1
0
mirror of https://git.dev.opencascade.org/repos/occt.git synced 2025-05-21 10:55:33 +03:00
occt/src/math/math_BFGS.cxx
aml f79b19a17e 0028175: Bad result of curve-curve extrema
Extrema between curves has been made producing correct result for the cases of solution located near bounds.

- Class math_GlobOptMin has been improved to use lower order methods of local optimization when high-order methods are failed.
- Add support of conditional optimization (in bounds) in the classes math_BFGS and math_BracketMinimum.
- Turn on conditional optimization in the case of usage of math_BFGS in the class math_GlobOptMin.
- Correct mistake in distmini command, which caused incorrect reading of deflection parameter.
- To avoid possible FPE signals, ensure initialization of fields in the class math/math_BracketMinimum.
- In the algorithms math_BFGS, math_Powell and math_FRPR, take into account that the function math_MultipleVarFunction can return failure status (e.g. when computing D0 out of bounds).

New test cases have been added.
Tests cases are updated.

// correct test case
2016-12-15 16:33:12 +03:00

473 lines
15 KiB
C++

// Copyright (c) 1997-1999 Matra Datavision
// Copyright (c) 1999-2014 OPEN CASCADE SAS
//
// This file is part of Open CASCADE Technology software library.
//
// This library is free software; you can redistribute it and/or modify it under
// the terms of the GNU Lesser General Public License version 2.1 as published
// by the Free Software Foundation, with special exception defined in the file
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
// distribution for complete text of the license and disclaimer of any warranty.
//
// Alternatively, this file may be used under the terms of Open CASCADE
// commercial license or contractual agreement.
//#ifndef OCCT_DEBUG
#define No_Standard_RangeError
#define No_Standard_OutOfRange
#define No_Standard_DimensionError
//#endif
#include <math_BFGS.hxx>
#include <math_BracketMinimum.hxx>
#include <math_BrentMinimum.hxx>
#include <math_FunctionWithDerivative.hxx>
#include <math_Matrix.hxx>
#include <math_MultipleVarFunctionWithGradient.hxx>
#include <Standard_DimensionError.hxx>
#include <StdFail_NotDone.hxx>
#include <Precision.hxx>
#define R 0.61803399
#define C (1.0-R)
#define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);
#define SIGN(a, b) ((b) > 0.0 ? fabs(a) : -fabs(a))
#define MOV3(a,b,c, d, e, f) (a)=(d); (b)= (e); (c)=(f);
// l'utilisation de math_BrentMinumim pur trouver un minimum dans une direction
// donnee n'est pas du tout optimale. voir peut etre interpolation cubique
// classique et aussi essayer "recherche unidimensionnelle economique"
// PROGRAMMATION MATHEMATIQUE (theorie et algorithmes) tome1 page 82.
class DirFunction : public math_FunctionWithDerivative {
math_Vector *P0;
math_Vector *Dir;
math_Vector *P;
math_Vector *G;
math_MultipleVarFunctionWithGradient *F;
public :
DirFunction(math_Vector& V1,
math_Vector& V2,
math_Vector& V3,
math_Vector& V4,
math_MultipleVarFunctionWithGradient& f) ;
void Initialize(const math_Vector& p0, const math_Vector& dir) const;
void TheGradient(math_Vector& Grad);
virtual Standard_Boolean Value(const Standard_Real x, Standard_Real& fval) ;
virtual Standard_Boolean Values(const Standard_Real x, Standard_Real& fval, Standard_Real& D) ;
virtual Standard_Boolean Derivative(const Standard_Real x, Standard_Real& D) ;
};
DirFunction::DirFunction(math_Vector& V1,
math_Vector& V2,
math_Vector& V3,
math_Vector& V4,
math_MultipleVarFunctionWithGradient& f) {
P0 = &V1;
Dir = &V2;
P = &V3;
F = &f;
G = &V4;
}
void DirFunction::Initialize(const math_Vector& p0,
const math_Vector& dir) const{
*P0 = p0;
*Dir = dir;
}
void DirFunction::TheGradient(math_Vector& Grad) {
Grad = *G;
}
Standard_Boolean DirFunction::Value(const Standard_Real x,
Standard_Real& fval)
{
*P = *Dir;
P->Multiply(x);
P->Add(*P0);
fval = 0.;
return F->Value(*P, fval);
}
Standard_Boolean DirFunction::Values(const Standard_Real x,
Standard_Real& fval,
Standard_Real& D)
{
*P = *Dir;
P->Multiply(x);
P->Add(*P0);
fval = D = 0.;
if (F->Values(*P, fval, *G))
{
D = (*G).Multiplied(*Dir);
return Standard_True;
}
return Standard_False;
}
Standard_Boolean DirFunction::Derivative(const Standard_Real x,
Standard_Real& D)
{
*P = *Dir;
P->Multiply(x);
P->Add(*P0);
Standard_Real fval;
D = 0.;
if (F->Values(*P, fval, *G))
{
D = (*G).Multiplied(*Dir);
return Standard_True;
}
return Standard_False;
}
//=======================================================================
//function : ComputeInitScale
//purpose : Compute the appropriate initial value of scale factor to apply
// to the direction to approach to the minimum of the function
//=======================================================================
static Standard_Boolean ComputeInitScale(const Standard_Real theF0,
const math_Vector& theDir,
const math_Vector& theGr,
Standard_Real& theScale)
{
Standard_Real dy1 = theGr * theDir;
if (Abs(dy1) < RealSmall())
return Standard_False;
Standard_Real aHnr1 = theDir.Norm2();
Standard_Real alfa = 0.7*(-theF0) / dy1;
theScale = 0.015 / Sqrt(aHnr1);
if (theScale > alfa)
theScale = alfa;
return Standard_True;
}
//=======================================================================
//function : ComputeMinMaxScale
//purpose : For a given point and direction, and bounding box,
// find min and max scale factors with which the point reaches borders
// if we apply translation Point+Dir*Scale.
//return : True if found, False if point is out of bounds.
//=======================================================================
static Standard_Boolean ComputeMinMaxScale(const math_Vector& thePoint,
const math_Vector& theDir,
const math_Vector& theLeft,
const math_Vector& theRight,
Standard_Real& theMinScale,
Standard_Real& theMaxScale)
{
Standard_Integer anIdx;
for (anIdx = 1; anIdx <= theLeft.Upper(); anIdx++)
{
Standard_Real aLeft = theLeft(anIdx) - thePoint(anIdx);
Standard_Real aRight = theRight(anIdx) - thePoint(anIdx);
if (Abs(theDir(anIdx)) > RealSmall())
{
// use PConfusion to get off a little from the bounds to prevent
// possible refuse in Value function.
Standard_Real aLScale = (aLeft + Precision::PConfusion()) / theDir(anIdx);
Standard_Real aRScale = (aRight - Precision::PConfusion()) / theDir(anIdx);
if (Abs(aLeft) < Precision::PConfusion())
{
// point is on the left border
theMaxScale = Min(theMaxScale, Max(0., aRScale));
theMinScale = Max(theMinScale, Min(0., aRScale));
}
else if (Abs(aRight) < Precision::PConfusion())
{
// point is on the right border
theMaxScale = Min(theMaxScale, Max(0., aLScale));
theMinScale = Max(theMinScale, Min(0., aLScale));
}
else if (aLeft * aRight < 0)
{
// point is inside allowed range
theMaxScale = Min(theMaxScale, Max(aLScale, aRScale));
theMinScale = Max(theMinScale, Min(aLScale, aRScale));
}
else
// point is out of bounds
return Standard_False;
}
else
{
// Direction is parallel to the border.
// Check that the point is not out of bounds
if (aLeft > Precision::PConfusion() ||
aRight < -Precision::PConfusion())
{
return Standard_False;
}
}
}
return Standard_True;
}
static Standard_Boolean MinimizeDirection(math_Vector& P,
Standard_Real F0,
math_Vector& Gr,
math_Vector& Dir,
Standard_Real& Result,
DirFunction& F,
Standard_Boolean isBounds,
const math_Vector& theLeft,
const math_Vector& theRight)
{
Standard_Real lambda;
if (!ComputeInitScale(F0, Dir, Gr, lambda))
return Standard_False;
// by default the scaling range is unlimited
Standard_Real aMinLambda = -Precision::Infinite();
Standard_Real aMaxLambda = Precision::Infinite();
if (isBounds)
{
// limit the scaling range taking into account the bounds
if (!ComputeMinMaxScale(P, Dir, theLeft, theRight, aMinLambda, aMaxLambda))
return Standard_False;
if (aMinLambda > -Precision::PConfusion() && aMaxLambda < Precision::PConfusion())
{
// Point is on the border and the direction shows outside.
// Make direction to go along the border
for (Standard_Integer anIdx = 1; anIdx <= theLeft.Upper(); anIdx++)
{
if (Abs(P(anIdx) - theRight(anIdx)) < Precision::PConfusion() ||
Abs(P(anIdx) - theLeft(anIdx)) < Precision::PConfusion())
{
Dir(anIdx) = 0.0;
}
}
// re-compute scale values with new direction
if (!ComputeInitScale(F0, Dir, Gr, lambda))
return Standard_False;
if (!ComputeMinMaxScale(P, Dir, theLeft, theRight, aMinLambda, aMaxLambda))
return Standard_False;
}
lambda = Min(lambda, aMaxLambda);
lambda = Max(lambda, aMinLambda);
}
F.Initialize(P, Dir);
Standard_Real F1;
if (!F.Value(lambda, F1))
return Standard_False;
math_BracketMinimum Bracket(0.0, lambda);
if (isBounds)
Bracket.SetLimits(aMinLambda, aMaxLambda);
Bracket.SetFA(F0);
Bracket.SetFB(F1);
Bracket.Perform(F);
if (Bracket.IsDone()) {
// find minimum inside the bracket
Standard_Real ax, xx, bx, Fax, Fxx, Fbx;
Bracket.Values(ax, xx, bx);
Bracket.FunctionValues(Fax, Fxx, Fbx);
Standard_Integer niter = 100;
Standard_Real tol = 1.e-03;
math_BrentMinimum Sol(tol, Fxx, niter, 1.e-08);
Sol.Perform(F, ax, xx, bx);
if (Sol.IsDone()) {
Standard_Real Scale = Sol.Location();
Result = Sol.Minimum();
Dir.Multiply(Scale);
P.Add(Dir);
return Standard_True;
}
}
else if (isBounds)
{
// Bracket definition is failure. If the bounds are defined then
// set current point to intersection with bounds
Standard_Real aFMin, aFMax;
if (!F.Value(aMinLambda, aFMin))
return Standard_False;
if (!F.Value(aMaxLambda, aFMax))
return Standard_False;
Standard_Real aBestLambda;
if (aFMin < aFMax)
{
aBestLambda = aMinLambda;
Result = aFMin;
}
else
{
aBestLambda = aMaxLambda;
Result = aFMax;
}
Dir.Multiply(aBestLambda);
P.Add(Dir);
return Standard_True;
}
return Standard_False;
}
void math_BFGS::Perform(math_MultipleVarFunctionWithGradient& F,
const math_Vector& StartingPoint) {
Standard_Boolean Good;
Standard_Integer n = TheLocation.Length();
Standard_Integer j, i;
Standard_Real fae, fad, fac;
math_Vector xi(1, n), dg(1, n), hdg(1, n);
math_Matrix hessin(1, n, 1, n);
hessin.Init(0.0);
math_Vector Temp1(1, n);
math_Vector Temp2(1, n);
math_Vector Temp3(1, n);
math_Vector Temp4(1, n);
DirFunction F_Dir(Temp1, Temp2, Temp3, Temp4, F);
TheLocation = StartingPoint;
Good = F.Values(TheLocation, PreviousMinimum, TheGradient);
if(!Good) {
Done = Standard_False;
TheStatus = math_FunctionError;
return;
}
for(i = 1; i <= n; i++) {
hessin(i, i) = 1.0;
xi(i) = -TheGradient(i);
}
for(nbiter = 1; nbiter <= Itermax; nbiter++) {
TheMinimum = PreviousMinimum;
Standard_Boolean IsGood = MinimizeDirection(TheLocation, TheMinimum,
TheGradient,
xi, TheMinimum, F_Dir,
myIsBoundsDefined, myLeft, myRight);
if(!IsGood) {
Done = Standard_False;
TheStatus = math_DirectionSearchError;
return;
}
if(IsSolutionReached(F)) {
Done = Standard_True;
TheStatus = math_OK;
return;
}
if (nbiter == Itermax) {
Done = Standard_False;
TheStatus = math_TooManyIterations;
return;
}
PreviousMinimum = TheMinimum;
dg = TheGradient;
Good = F.Values(TheLocation, TheMinimum, TheGradient);
if(!Good) {
Done = Standard_False;
TheStatus = math_FunctionError;
return;
}
for(i = 1; i <= n; i++) {
dg(i) = TheGradient(i) - dg(i);
}
for(i = 1; i <= n; i++) {
hdg(i) = 0.0;
for (j = 1; j <= n; j++)
hdg(i) += hessin(i, j) * dg(j);
}
fac = fae = 0.0;
for(i = 1; i <= n; i++) {
fac += dg(i) * xi(i);
fae += dg(i) * hdg(i);
}
fac = 1.0 / fac;
fad = 1.0 / fae;
for(i = 1; i <= n; i++)
dg(i) = fac * xi(i) - fad * hdg(i);
for(i = 1; i <= n; i++)
for(j = 1; j <= n; j++)
hessin(i, j) += fac * xi(i) * xi(j)
- fad * hdg(i) * hdg(j) + fae * dg(i) * dg(j);
for(i = 1; i <= n; i++) {
xi(i) = 0.0;
for (j = 1; j <= n; j++) xi(i) -= hessin(i, j) * TheGradient(j);
}
}
Done = Standard_False;
TheStatus = math_TooManyIterations;
return;
}
Standard_Boolean math_BFGS::IsSolutionReached(
math_MultipleVarFunctionWithGradient&) const {
return 2.0 * fabs(TheMinimum - PreviousMinimum) <=
XTol * (fabs(TheMinimum) + fabs(PreviousMinimum) + EPSZ);
}
math_BFGS::math_BFGS(const Standard_Integer NbVariables,
const Standard_Real Tolerance,
const Standard_Integer NbIterations,
const Standard_Real ZEPS)
: TheStatus(math_OK),
TheLocation(1, NbVariables),
TheGradient(1, NbVariables),
PreviousMinimum(0.),
TheMinimum(0.),
XTol(Tolerance),
EPSZ(ZEPS),
nbiter(0),
myIsBoundsDefined(Standard_False),
myLeft(1, NbVariables, 0.0),
myRight(1, NbVariables, 0.0),
Done(Standard_False),
Itermax(NbIterations)
{
}
math_BFGS::~math_BFGS()
{
}
void math_BFGS::Dump(Standard_OStream& o) const {
o<< "math_BFGS resolution: ";
if(Done) {
o << " Status = Done \n";
o <<" Location Vector = " << Location() << "\n";
o <<" Minimum value = "<< Minimum()<<"\n";
o <<" Number of iterations = "<<NbIterations() <<"\n";;
}
else {
o<< " Status = not Done because " << (Standard_Integer)TheStatus << "\n";
}
}
//=======================================================================
//function : SetBoundary
//purpose : Set boundaries for conditional optimization
//=======================================================================
void math_BFGS::SetBoundary(const math_Vector& theLeftBorder,
const math_Vector& theRightBorder)
{
myLeft = theLeftBorder;
myRight = theRightBorder;
myIsBoundsDefined = Standard_True;
}