mirror of
https://git.dev.opencascade.org/repos/occt.git
synced 2025-04-03 17:56:21 +03:00
Fixed -Wrestrict warning within OSD::SetSignal(). Fixed -Wdeprecated-copy warning by adding missing counterpart in pair copy constructor / assignment operator or by removing trivial constructor. AdvApp2Var_Node, AdvApp2Var_Patch are now declared as Handle. AdvApp2Var_Iso is now passed by Handle. Disabled operator= for TDF_Transaction and TDF_IDFilter. Standard.cxx - fixed GCC version mischeck causing building failure with experimental GCC versions. TopOpeBRepDS_EXPORT.cxx - fixed -Wmaybe-uninitialized warnings.
268 lines
8.6 KiB
C++
268 lines
8.6 KiB
C++
// Created on: 2010-05-11
|
|
// Created by: Kirill GAVRILOV
|
|
// Copyright (c) 2010-2014 OPEN CASCADE SAS
|
|
//
|
|
// This file is part of Open CASCADE Technology software library.
|
|
//
|
|
// This library is free software; you can redistribute it and/or modify it under
|
|
// the terms of the GNU Lesser General Public License version 2.1 as published
|
|
// by the Free Software Foundation, with special exception defined in the file
|
|
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
|
|
// distribution for complete text of the license and disclaimer of any warranty.
|
|
//
|
|
// Alternatively, this file may be used under the terms of Open CASCADE
|
|
// commercial license or contractual agreement.
|
|
|
|
#ifndef _gp_Quaternion_HeaderFile
|
|
#define _gp_Quaternion_HeaderFile
|
|
|
|
#include <Standard.hxx>
|
|
#include <Standard_DefineAlloc.hxx>
|
|
#include <Standard_Handle.hxx>
|
|
|
|
#include <Standard_Real.hxx>
|
|
#include <Standard_Boolean.hxx>
|
|
#include <gp_EulerSequence.hxx>
|
|
#include <gp_Vec.hxx>
|
|
class gp_Vec;
|
|
class gp_Mat;
|
|
|
|
|
|
//! Represents operation of rotation in 3d space as queternion
|
|
//! and implements operations with rotations basing on
|
|
//! quaternion mathematics.
|
|
//!
|
|
//! In addition, provides methods for conversion to and from other
|
|
//! representatons of rotation (3*3 matrix, vector and
|
|
//! angle, Euler angles)
|
|
class gp_Quaternion
|
|
{
|
|
public:
|
|
|
|
DEFINE_STANDARD_ALLOC
|
|
|
|
|
|
//! Creates an identity quaternion
|
|
gp_Quaternion();
|
|
|
|
//! Creates quaternion directly from component values
|
|
gp_Quaternion(const Standard_Real x, const Standard_Real y, const Standard_Real z, const Standard_Real w);
|
|
|
|
//! Creates quaternion representing shortest-arc rotation
|
|
//! operator producing vector theVecTo from vector theVecFrom.
|
|
gp_Quaternion(const gp_Vec& theVecFrom, const gp_Vec& theVecTo);
|
|
|
|
//! Creates quaternion representing shortest-arc rotation
|
|
//! operator producing vector theVecTo from vector theVecFrom.
|
|
//! Additional vector theHelpCrossVec defines preferred direction for
|
|
//! rotation and is used when theVecTo and theVecFrom are directed
|
|
//! oppositely.
|
|
gp_Quaternion(const gp_Vec& theVecFrom, const gp_Vec& theVecTo, const gp_Vec& theHelpCrossVec);
|
|
|
|
//! Creates quaternion representing rotation on angle
|
|
//! theAngle around vector theAxis
|
|
gp_Quaternion(const gp_Vec& theAxis, const Standard_Real theAngle);
|
|
|
|
//! Creates quaternion from rotation matrix 3*3
|
|
//! (which should be orthonormal skew-symmetric matrix)
|
|
gp_Quaternion(const gp_Mat& theMat);
|
|
|
|
//! Simple equal test without precision
|
|
Standard_EXPORT Standard_Boolean IsEqual (const gp_Quaternion& theOther) const;
|
|
|
|
//! Sets quaternion to shortest-arc rotation producing
|
|
//! vector theVecTo from vector theVecFrom.
|
|
//! If vectors theVecFrom and theVecTo are opposite then rotation
|
|
//! axis is computed as theVecFrom ^ (1,0,0) or theVecFrom ^ (0,0,1).
|
|
Standard_EXPORT void SetRotation (const gp_Vec& theVecFrom, const gp_Vec& theVecTo);
|
|
|
|
//! Sets quaternion to shortest-arc rotation producing
|
|
//! vector theVecTo from vector theVecFrom.
|
|
//! If vectors theVecFrom and theVecTo are opposite then rotation
|
|
//! axis is computed as theVecFrom ^ theHelpCrossVec.
|
|
Standard_EXPORT void SetRotation (const gp_Vec& theVecFrom, const gp_Vec& theVecTo, const gp_Vec& theHelpCrossVec);
|
|
|
|
//! Create a unit quaternion from Axis+Angle representation
|
|
Standard_EXPORT void SetVectorAndAngle (const gp_Vec& theAxis, const Standard_Real theAngle);
|
|
|
|
//! Convert a quaternion to Axis+Angle representation,
|
|
//! preserve the axis direction and angle from -PI to +PI
|
|
Standard_EXPORT void GetVectorAndAngle (gp_Vec& theAxis, Standard_Real& theAngle) const;
|
|
|
|
//! Create a unit quaternion by rotation matrix
|
|
//! matrix must contain only rotation (not scale or shear)
|
|
//!
|
|
//! For numerical stability we find first the greatest component of quaternion
|
|
//! and than search others from this one
|
|
Standard_EXPORT void SetMatrix (const gp_Mat& theMat);
|
|
|
|
//! Returns rotation operation as 3*3 matrix
|
|
Standard_EXPORT gp_Mat GetMatrix() const;
|
|
|
|
//! Create a unit quaternion representing rotation defined
|
|
//! by generalized Euler angles
|
|
Standard_EXPORT void SetEulerAngles (const gp_EulerSequence theOrder, const Standard_Real theAlpha, const Standard_Real theBeta, const Standard_Real theGamma);
|
|
|
|
//! Returns Euler angles describing current rotation
|
|
Standard_EXPORT void GetEulerAngles (const gp_EulerSequence theOrder, Standard_Real& theAlpha, Standard_Real& theBeta, Standard_Real& theGamma) const;
|
|
|
|
void Set (const Standard_Real x, const Standard_Real y, const Standard_Real z, const Standard_Real w);
|
|
|
|
void Set (const gp_Quaternion& theQuaternion);
|
|
|
|
Standard_Real X() const;
|
|
|
|
Standard_Real Y() const;
|
|
|
|
Standard_Real Z() const;
|
|
|
|
Standard_Real W() const;
|
|
|
|
//! Make identity quaternion (zero-rotation)
|
|
void SetIdent();
|
|
|
|
//! Reverse direction of rotation (conjugate quaternion)
|
|
void Reverse();
|
|
|
|
//! Return rotation with reversed direction (conjugated quaternion)
|
|
Standard_NODISCARD gp_Quaternion Reversed() const;
|
|
|
|
//! Inverts quaternion (both rotation direction and norm)
|
|
void Invert();
|
|
|
|
//! Return inversed quaternion q^-1
|
|
Standard_NODISCARD gp_Quaternion Inverted() const;
|
|
|
|
//! Returns square norm of quaternion
|
|
Standard_Real SquareNorm() const;
|
|
|
|
//! Returns norm of quaternion
|
|
Standard_Real Norm() const;
|
|
|
|
//! Scale all components by quaternion by theScale; note that
|
|
//! rotation is not changed by this operation (except 0-scaling)
|
|
void Scale (const Standard_Real theScale);
|
|
void operator *= (const Standard_Real theScale)
|
|
{
|
|
Scale(theScale);
|
|
}
|
|
|
|
//! Returns scaled quaternion
|
|
Standard_NODISCARD gp_Quaternion Scaled (const Standard_Real theScale) const;
|
|
Standard_NODISCARD gp_Quaternion operator * (const Standard_Real theScale) const
|
|
{
|
|
return Scaled(theScale);
|
|
}
|
|
|
|
//! Stabilize quaternion length within 1 - 1/4.
|
|
//! This operation is a lot faster than normalization
|
|
//! and preserve length goes to 0 or infinity
|
|
Standard_EXPORT void StabilizeLength();
|
|
|
|
//! Scale quaternion that its norm goes to 1.
|
|
//! The appearing of 0 magnitude or near is a error,
|
|
//! so we can be sure that can divide by magnitude
|
|
Standard_EXPORT void Normalize();
|
|
|
|
//! Returns quaternion scaled so that its norm goes to 1.
|
|
Standard_NODISCARD gp_Quaternion Normalized() const;
|
|
|
|
//! Returns quaternion with all components negated.
|
|
//! Note that this operation does not affect neither
|
|
//! rotation operator defined by quaternion nor its norm.
|
|
Standard_NODISCARD gp_Quaternion Negated() const;
|
|
Standard_NODISCARD gp_Quaternion operator -() const
|
|
{
|
|
return Negated();
|
|
}
|
|
|
|
//! Makes sum of quaternion components; result is "rotations mix"
|
|
Standard_NODISCARD gp_Quaternion Added (const gp_Quaternion& theOther) const;
|
|
Standard_NODISCARD gp_Quaternion operator + (const gp_Quaternion& theOther) const
|
|
{
|
|
return Added(theOther);
|
|
}
|
|
|
|
//! Makes difference of quaternion components; result is "rotations mix"
|
|
Standard_NODISCARD gp_Quaternion Subtracted (const gp_Quaternion& theOther) const;
|
|
Standard_NODISCARD gp_Quaternion operator - (const gp_Quaternion& theOther) const
|
|
{
|
|
return Subtracted(theOther);
|
|
}
|
|
|
|
//! Multiply function - work the same as Matrices multiplying.
|
|
//! qq' = (cross(v,v') + wv' + w'v, ww' - dot(v,v'))
|
|
//! Result is rotation combination: q' than q (here q=this, q'=theQ).
|
|
//! Notices than:
|
|
//! qq' != q'q;
|
|
//! qq^-1 = q;
|
|
Standard_NODISCARD gp_Quaternion Multiplied (const gp_Quaternion& theOther) const;
|
|
Standard_NODISCARD gp_Quaternion operator * (const gp_Quaternion& theOther) const
|
|
{
|
|
return Multiplied(theOther);
|
|
}
|
|
|
|
//! Adds componnets of other quaternion; result is "rotations mix"
|
|
void Add (const gp_Quaternion& theOther);
|
|
void operator += (const gp_Quaternion& theOther)
|
|
{
|
|
Add(theOther);
|
|
}
|
|
|
|
//! Subtracts componnets of other quaternion; result is "rotations mix"
|
|
void Subtract (const gp_Quaternion& theOther);
|
|
void operator -= (const gp_Quaternion& theOther)
|
|
{
|
|
Subtract(theOther);
|
|
}
|
|
|
|
//! Adds rotation by multiplication
|
|
void Multiply (const gp_Quaternion& theOther);
|
|
void operator *= (const gp_Quaternion& theOther)
|
|
{
|
|
Multiply(theOther);
|
|
}
|
|
|
|
//! Computes inner product / scalar product / Dot
|
|
Standard_Real Dot (const gp_Quaternion& theOther) const;
|
|
|
|
//! Return rotation angle from -PI to PI
|
|
Standard_EXPORT Standard_Real GetRotationAngle() const;
|
|
|
|
//! Rotates vector by quaternion as rotation operator
|
|
Standard_EXPORT gp_Vec Multiply (const gp_Vec& theVec) const;
|
|
gp_Vec operator * (const gp_Vec& theVec) const
|
|
{
|
|
return Multiply(theVec);
|
|
}
|
|
|
|
|
|
|
|
|
|
protected:
|
|
|
|
|
|
|
|
|
|
|
|
private:
|
|
|
|
|
|
|
|
Standard_Real x;
|
|
Standard_Real y;
|
|
Standard_Real z;
|
|
Standard_Real w;
|
|
|
|
|
|
};
|
|
|
|
|
|
#include <gp_Quaternion.lxx>
|
|
|
|
|
|
|
|
|
|
|
|
#endif // _gp_Quaternion_HeaderFile
|