusion());
Standard_Real aTol2d = Sqrt(aTolU*aTolU + aTolV*aTolV);
Standard_Real aMaxDist = 100. * myTolerance;
if(myMaxDist > 0.)
{
aMaxDist = myMaxDist;
}
Handle(ProjLib_HCompProjectedCurve) HProjector = new ProjLib_HCompProjectedCurve (mySurface,myCurve, aTolU, aTolV, aMaxDist);
// Normalement, dans le cadre de ProjLib, le resultat
// doit etre une et une seule courbe !!!
// De plus, cette courbe ne doit pas etre Single point
Standard_Integer NbCurves = HProjector->NbCurves();
Standard_Real Udeb = 0.0,Ufin = 0.0;
if (NbCurves > 0)
{
HProjector->Bounds(1, Udeb, Ufin);
}
else
{
return;
}
// Approximons cette courbe algorithmique.
Standard_Boolean Only3d = Standard_False;
Standard_Boolean Only2d = Standard_True;
GeomAbs_Shape Continuity = GeomAbs_C1;
if(myBndPnt == AppParCurves_PassPoint)
{
Continuity = GeomAbs_C0;
}
Standard_Integer MaxDegree = 14;
if(myDegMax > 0)
{
MaxDegree = myDegMax;
}
Standard_Integer MaxSeg = 16;
if(myMaxSegments > 0)
{
MaxSeg = myMaxSegments;
}
Approx_CurveOnSurface appr(HProjector, mySurface, Udeb, Ufin, myTolerance);
appr.Perform(MaxSeg, MaxDegree, Continuity, Only3d, Only2d);
Handle(Geom2d_BSplineCurve) aRes = appr.Curve2d();
if (!aRes.IsNull())
{
aTolU = appr.MaxError2dU();
aTolV = appr.MaxError2dV();
Standard_Real aNewTol2d = Sqrt(aTolU*aTolU + aTolV*aTolV);
myTolerance *= (aNewTol2d / aTol2d);
if(IsTrimmed[0] || IsTrimmed[1])
{
// Treatment only for surface of revolution
Standard_Real u1, u2, v1, v2;
u1 = mySurface->FirstUParameter();
u2 = mySurface->LastUParameter();
v1 = mySurface->FirstVParameter();
v2 = mySurface->LastVParameter();
if(IsTrimmed[0])
{
//Add segment before start of curve
ExtendC2d(aRes, f, -dt, u1, u2, Vsingular[0], v2, 0, 3);
}
if(IsTrimmed[1])
{
//Add segment after end of curve
ExtendC2d(aRes, l, dt, u1, u2, v1, Vsingular[1], 1, 4);
}
Handle(Geom2d_Curve) NewCurve2d;
GeomLib::SameRange(Precision::PConfusion(), aRes,
aRes->FirstParameter(), aRes->LastParameter(),
FirstPar, LastPar, NewCurve2d);
aRes = Handle(Geom2d_BSplineCurve)::DownCast(NewCurve2d);
if(Continuity == GeomAbs_C0)
{
// try to smoother the Curve GeomAbs_C1.
Standard_Integer aDeg = aRes->Degree();
Standard_Boolean OK = Standard_True;
Standard_Real aSmoothTol = Max(Precision::Confusion(), aNewTol2d);
for (Standard_Integer ij = 2; ij < aRes->NbKnots(); ij++) {
OK = OK && aRes->RemoveKnot(ij, aDeg-1, aSmoothTol);
}
}
}
myResult.SetBSpline(aRes);
myResult.Done();
myResult.SetType(GeomAbs_BSplineCurve);
}
}
}
if ( !myResult.IsDone() && isAnalyticalSurf)
{
// Use advanced analytical projector if base analytical projection failed.
ProjLib_ComputeApprox Comp;
Comp.SetTolerance(myTolerance);
Comp.SetDegree(myDegMin, myDegMax);
Comp.SetMaxSegments(myMaxSegments);
Comp.SetBndPnt(myBndPnt);
Comp.Perform(myCurve, mySurface);
if (Comp.Bezier().IsNull() && Comp.BSpline().IsNull())
return; // advanced projector has been failed too
myResult.Done();
Handle(Geom2d_BSplineCurve) aRes;
if (Comp.BSpline().IsNull())
{
aRes = Geom2dConvert::CurveToBSplineCurve(Comp.Bezier());
}
else
{
aRes = Comp.BSpline();
}
if ((IsTrimmed[0] || IsTrimmed[1]))
{
if (IsTrimmed[0])
{
//Add segment before start of curve
Standard_Real f = myCurve->FirstParameter();
ExtendC2d(aRes, f, -dt, U1, U2, V1, V2, 0, SingularCase[0]);
}
if (IsTrimmed[1])
{
//Add segment after end of curve
Standard_Real l = myCurve->LastParameter();
ExtendC2d(aRes, l, dt, U1, U2, V1, V2, 1, SingularCase[1]);
}
Handle(Geom2d_Curve) NewCurve2d;
GeomLib::SameRange(Precision::PConfusion(), aRes,
aRes->FirstParameter(), aRes->LastParameter(),
FirstPar, LastPar, NewCurve2d);
aRes = Handle(Geom2d_BSplineCurve)::DownCast(NewCurve2d);
myResult.SetBSpline(aRes);
myResult.SetType(GeomAbs_BSplineCurve);
}
else
{
// set the type
if (SType == GeomAbs_Plane && CType == GeomAbs_BezierCurve)
{
myResult.SetType(GeomAbs_BezierCurve);
myResult.SetBezier(Comp.Bezier());
}
else
{
myResult.SetType(GeomAbs_BSplineCurve);
myResult.SetBSpline(Comp.BSpline());
}
}
// set the periodicity flag
if (SType == GeomAbs_Plane &&
CType == GeomAbs_BSplineCurve &&
myCurve->IsPeriodic())
{
myResult.SetPeriodic();
}
myTolerance = Comp.Tolerance();
}
Standard_Boolean isPeriodic[] = {mySurface->IsUPeriodic(),
mySurface->IsVPeriodic()};
if (myResult.IsDone() &&
(isPeriodic[0] || isPeriodic[1]))
{
// Check result curve to be in params space.
// U and V parameters space correspondingly.
const Standard_Real aSurfFirstPar[2] = {mySurface->FirstUParameter(),
mySurface->FirstVParameter()};
Standard_Real aSurfPeriod[2] = {0.0, 0.0};
if (isPeriodic[0])
aSurfPeriod[0] = mySurface->UPeriod();
if (isPeriodic[1])
aSurfPeriod[1] = mySurface->VPeriod();
for(Standard_Integer anIdx = 1; anIdx <= 2; anIdx++)
{
if (!isPeriodic[anIdx - 1])
continue;
if (myResult.GetType() == GeomAbs_BSplineCurve)
{
NCollection_DataMap<Standard_Integer, Standard_Integer> aMap;
Handle(Geom2d_BSplineCurve) aRes = myResult.BSpline();
const Standard_Integer aDeg = aRes->Degree();
for(Standard_Integer aKnotIdx = aRes->FirstUKnotIndex();
aKnotIdx < aRes->LastUKnotIndex();
aKnotIdx++)
{
const Standard_Real aFirstParam = aRes->Knot(aKnotIdx);
const Standard_Real aLastParam = aRes->Knot(aKnotIdx + 1);
for(Standard_Integer anIntIdx = 0; anIntIdx <= aDeg; anIntIdx++)
{
const Standard_Real aCurrParam = aFirstParam + (aLastParam - aFirstParam) * anIntIdx / (aDeg + 1.0);
gp_Pnt2d aPnt2d;
aRes->D0(aCurrParam, aPnt2d);
Standard_Integer aMapKey = Standard_Integer ((aPnt2d.Coord(anIdx) - aSurfFirstPar[anIdx - 1]) / aSurfPeriod[anIdx - 1]);
if (aPnt2d.Coord(anIdx) - aSurfFirstPar[anIdx - 1] < 0.0)
aMapKey--;
if (aMap.IsBound(aMapKey))
aMap.ChangeFind(aMapKey)++;
else
aMap.Bind(aMapKey, 1);
}
}
Standard_Integer aMaxPoints = 0, aMaxIdx = 0;
NCollection_DataMap<Standard_Integer, Standard_Integer>::Iterator aMapIter(aMap);
for( ; aMapIter.More(); aMapIter.Next())
{
if (aMapIter.Value() > aMaxPoints)
{
aMaxPoints = aMapIter.Value();
aMaxIdx = aMapIter.Key();
}
}
if (aMaxIdx != 0)
{
gp_Pnt2d aFirstPnt = aRes->Value(aRes->FirstParameter());
gp_Pnt2d aSecondPnt = aFirstPnt;
aSecondPnt.SetCoord(anIdx, aFirstPnt.Coord(anIdx) - aSurfPeriod[anIdx - 1] * aMaxIdx);
aRes->Translate(gp_Vec2d(aFirstPnt, aSecondPnt));
}
}
if (myResult.GetType() == GeomAbs_Line)
{
Standard_Real aT1 = myCurve->FirstParameter();
Standard_Real aT2 = myCurve->LastParameter();
if (anIdx == 1)
{
// U param space.
myResult.UFrame(aT1, aT2, aSurfFirstPar[anIdx - 1], aSurfPeriod[anIdx - 1]);
}
else
{
// V param space.
myResult.VFrame(aT1, aT2, aSurfFirstPar[anIdx - 1], aSurfPeriod[anIdx - 1]);
}
}
}
}
}
//=======================================================================
//function : SetDegree
//purpose :
//=======================================================================
void ProjLib_ProjectedCurve::SetDegree(const Standard_Integer theDegMin,
const Standard_Integer theDegMax)
{
myDegMin = theDegMin;
myDegMax = theDegMax;
}
//=======================================================================
//function : SetMaxSegments
//purpose :
//=======================================================================
void ProjLib_ProjectedCurve::SetMaxSegments(const Standard_Integer theMaxSegments)
{
myMaxSegments = theMaxSegments;
}
//=======================================================================
//function : SetBndPnt
//purpose :
//=======================================================================
void ProjLib_ProjectedCurve::SetBndPnt(const AppParCurves_Constraint theBndPnt)
{
myBndPnt = theBndPnt;
}
//=======================================================================
//function : SetMaxDist
//purpose :
//=======================================================================
void ProjLib_ProjectedCurve::SetMaxDist(const Standard_Real theMaxDist)
{
myMaxDist = theMaxDist;
}
//=======================================================================
//function : GetSurface
//purpose :
//=======================================================================
const Handle(Adaptor3d_Surface)& ProjLib_ProjectedCurve::GetSurface() const
{
return mySurface;
}
//=======================================================================
//function : GetCurve
//purpose :
//=======================================================================
const Handle(Adaptor3d_Curve)& ProjLib_ProjectedCurve::GetCurve() const
{
return myCurve;
}
//=======================================================================
//function : GetTolerance
//purpose :
//=======================================================================
Standard_Real ProjLib_ProjectedCurve::GetTolerance() const
{
return myTolerance;
}
//=======================================================================
//function : FirstParameter
//purpose :
//=======================================================================
Standard_Real ProjLib_ProjectedCurve::FirstParameter() const
{
return myCurve->FirstParameter();
}
//=======================================================================
//function : LastParameter
//purpose :
//=======================================================================
Standard_Real ProjLib_ProjectedCurve::LastParameter() const
{
return myCurve->LastParameter();
}
//=======================================================================
//function : Continuity
//purpose :
//=======================================================================
GeomAbs_Shape ProjLib_ProjectedCurve::Continuity() const
{
throw Standard_NotImplemented ("ProjLib_ProjectedCurve::Continuity() - method is not implemented");
}
//=======================================================================
//function : NbIntervals
//purpose :
//=======================================================================
Standard_Integer ProjLib_ProjectedCurve::NbIntervals(const GeomAbs_Shape ) const
{
throw Standard_NotImplemented ("ProjLib_ProjectedCurve::NbIntervals() - method is not implemented");
}
//=======================================================================
//function : Intervals
//purpose :
//=======================================================================
//void ProjLib_ProjectedCurve::Intervals(TColStd_Array1OfReal& T,
void ProjLib_ProjectedCurve::Intervals(TColStd_Array1OfReal& ,
const GeomAbs_Shape ) const
{
throw Standard_NotImplemented ("ProjLib_ProjectedCurve::Intervals() - method is not implemented");
}
//=======================================================================
//function : IsClosed
//purpose :
//=======================================================================
Standard_Boolean ProjLib_ProjectedCurve::IsClosed() const
{
throw Standard_NotImplemented ("ProjLib_ProjectedCurve::IsClosed() - method is not implemented");
}
//=======================================================================
//function : IsPeriodic
//purpose :
//=======================================================================
Standard_Boolean ProjLib_ProjectedCurve::IsPeriodic() const
{
return myResult.IsPeriodic();
}
//=======================================================================
//function : Period
//purpose :
//=======================================================================
Standard_Real ProjLib_ProjectedCurve::Period() const
{
throw Standard_NotImplemented ("ProjLib_ProjectedCurve::Period() - method is not implemented");
}
//=======================================================================
//function : Value
//purpose :
//=======================================================================
gp_Pnt2d ProjLib_ProjectedCurve::Value(const Standard_Real ) const
{
throw Standard_NotImplemented ("ProjLib_ProjectedCurve::Value() - method is not implemented");
}
//=======================================================================
//function : D0
//purpose :
//=======================================================================
void ProjLib_ProjectedCurve::D0(const Standard_Real , gp_Pnt2d& ) const
{
throw Standard_NotImplemented ("ProjLib_ProjectedCurve::D0() - method is not implemented");
}
//=======================================================================
//function : D1
//purpose :
//=======================================================================
void ProjLib_ProjectedCurve::D1(const Standard_Real ,
gp_Pnt2d& ,
gp_Vec2d& ) const
{
throw Standard_NotImplemented ("ProjLib_ProjectedCurve::D1() - method is not implemented");
}
//=======================================================================
//function : D2
//purpose :
//=======================================================================
void ProjLib_ProjectedCurve::D2(const Standard_Real ,
gp_Pnt2d& ,
gp_Vec2d& ,
gp_Vec2d& ) const
{
throw Standard_NotImplemented ("ProjLib_ProjectedCurve::D2() - method is not implemented");
}
//=======================================================================
//function : D3
//purpose :
//=======================================================================
void ProjLib_ProjectedCurve::D3(const Standard_Real,
gp_Pnt2d&,
gp_Vec2d&,
gp_Vec2d&,
gp_Vec2d&) const
{
throw Standard_NotImplemented ("ProjLib_ProjectedCurve::D3() - method is not implemented");
}
//=======================================================================
//function : DN
//purpose :
//=======================================================================
gp_Vec2d ProjLib_ProjectedCurve::DN(const Standard_Real,
const Standard_Integer) const
{
throw Standard_NotImplemented ("ProjLib_ProjectedCurve::DN() - method is not implemented");
}
//=======================================================================
//function : Resolution
//purpose :
//=======================================================================
Standard_Real ProjLib_ProjectedCurve::Resolution(const Standard_Real) const
{
throw Standard_NotImplemented ("ProjLib_ProjectedCurve::Resolution() - method is not implemented");
}
//=======================================================================
//function : GetType
//purpose :
//=======================================================================
GeomAbs_CurveType ProjLib_ProjectedCurve::GetType() const
{
return myResult.GetType();
}
//=======================================================================
//function : Line
//purpose :
//=======================================================================
gp_Lin2d ProjLib_ProjectedCurve::Line() const
{
return myResult.Line();
}
//=======================================================================
//function : Circle
//purpose :
//=======================================================================
gp_Circ2d ProjLib_ProjectedCurve::Circle() const
{
return myResult.Circle();
}
//=======================================================================
//function : Ellipse
//purpose :
//=======================================================================
gp_Elips2d ProjLib_ProjectedCurve::Ellipse() const
{
return myResult.Ellipse();
}
//=======================================================================
//function : Hyperbola
//purpose :
//=======================================================================
gp_Hypr2d ProjLib_ProjectedCurve::Hyperbola() const
{
return myResult.Hyperbola();
}
//=======================================================================
//function : Parabola
//purpose :
//=======================================================================
gp_Parab2d ProjLib_ProjectedCurve::Parabola() const
{
return myResult.Parabola();
}
//=======================================================================
//function : Degree
//purpose :
//=======================================================================
Standard_Integer ProjLib_ProjectedCurve::Degree() const
{
Standard_NoSuchObject_Raise_if
( (GetType() != GeomAbs_BSplineCurve) &&
(GetType() != GeomAbs_BezierCurve),
"ProjLib_ProjectedCurve:Degree");
if (GetType() == GeomAbs_BSplineCurve) {
return myResult.BSpline()->Degree();
}
else if (GetType() == GeomAbs_BezierCurve) {
return myResult.Bezier()->Degree();
}
// portage WNT
return 0;
}
//=======================================================================
//function : IsRational
//purpose :
//=======================================================================
Standard_Boolean ProjLib_ProjectedCurve::IsRational() const
{
Standard_NoSuchObject_Raise_if
( (GetType() != GeomAbs_BSplineCurve) &&
(GetType() != GeomAbs_BezierCurve),
"ProjLib_ProjectedCurve:IsRational");
if (GetType() == GeomAbs_BSplineCurve) {
return myResult.BSpline()->IsRational();
}
else if (GetType() == GeomAbs_BezierCurve) {
return myResult.Bezier()->IsRational();
}
// portage WNT
return Standard_False;
}
//=======================================================================
//function : NbPoles
//purpose :
//=======================================================================
Standard_Integer ProjLib_ProjectedCurve::NbPoles() const
{
Standard_NoSuchObject_Raise_if
( (GetType() != GeomAbs_BSplineCurve) &&
(GetType() != GeomAbs_BezierCurve)
,"ProjLib_ProjectedCurve:NbPoles" );
if (GetType() == GeomAbs_BSplineCurve) {
return myResult.BSpline()->NbPoles();
}
else if (GetType() == GeomAbs_BezierCurve) {
return myResult.Bezier()->NbPoles();
}
// portage WNT
return 0;
}
//=======================================================================
//function : NbKnots
//purpose :
//=======================================================================
Standard_Integer ProjLib_ProjectedCurve::NbKnots() const
{
Standard_NoSuchObject_Raise_if ( GetType() != GeomAbs_BSplineCurve,
"ProjLib_ProjectedCurve:NbKnots");
return myResult.BSpline()->NbKnots();
}
//=======================================================================
//function : Bezier
//purpose :
//=======================================================================
Handle(Geom2d_BezierCurve) ProjLib_ProjectedCurve::Bezier() const
{
return myResult.Bezier() ;
}
//=======================================================================
//function : BSpline
//purpose :
//=======================================================================
Handle(Geom2d_BSplineCurve) ProjLib_ProjectedCurve::BSpline() const
{
return myResult.BSpline() ;
}
//=======================================================================
//function : Trim
//purpose :
//=======================================================================
Handle(Adaptor2d_Curve2d) ProjLib_ProjectedCurve::Trim
//(const Standard_Real First,
// const Standard_Real Last,
// const Standard_Real Tolerance) const
(const Standard_Real ,
const Standard_Real ,
const Standard_Real ) const
{
throw Standard_NotImplemented ("ProjLib_ProjectedCurve::Trim() - method is not implemented");
}