1
0
mirror of https://git.dev.opencascade.org/repos/occt.git synced 2025-04-10 18:51:21 +03:00
occt/src/BSplCLib/BSplCLib_Cache.hxx
akz 0e14656b30 0026042: OCCT won't work with the latest Xcode
Dereferenced null pointers was eliminated for PLib, BSplCLib and BSplSLib. All affected code was changed accordingly.
2015-10-01 13:44:10 +03:00

178 lines
10 KiB
C++

// Copyright (c) 2014 OPEN CASCADE SAS
//
// This file is part of Open CASCADE Technology software library.
//
// This library is free software; you can redistribute it and/or modify it under
// the terms of the GNU Lesser General Public License version 2.1 as published
// by the Free Software Foundation, with special exception defined in the file
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
// distribution for complete text of the license and disclaimer of any warranty.
//
// Alternatively, this file may be used under the terms of Open CASCADE
// commercial license or contractual agreement.
#ifndef _BSplCLib_Cache_Headerfile
#define _BSplCLib_Cache_Headerfile
#include <Standard.hxx>
#include <Standard_Macro.hxx>
#include <Standard_Type.hxx>
#include <Standard_Transient.hxx>
#include <gp_Pnt2d.hxx>
#include <gp_Pnt.hxx>
#include <gp_Vec2d.hxx>
#include <gp_Vec.hxx>
#include <TColStd_HArray2OfReal.hxx>
#include <TColStd_HArray1OfReal.hxx>
#include <TColStd_Array1OfReal.hxx>
#include <TColgp_Array1OfPnt.hxx>
#include <TColgp_Array1OfPnt2d.hxx>
//! \brief A cache class for B-spline curves.
//!
//! Defines all data, that can be cached on a span of B-spline curve.
//! The data should be recalculated in going from span to span.
class BSplCLib_Cache : public Standard_Transient
{
public:
//! Default constructor
Standard_EXPORT BSplCLib_Cache();
//! Constructor for caching of 2D curves
//! \param theDegree degree of the B-spline
//! \param thePeriodic identify the B-spline is periodic
//! \param theFlatKnots knots of B-spline curve (with repetitions)
//! \param thePoles2d array of poles of 2D B-spline
//! \param theWeights array of weights of corresponding poles
Standard_EXPORT BSplCLib_Cache(const Standard_Integer& theDegree,
const Standard_Boolean& thePeriodic,
const TColStd_Array1OfReal& theFlatKnots,
const TColgp_Array1OfPnt2d& thePoles2d,
const TColStd_Array1OfReal* theWeights = NULL);
//! Constructor for caching of 3D curves
//! \param theDegree degree of the B-spline
//! \param thePeriodic identify the B-spline is periodic
//! \param theFlatKnots knots of B-spline curve (with repetitions)
//! \param thePoles array of poles of 3D B-spline
//! \param theWeights array of weights of corresponding poles
Standard_EXPORT BSplCLib_Cache(const Standard_Integer& theDegree,
const Standard_Boolean& thePeriodic,
const TColStd_Array1OfReal& theFlatKnots,
const TColgp_Array1OfPnt& thePoles,
const TColStd_Array1OfReal* theWeights = NULL);
//! Verifies validity of the cache using flat parameter of the point
//! \param theParameter parameter of the point placed in the span
Standard_EXPORT Standard_Boolean IsCacheValid(Standard_Real theParameter) const;
//! Recomputes the cache data for 2D curves. Does not verify validity of the cache
//! \param theParameter the value on the knot's axis to identify the span
//! \param theDegree degree of the B-spline
//! \param thePeriodic identify the B-spline is periodic
//! \param theFlatKnots knots of B-spline curve (with repetitions)
//! \param thePoles2d array of poles of 2D B-spline
//! \param theWeights array of weights of corresponding poles
Standard_EXPORT void BuildCache(const Standard_Real& theParameter,
const Standard_Integer& theDegree,
const Standard_Boolean& thePeriodic,
const TColStd_Array1OfReal& theFlatKnots,
const TColgp_Array1OfPnt2d& thePoles2d,
const TColStd_Array1OfReal* theWeights = NULL);
//! Recomputes the cache data for 3D curves. Does not verify validity of the cache
//! \param theParameter the value on the knot's axis to identify the span
//! \param theDegree degree of the B-spline
//! \param thePeriodic identify the B-spline is periodic
//! \param theFlatKnots knots of B-spline curve (with repetitions)
//! \param thePoles array of poles of 3D B-spline
//! \param theWeights array of weights of corresponding poles
Standard_EXPORT void BuildCache(const Standard_Real& theParameter,
const Standard_Integer& theDegree,
const Standard_Boolean& thePeriodic,
const TColStd_Array1OfReal& theFlatKnots,
const TColgp_Array1OfPnt& thePoles,
const TColStd_Array1OfReal* theWeights = NULL);
//! Calculates the point on B-spline in the selected point
//! \param[in] theParameter parameter of calculation of the value
//! \param[out] thePoint the result of calculation (the point on B-spline)
Standard_EXPORT void D0(const Standard_Real& theParameter, gp_Pnt2d& thePoint) const;
Standard_EXPORT void D0(const Standard_Real& theParameter, gp_Pnt& thePoint) const;
//! Calculates the point on B-spline and its first derivative in the selected point
//! \param[in] theParameter parameter of calculation of the value
//! \param[out] thePoint the result of calculation (the point on B-spline)
//! \param[out] theTangent tangent vector (first derivatives) for B-spline in the calculated point
Standard_EXPORT void D1(const Standard_Real& theParameter, gp_Pnt2d& thePoint, gp_Vec2d& theTangent) const;
Standard_EXPORT void D1(const Standard_Real& theParameter, gp_Pnt& thePoint, gp_Vec& theTangent) const;
//! Calculates the point on B-spline and two derivatives in the selected point
//! \param[in] theParameter parameter of calculation of the value
//! \param[out] thePoint the result of calculation (the point on B-spline)
//! \param[out] theTangent tangent vector (1st derivatives) for B-spline in the calculated point
//! \param[out] theCurvature curvature vector (2nd derivatives) for B-spline in the calculated point
Standard_EXPORT void D2(const Standard_Real& theParameter,
gp_Pnt2d& thePoint,
gp_Vec2d& theTangent,
gp_Vec2d& theCurvature) const;
Standard_EXPORT void D2(const Standard_Real& theParameter,
gp_Pnt& thePoint,
gp_Vec& theTangent,
gp_Vec& theCurvature) const;
//! Calculates the point on B-spline and three derivatives in the selected point
//! \param[in] theParameter parameter of calculation of the value
//! \param[out] thePoint the result of calculation (the point on B-spline)
//! \param[out] theTangent tangent vector (1st derivatives) for B-spline in the calculated point
//! \param[out] theCurvature curvature vector (2nd derivatives) for B-spline in the calculated point
//! \param[out] theTorsion second curvature vector (3rd derivatives) for B-spline in the calculated point
Standard_EXPORT void D3(const Standard_Real& theParameter,
gp_Pnt2d& thePoint,
gp_Vec2d& theTangent,
gp_Vec2d& theCurvature,
gp_Vec2d& theTorsion) const;
Standard_EXPORT void D3(const Standard_Real& theParameter,
gp_Pnt& thePoint,
gp_Vec& theTangent,
gp_Vec& theCurvature,
gp_Vec& theTorsion) const;
DEFINE_STANDARD_RTTI(BSplCLib_Cache, Standard_Transient)
protected:
//! Normalizes the parameter for periodical B-splines
//! \param theFlatKnots knots with repetitions
//! \param theParameter the value to be normalized into the knots array
void PeriodicNormalization(const TColStd_Array1OfReal& theFlatKnots, Standard_Real& theParameter) const;
//! Fills array of derivatives in the selected point of the B-spline
//! \param[in] theParameter parameter of the calculation
//! \param[in] theDerivative maximal derivative to be calculated (computes all derivatives lesser than specified)
//! \param[out] theDerivArray result array of derivatives (with size (theDerivative+1)*(PntDim+1),
//! where PntDim = 2 or 3 is a dimension of B-spline curve)
void CalculateDerivative(const Standard_Real& theParameter,
const Standard_Integer& theDerivative,
Standard_Real& theDerivArray) const;
private:
Handle(TColStd_HArray2OfReal) myPolesWeights; ///< array of poles and weights of calculated cache
// the array has following structure:
// x1 y1 [z1] [w1]
// x2 y2 [z2] [w2] etc
// for 2D-curves there is no z conponent, for non-rational curves there is no weight
Standard_Boolean myIsRational; ///< identifies the rationality of B-spline
Standard_Real mySpanStart; ///< parameter for the first point of the span
Standard_Real mySpanLength; ///< length of the span
Standard_Integer mySpanIndex; ///< index of the span on B-spline curve
Standard_Integer mySpanIndexMax; ///< maximal number of spans on B-spline curve
Standard_Integer myDegree; ///< degree of B-spline
Handle(TColStd_HArray1OfReal) myFlatKnots; ///< knots of B-spline (used for periodic normalization of parameters, exists only for periodical splines)
};
DEFINE_STANDARD_HANDLE(BSplCLib_Cache, Standard_Transient)
#endif