mirror of
https://git.dev.opencascade.org/repos/occt.git
synced 2025-04-10 18:51:21 +03:00
228 lines
6.7 KiB
C++
228 lines
6.7 KiB
C++
// Created on: 1991-07-16
|
|
// Created by: Christophe MARION
|
|
// Copyright (c) 1991-1999 Matra Datavision
|
|
// Copyright (c) 1999-2014 OPEN CASCADE SAS
|
|
//
|
|
// This file is part of Open CASCADE Technology software library.
|
|
//
|
|
// This library is free software; you can redistribute it and/or modify it under
|
|
// the terms of the GNU Lesser General Public License version 2.1 as published
|
|
// by the Free Software Foundation, with special exception defined in the file
|
|
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
|
|
// distribution for complete text of the license and disclaimer of any warranty.
|
|
//
|
|
// Alternatively, this file may be used under the terms of Open CASCADE
|
|
// commercial license or contractual agreement.
|
|
|
|
|
|
#include <Adaptor2d_Curve2d.hxx>
|
|
#include <Adaptor3d_IsoCurve.hxx>
|
|
#include <Draw_Display.hxx>
|
|
#include <DrawTrSurf_Drawable.hxx>
|
|
#include <GCPnts_UniformDeflection.hxx>
|
|
#include <Geom_BSplineCurve.hxx>
|
|
#include <Geom_BezierCurve.hxx>
|
|
#include <GeomAdaptor_Curve.hxx>
|
|
#include <gp_Pnt.hxx>
|
|
#include <gp_Pnt2d.hxx>
|
|
#include <Precision.hxx>
|
|
#include <Standard_Type.hxx>
|
|
#include <TColStd_Array1OfReal.hxx>
|
|
|
|
IMPLEMENT_STANDARD_RTTIEXT(DrawTrSurf_Drawable,Draw_Drawable3D)
|
|
|
|
//=======================================================================
|
|
//function : DrawTrSurf_Drawable
|
|
//purpose : initialise the discretisation
|
|
//=======================================================================
|
|
DrawTrSurf_Drawable::DrawTrSurf_Drawable (
|
|
|
|
const Standard_Integer discret,
|
|
const Standard_Real deflection,
|
|
const Standard_Integer DrawMode ) :
|
|
myDrawMode (DrawMode),
|
|
myDiscret(discret),
|
|
myDeflection(deflection)
|
|
{
|
|
}
|
|
|
|
//=======================================================================
|
|
//function : DrawCurve2dOn
|
|
//purpose : draw a 2D curve
|
|
//=======================================================================
|
|
|
|
void DrawTrSurf_Drawable::DrawCurve2dOn (Adaptor2d_Curve2d& C,
|
|
Draw_Display& aDisplay) const
|
|
{
|
|
gp_Pnt P;
|
|
|
|
gp_Pnt2d aPoint2d,
|
|
*aPoint2dPtr ;
|
|
if (myDrawMode == 1) {
|
|
Standard_Real Fleche = myDeflection/aDisplay.Zoom();
|
|
GCPnts_UniformDeflection LineVu(C,Fleche);
|
|
if (LineVu.IsDone()) {
|
|
P = LineVu.Value(1) ;
|
|
aPoint2dPtr = (gp_Pnt2d *) &P ;
|
|
aDisplay.MoveTo(*aPoint2dPtr);
|
|
for (Standard_Integer i = 2; i <= LineVu.NbPoints(); i++) {
|
|
P = LineVu.Value(i) ;
|
|
aPoint2dPtr = (gp_Pnt2d *) &P ;
|
|
aDisplay.DrawTo(*aPoint2dPtr);
|
|
}
|
|
}
|
|
}
|
|
else {
|
|
Standard_Integer intrv, nbintv = C.NbIntervals(GeomAbs_CN);
|
|
TColStd_Array1OfReal TI(1,nbintv+1);
|
|
C.Intervals(TI,GeomAbs_CN);
|
|
C.D0(C.FirstParameter(),aPoint2d);
|
|
aDisplay.MoveTo(aPoint2d);
|
|
for (intrv = 1; intrv <= nbintv; intrv++) {
|
|
if (C.GetType() != GeomAbs_Line) {
|
|
Standard_Real t = TI(intrv);
|
|
Standard_Real step = (TI(intrv+1) - t) / myDiscret;
|
|
for (Standard_Integer i = 1; i < myDiscret; i++) {
|
|
t += step;
|
|
C.D0(t,aPoint2d);
|
|
aDisplay.DrawTo(aPoint2d);
|
|
}
|
|
}
|
|
C.D0(TI(intrv+1),aPoint2d);
|
|
aDisplay.DrawTo(aPoint2d);
|
|
}
|
|
}
|
|
}
|
|
|
|
//=======================================================================
|
|
//static function : PlotCurve
|
|
//purpose : draw a 3D curve
|
|
//=======================================================================
|
|
static void PlotCurve (Draw_Display& aDisplay,
|
|
const Adaptor3d_Curve& C,
|
|
Standard_Real& theFirstParam,
|
|
Standard_Real theHalfStep,
|
|
const gp_Pnt& theFirstPnt,
|
|
const gp_Pnt& theLastPnt)
|
|
{
|
|
Standard_Real IsoRatio = 1.001;
|
|
gp_Pnt Pm;
|
|
|
|
C.D0 (theFirstParam + theHalfStep, Pm);
|
|
|
|
Standard_Real dfLength = theFirstPnt.Distance(theLastPnt);
|
|
if (dfLength < Precision::Confusion() ||
|
|
Pm.Distance(theFirstPnt) + Pm.Distance(theLastPnt) <= IsoRatio*dfLength) {
|
|
aDisplay.DrawTo (theLastPnt);
|
|
} else {
|
|
PlotCurve (aDisplay, C, theFirstParam, theHalfStep/2., theFirstPnt, Pm);
|
|
Standard_Real aLocalF = theFirstParam + theHalfStep;
|
|
PlotCurve (aDisplay, C, aLocalF, theHalfStep/2., Pm, theLastPnt);
|
|
}
|
|
}
|
|
//=======================================================================
|
|
//function : DrawCurveOn
|
|
//purpose : draw a 3D curve
|
|
//=======================================================================
|
|
|
|
void DrawTrSurf_Drawable::DrawCurveOn (Adaptor3d_Curve& C,
|
|
Draw_Display& aDisplay) const
|
|
{
|
|
gp_Pnt P;
|
|
if (myDrawMode == 1)
|
|
{
|
|
Standard_Real Fleche = myDeflection/aDisplay.Zoom();
|
|
GCPnts_UniformDeflection LineVu(C,Fleche);
|
|
if (LineVu.IsDone())
|
|
{
|
|
aDisplay.MoveTo(LineVu.Value(1));
|
|
for (Standard_Integer i = 2; i <= LineVu.NbPoints(); i++)
|
|
{
|
|
aDisplay.DrawTo(LineVu.Value(i));
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
Standard_Integer j;
|
|
Standard_Integer intrv, nbintv = C.NbIntervals(GeomAbs_CN);
|
|
TColStd_Array1OfReal TI(1,nbintv+1);
|
|
C.Intervals(TI,GeomAbs_CN);
|
|
C.D0(C.FirstParameter(),P);
|
|
aDisplay.MoveTo(P);
|
|
GeomAbs_CurveType CurvType = C.GetType();
|
|
gp_Pnt aPPnt=P, aNPnt;
|
|
|
|
for (intrv = 1; intrv <= nbintv; intrv++)
|
|
{
|
|
Standard_Real t = TI(intrv);
|
|
Standard_Real step = (TI(intrv+1) - t) / myDiscret;
|
|
|
|
switch (CurvType)
|
|
{
|
|
case GeomAbs_Line:
|
|
break;
|
|
case GeomAbs_Circle:
|
|
case GeomAbs_Ellipse:
|
|
for (j = 1; j < myDiscret; j++)
|
|
{
|
|
t += step;
|
|
C.D0(t,P);
|
|
aDisplay.DrawTo(P);
|
|
}
|
|
break;
|
|
case GeomAbs_Parabola:
|
|
case GeomAbs_Hyperbola:
|
|
case GeomAbs_BezierCurve:
|
|
case GeomAbs_BSplineCurve:
|
|
case GeomAbs_OffsetCurve:
|
|
case GeomAbs_OtherCurve:
|
|
const Standard_Integer nIter = myDiscret/2;
|
|
for (j = 1; j < nIter; j++)
|
|
{
|
|
const Standard_Real t1 = t+step*2.;
|
|
C.D0 (t1, aNPnt);
|
|
PlotCurve (aDisplay, C, t, step, aPPnt, aNPnt);
|
|
aPPnt = aNPnt;
|
|
t = t1;
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
C.D0(TI(intrv+1),P);
|
|
PlotCurve (aDisplay, C, t, step, aPPnt, P);
|
|
aDisplay.DrawTo(P);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
//=======================================================================
|
|
//function : DrawIsoCurveOn
|
|
//purpose :
|
|
//=======================================================================
|
|
|
|
void DrawTrSurf_Drawable::DrawIsoCurveOn(Adaptor3d_IsoCurve& C,
|
|
const GeomAbs_IsoType T,
|
|
const Standard_Real P,
|
|
const Standard_Real F,
|
|
const Standard_Real L,
|
|
Draw_Display& dis) const
|
|
{
|
|
C.Load(T,P,F,L);
|
|
if ((C.GetType() == GeomAbs_BezierCurve) ||
|
|
(C.GetType() == GeomAbs_BSplineCurve)) {
|
|
GeomAdaptor_Curve GC;
|
|
if (C.GetType() == GeomAbs_BezierCurve)
|
|
GC.Load(C.Bezier(),F,L);
|
|
else
|
|
GC.Load(C.BSpline(),F,L);
|
|
|
|
DrawCurveOn(GC,dis);
|
|
}
|
|
else
|
|
DrawCurveOn(C,dis);
|
|
|
|
}
|