1
0
mirror of https://git.dev.opencascade.org/repos/occt.git synced 2025-04-26 10:19:45 +03:00
occt/src/IntAna2d/IntAna2d_AnaIntersection_1.cxx
abv 42cf5bc1ca 0024002: Overall code and build procedure refactoring -- automatic
Automatic upgrade of OCCT code by command "occt_upgrade . -nocdl":
- WOK-generated header files from inc and sources from drv are moved to src
- CDL files removed
- All packages are converted to nocdlpack
2015-07-12 07:42:38 +03:00

125 lines
2.8 KiB
C++

// Copyright (c) 1995-1999 Matra Datavision
// Copyright (c) 1999-2014 OPEN CASCADE SAS
//
// This file is part of Open CASCADE Technology software library.
//
// This library is free software; you can redistribute it and/or modify it under
// the terms of the GNU Lesser General Public License version 2.1 as published
// by the Free Software Foundation, with special exception defined in the file
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
// distribution for complete text of the license and disclaimer of any warranty.
//
// Alternatively, this file may be used under the terms of Open CASCADE
// commercial license or contractual agreement.
#include <gp_Circ2d.hxx>
#include <gp_Elips2d.hxx>
#include <gp_Hypr2d.hxx>
#include <gp_Lin2d.hxx>
#include <gp_Parab2d.hxx>
#include <IntAna2d_AnaIntersection.hxx>
#include <IntAna2d_Conic.hxx>
#include <IntAna2d_IntPoint.hxx>
#include <Standard_OutOfRange.hxx>
#include <StdFail_NotDone.hxx>
void IntAna2d_AnaIntersection::Perform (const gp_Lin2d& L1,
const gp_Lin2d& L2) {
done = Standard_False;
Standard_Real A1,B1,C1;
Standard_Real A2,B2,C2;
L1.Coefficients(A1,B1,C1);
L2.Coefficients(A2,B2,C2);
Standard_Real al1,be1,ga1;
Standard_Real al2,be2,ga2;
Standard_Real Det =Max (Abs(A1),Max(Abs(A2),Max(Abs(B1),Abs(B2))));
if (Abs(A1)==Det) {
al1=A1;
be1=B1;
ga1=C1;
al2=A2;
be2=B2;
ga2=C2;
}
else if (Abs(B1)==Det) {
al1=B1;
be1=A1;
ga1=C1;
al2=B2;
be2=A2;
ga2=C2;
}
else if (Abs(A2)==Det) {
al1=A2;
be1=B2;
ga1=C2;
al2=A1;
be2=B1;
ga2=C1;
}
else {
al1=B2;
be1=A2;
ga1=C2;
al2=B1;
be2=A1;
ga2=C1;
}
Standard_Real rap=al2/al1;
Standard_Real denom=be2-rap*be1;
if (Abs(denom)<=RealEpsilon()) { // Directions confondues
para=Standard_True;
nbp=0;
if (Abs(ga2-rap*ga1)<=RealEpsilon()) { // Droites confondues
iden=Standard_True;
empt=Standard_False;
}
else { // Droites paralleles
iden=Standard_False;
empt=Standard_True;
}
}
else {
para=Standard_False;
iden=Standard_False;
empt=Standard_False;
nbp=1;
Standard_Real XS = (be1*ga2/al1-be2*ga1/al1)/denom;
Standard_Real YS = (rap*ga1-ga2)/denom;
if (((Abs(A1)!=Det)&&(Abs(B1)==Det))||
((Abs(A1)!=Det)&&(Abs(B1)!=Det)&&(Abs(A2)!=Det))) {
Standard_Real temp=XS;
XS=YS;
YS=temp;
}
Standard_Real La,Mu;
if (Abs(A1)>=Abs(B1)) {
La=(YS-L1.Location().Y())/A1;
}
else {
La=(L1.Location().X()-XS)/B1;
}
if (Abs(A2)>=Abs(B2)) {
Mu=(YS-L2.Location().Y())/A2;
}
else {
Mu=(L2.Location().X()-XS)/B2;
}
lpnt[0].SetValue(XS,YS,La,Mu);
}
done=Standard_True;
}