1
0
mirror of https://git.dev.opencascade.org/repos/occt.git synced 2025-04-03 17:56:21 +03:00
occt/src/gp/gp_Quaternion.hxx
kgv 158f2931a7 0031004: Coding - eliminate warnings issued by gcc 9.1.0
Fixed -Wrestrict warning within OSD::SetSignal().

Fixed -Wdeprecated-copy warning by adding missing counterpart
in pair copy constructor / assignment operator or by removing trivial constructor.

AdvApp2Var_Node, AdvApp2Var_Patch are now declared as Handle.
AdvApp2Var_Iso is now passed by Handle.

Disabled operator= for TDF_Transaction and TDF_IDFilter.

Standard.cxx - fixed GCC version mischeck causing building failure with experimental GCC versions.

TopOpeBRepDS_EXPORT.cxx - fixed -Wmaybe-uninitialized warnings.
2020-05-15 18:08:07 +03:00

268 lines
8.6 KiB
C++

// Created on: 2010-05-11
// Created by: Kirill GAVRILOV
// Copyright (c) 2010-2014 OPEN CASCADE SAS
//
// This file is part of Open CASCADE Technology software library.
//
// This library is free software; you can redistribute it and/or modify it under
// the terms of the GNU Lesser General Public License version 2.1 as published
// by the Free Software Foundation, with special exception defined in the file
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
// distribution for complete text of the license and disclaimer of any warranty.
//
// Alternatively, this file may be used under the terms of Open CASCADE
// commercial license or contractual agreement.
#ifndef _gp_Quaternion_HeaderFile
#define _gp_Quaternion_HeaderFile
#include <Standard.hxx>
#include <Standard_DefineAlloc.hxx>
#include <Standard_Handle.hxx>
#include <Standard_Real.hxx>
#include <Standard_Boolean.hxx>
#include <gp_EulerSequence.hxx>
#include <gp_Vec.hxx>
class gp_Vec;
class gp_Mat;
//! Represents operation of rotation in 3d space as queternion
//! and implements operations with rotations basing on
//! quaternion mathematics.
//!
//! In addition, provides methods for conversion to and from other
//! representatons of rotation (3*3 matrix, vector and
//! angle, Euler angles)
class gp_Quaternion
{
public:
DEFINE_STANDARD_ALLOC
//! Creates an identity quaternion
gp_Quaternion();
//! Creates quaternion directly from component values
gp_Quaternion(const Standard_Real x, const Standard_Real y, const Standard_Real z, const Standard_Real w);
//! Creates quaternion representing shortest-arc rotation
//! operator producing vector theVecTo from vector theVecFrom.
gp_Quaternion(const gp_Vec& theVecFrom, const gp_Vec& theVecTo);
//! Creates quaternion representing shortest-arc rotation
//! operator producing vector theVecTo from vector theVecFrom.
//! Additional vector theHelpCrossVec defines preferred direction for
//! rotation and is used when theVecTo and theVecFrom are directed
//! oppositely.
gp_Quaternion(const gp_Vec& theVecFrom, const gp_Vec& theVecTo, const gp_Vec& theHelpCrossVec);
//! Creates quaternion representing rotation on angle
//! theAngle around vector theAxis
gp_Quaternion(const gp_Vec& theAxis, const Standard_Real theAngle);
//! Creates quaternion from rotation matrix 3*3
//! (which should be orthonormal skew-symmetric matrix)
gp_Quaternion(const gp_Mat& theMat);
//! Simple equal test without precision
Standard_EXPORT Standard_Boolean IsEqual (const gp_Quaternion& theOther) const;
//! Sets quaternion to shortest-arc rotation producing
//! vector theVecTo from vector theVecFrom.
//! If vectors theVecFrom and theVecTo are opposite then rotation
//! axis is computed as theVecFrom ^ (1,0,0) or theVecFrom ^ (0,0,1).
Standard_EXPORT void SetRotation (const gp_Vec& theVecFrom, const gp_Vec& theVecTo);
//! Sets quaternion to shortest-arc rotation producing
//! vector theVecTo from vector theVecFrom.
//! If vectors theVecFrom and theVecTo are opposite then rotation
//! axis is computed as theVecFrom ^ theHelpCrossVec.
Standard_EXPORT void SetRotation (const gp_Vec& theVecFrom, const gp_Vec& theVecTo, const gp_Vec& theHelpCrossVec);
//! Create a unit quaternion from Axis+Angle representation
Standard_EXPORT void SetVectorAndAngle (const gp_Vec& theAxis, const Standard_Real theAngle);
//! Convert a quaternion to Axis+Angle representation,
//! preserve the axis direction and angle from -PI to +PI
Standard_EXPORT void GetVectorAndAngle (gp_Vec& theAxis, Standard_Real& theAngle) const;
//! Create a unit quaternion by rotation matrix
//! matrix must contain only rotation (not scale or shear)
//!
//! For numerical stability we find first the greatest component of quaternion
//! and than search others from this one
Standard_EXPORT void SetMatrix (const gp_Mat& theMat);
//! Returns rotation operation as 3*3 matrix
Standard_EXPORT gp_Mat GetMatrix() const;
//! Create a unit quaternion representing rotation defined
//! by generalized Euler angles
Standard_EXPORT void SetEulerAngles (const gp_EulerSequence theOrder, const Standard_Real theAlpha, const Standard_Real theBeta, const Standard_Real theGamma);
//! Returns Euler angles describing current rotation
Standard_EXPORT void GetEulerAngles (const gp_EulerSequence theOrder, Standard_Real& theAlpha, Standard_Real& theBeta, Standard_Real& theGamma) const;
void Set (const Standard_Real x, const Standard_Real y, const Standard_Real z, const Standard_Real w);
void Set (const gp_Quaternion& theQuaternion);
Standard_Real X() const;
Standard_Real Y() const;
Standard_Real Z() const;
Standard_Real W() const;
//! Make identity quaternion (zero-rotation)
void SetIdent();
//! Reverse direction of rotation (conjugate quaternion)
void Reverse();
//! Return rotation with reversed direction (conjugated quaternion)
Standard_NODISCARD gp_Quaternion Reversed() const;
//! Inverts quaternion (both rotation direction and norm)
void Invert();
//! Return inversed quaternion q^-1
Standard_NODISCARD gp_Quaternion Inverted() const;
//! Returns square norm of quaternion
Standard_Real SquareNorm() const;
//! Returns norm of quaternion
Standard_Real Norm() const;
//! Scale all components by quaternion by theScale; note that
//! rotation is not changed by this operation (except 0-scaling)
void Scale (const Standard_Real theScale);
void operator *= (const Standard_Real theScale)
{
Scale(theScale);
}
//! Returns scaled quaternion
Standard_NODISCARD gp_Quaternion Scaled (const Standard_Real theScale) const;
Standard_NODISCARD gp_Quaternion operator * (const Standard_Real theScale) const
{
return Scaled(theScale);
}
//! Stabilize quaternion length within 1 - 1/4.
//! This operation is a lot faster than normalization
//! and preserve length goes to 0 or infinity
Standard_EXPORT void StabilizeLength();
//! Scale quaternion that its norm goes to 1.
//! The appearing of 0 magnitude or near is a error,
//! so we can be sure that can divide by magnitude
Standard_EXPORT void Normalize();
//! Returns quaternion scaled so that its norm goes to 1.
Standard_NODISCARD gp_Quaternion Normalized() const;
//! Returns quaternion with all components negated.
//! Note that this operation does not affect neither
//! rotation operator defined by quaternion nor its norm.
Standard_NODISCARD gp_Quaternion Negated() const;
Standard_NODISCARD gp_Quaternion operator -() const
{
return Negated();
}
//! Makes sum of quaternion components; result is "rotations mix"
Standard_NODISCARD gp_Quaternion Added (const gp_Quaternion& theOther) const;
Standard_NODISCARD gp_Quaternion operator + (const gp_Quaternion& theOther) const
{
return Added(theOther);
}
//! Makes difference of quaternion components; result is "rotations mix"
Standard_NODISCARD gp_Quaternion Subtracted (const gp_Quaternion& theOther) const;
Standard_NODISCARD gp_Quaternion operator - (const gp_Quaternion& theOther) const
{
return Subtracted(theOther);
}
//! Multiply function - work the same as Matrices multiplying.
//! qq' = (cross(v,v') + wv' + w'v, ww' - dot(v,v'))
//! Result is rotation combination: q' than q (here q=this, q'=theQ).
//! Notices than:
//! qq' != q'q;
//! qq^-1 = q;
Standard_NODISCARD gp_Quaternion Multiplied (const gp_Quaternion& theOther) const;
Standard_NODISCARD gp_Quaternion operator * (const gp_Quaternion& theOther) const
{
return Multiplied(theOther);
}
//! Adds componnets of other quaternion; result is "rotations mix"
void Add (const gp_Quaternion& theOther);
void operator += (const gp_Quaternion& theOther)
{
Add(theOther);
}
//! Subtracts componnets of other quaternion; result is "rotations mix"
void Subtract (const gp_Quaternion& theOther);
void operator -= (const gp_Quaternion& theOther)
{
Subtract(theOther);
}
//! Adds rotation by multiplication
void Multiply (const gp_Quaternion& theOther);
void operator *= (const gp_Quaternion& theOther)
{
Multiply(theOther);
}
//! Computes inner product / scalar product / Dot
Standard_Real Dot (const gp_Quaternion& theOther) const;
//! Return rotation angle from -PI to PI
Standard_EXPORT Standard_Real GetRotationAngle() const;
//! Rotates vector by quaternion as rotation operator
Standard_EXPORT gp_Vec Multiply (const gp_Vec& theVec) const;
gp_Vec operator * (const gp_Vec& theVec) const
{
return Multiply(theVec);
}
protected:
private:
Standard_Real x;
Standard_Real y;
Standard_Real z;
Standard_Real w;
};
#include <gp_Quaternion.lxx>
#endif // _gp_Quaternion_HeaderFile