mirror of
https://git.dev.opencascade.org/repos/occt.git
synced 2025-04-03 17:56:21 +03:00
Added macro Standard_NODISCARD equivalent to C++17 attribute [[nodiscard]] for compilers that support this. Using Standard_NODISCARD macro for methods that create new object in gp, math, Geom, Bnd packages. Marked equivalent operators with Standard_NODISCARD, if they are defined close to relevant methods. Corrected code where warnings on unused result of calls to methods creating new objects are generated. In most cases it looks like spelling errors (e.g. Normalised() instead of Normalise())
445 lines
13 KiB
C++
445 lines
13 KiB
C++
// Copyright (c) 1995-1999 Matra Datavision
|
|
// Copyright (c) 1999-2014 OPEN CASCADE SAS
|
|
//
|
|
// This file is part of Open CASCADE Technology software library.
|
|
//
|
|
// This library is free software; you can redistribute it and/or modify it under
|
|
// the terms of the GNU Lesser General Public License version 2.1 as published
|
|
// by the Free Software Foundation, with special exception defined in the file
|
|
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
|
|
// distribution for complete text of the license and disclaimer of any warranty.
|
|
//
|
|
// Alternatively, this file may be used under the terms of Open CASCADE
|
|
// commercial license or contractual agreement.
|
|
|
|
|
|
#include <ElSLib.hxx>
|
|
#include <Extrema_ExtPElS.hxx>
|
|
#include <Extrema_POnSurf.hxx>
|
|
#include <gp_Cone.hxx>
|
|
#include <gp_Cylinder.hxx>
|
|
#include <gp_Pln.hxx>
|
|
#include <gp_Pnt.hxx>
|
|
#include <gp_Sphere.hxx>
|
|
#include <gp_Torus.hxx>
|
|
#include <Standard_NotImplemented.hxx>
|
|
#include <Standard_OutOfRange.hxx>
|
|
#include <StdFail_NotDone.hxx>
|
|
|
|
static const Standard_Real ExtPElS_MyEps = Epsilon(2. * M_PI);
|
|
//=============================================================================
|
|
|
|
Extrema_ExtPElS::Extrema_ExtPElS()
|
|
{
|
|
myDone = Standard_False;
|
|
myNbExt = 0;
|
|
for (Standard_Integer i = 0; i < 4; i++)
|
|
{
|
|
mySqDist[i] = RealLast();
|
|
}
|
|
}
|
|
//=============================================================================
|
|
|
|
Extrema_ExtPElS::Extrema_ExtPElS (const gp_Pnt& P,
|
|
const gp_Cylinder& S,
|
|
const Standard_Real Tol)
|
|
{
|
|
|
|
Perform(P, S, Tol);
|
|
}
|
|
/*-----------------------------------------------------------------------------
|
|
Function:
|
|
Find 2 extreme distances between point P and cylinder S.
|
|
|
|
Method:
|
|
Let Pp be the projection of P in plane XOY of the cylinder;
|
|
2 cases are considered:
|
|
1- distance(Pp,O) < Tol:
|
|
There are infinite solutions; IsDone() = Standard_False.
|
|
2- distance(Pp,O) > Tol:
|
|
let V = OP.OZ,
|
|
U1 = angle(OX,OPp) with 0 < U1 < 2.*M_PI
|
|
U2 = U1 + M_PI with 0 < U2 < 2.*M_PI;
|
|
then (U1,V) corresponds to the min distance.
|
|
and (U2,V) corresponds to the max distance.
|
|
-----------------------------------------------------------------------------*/
|
|
|
|
void Extrema_ExtPElS::Perform(const gp_Pnt& P,
|
|
const gp_Cylinder& S,
|
|
const Standard_Real Tol)
|
|
{
|
|
myDone = Standard_False;
|
|
myNbExt = 0;
|
|
|
|
// Projection of point P in plane XOY of the cylinder ...
|
|
gp_Ax3 Pos = S.Position();
|
|
gp_Pnt O = Pos.Location();
|
|
gp_Vec OZ (Pos.Direction());
|
|
Standard_Real V = gp_Vec(O,P).Dot(OZ);
|
|
gp_Pnt Pp = P.Translated(OZ.Multiplied(-V));
|
|
|
|
// Calculation of extrema
|
|
gp_Vec OPp (O,Pp);
|
|
if (OPp.Magnitude() < Tol) { return; }
|
|
gp_Vec myZ = Pos.XDirection()^Pos.YDirection();
|
|
Standard_Real U1 = gp_Vec(Pos.XDirection()).AngleWithRef(OPp,myZ); //-M_PI<U1<M_PI
|
|
if (U1 > -ExtPElS_MyEps && U1 < ExtPElS_MyEps) { U1 = 0.; }
|
|
Standard_Real U2 = U1 + M_PI;
|
|
if (U1 < 0.) { U1 += 2. * M_PI; }
|
|
|
|
gp_Pnt Ps;
|
|
Ps = ElSLib::Value(U1,V,S);
|
|
mySqDist[0] = Ps.SquareDistance(P);
|
|
myPoint[0] = Extrema_POnSurf(U1,V,Ps);
|
|
Ps = ElSLib::Value(U2,V,S);
|
|
mySqDist[1] = Ps.SquareDistance(P);
|
|
myPoint[1] = Extrema_POnSurf(U2,V,Ps);
|
|
|
|
myNbExt = 2;
|
|
myDone = Standard_True;
|
|
}
|
|
//=============================================================================
|
|
|
|
Extrema_ExtPElS::Extrema_ExtPElS (const gp_Pnt& P,
|
|
const gp_Cone& S,
|
|
const Standard_Real Tol)
|
|
{
|
|
Perform(P, S, Tol);
|
|
}
|
|
/*-----------------------------------------------------------------------------
|
|
Function:
|
|
Find 2 extreme distances between point P and cone S.
|
|
|
|
Method:
|
|
Let M the top of the cone.
|
|
2 cases are considered:
|
|
1- distance(P,M) < Tol:
|
|
there is a minimum in M.
|
|
2- distance(P,M) > Tol:
|
|
Let Pp the projection of P in the plane XOY of the cone;
|
|
2 cases are considered:
|
|
1- distance(Pp,O) < Tol:
|
|
There is an infinite number of solutions; IsDone() = Standard_False.
|
|
2- distance(Pp,O) > Tol:
|
|
There exist 2 extrema:
|
|
Let Vm = value of v for point M,
|
|
Vp = value of v for point P,
|
|
U1 = angle(OX,OPp) if Vp > Vm )
|
|
-angle(OX,OPp) otherwise ) with 0. < U1 < 2*M_PI,
|
|
U2 = U1 + M_PI with 0. < U2 < 2*M_PI;
|
|
We are in plane PpOZ.
|
|
Let A the angle of the cone,
|
|
B = angle(MP,MO) with 0. < B < M_PI,
|
|
L = longueur(MP),
|
|
V1 = (L * cos(B-A)) + Vm,
|
|
V2 = (L * cos(B+A)) + Vm;
|
|
then (U1,V1) and (U2,V2) correspond to min distances.
|
|
-----------------------------------------------------------------------------*/
|
|
|
|
void Extrema_ExtPElS::Perform(const gp_Pnt& P,
|
|
const gp_Cone& S,
|
|
const Standard_Real Tol)
|
|
{
|
|
myDone = Standard_False;
|
|
myNbExt = 0;
|
|
|
|
gp_Pnt M = S.Apex();
|
|
gp_Ax3 Pos = S.Position();
|
|
gp_Pnt O = Pos.Location();
|
|
Standard_Real A = S.SemiAngle();
|
|
gp_Vec OZ (Pos.Direction());
|
|
gp_Vec myZ = Pos.XDirection()^Pos.YDirection();
|
|
gp_Vec MP (M,P);
|
|
|
|
Standard_Real L2 = MP.SquareMagnitude();
|
|
Standard_Real Vm = -(S.RefRadius() / Sin(A));
|
|
|
|
// Case when P is mixed with S ...
|
|
if (L2 < Tol * Tol) {
|
|
mySqDist[0] = L2;
|
|
myPoint[0] = Extrema_POnSurf(0.,Vm,M);
|
|
myNbExt = 1;
|
|
myDone = Standard_True;
|
|
return;
|
|
}
|
|
gp_Vec DirZ;
|
|
if (M.SquareDistance(O) < Tol * Tol)
|
|
{
|
|
DirZ = (A < 0 ? -OZ : OZ);
|
|
}
|
|
else
|
|
DirZ = gp_Vec(M, O);
|
|
|
|
// Projection of P in the reference plane of the cone ...
|
|
Standard_Real Zp = gp_Vec(O, P).Dot(OZ);
|
|
|
|
gp_Pnt Pp = P.Translated(OZ.Multiplied(-Zp));
|
|
gp_Vec OPp(O, Pp);
|
|
if (OPp.SquareMagnitude() < Tol * Tol) return;
|
|
Standard_Real B, U1, V1, U2, V2;
|
|
Standard_Boolean Same = DirZ.Dot(MP) >= 0.0;
|
|
U1 = gp_Vec(Pos.XDirection()).AngleWithRef(OPp,myZ); //-M_PI<U1<M_PI
|
|
if (U1 > -ExtPElS_MyEps && U1 < ExtPElS_MyEps) { U1 = 0.; }
|
|
B = MP.Angle(DirZ);
|
|
if (!Same) { U1 += M_PI; }
|
|
U2 = U1 + M_PI;
|
|
if (U1 < 0.) { U1 += 2. * M_PI; }
|
|
if (U2 > 2.*M_PI) { U2 -= 2. * M_PI; }
|
|
B = MP.Angle(DirZ);
|
|
A = Abs(A);
|
|
Standard_Real L = sqrt(L2);
|
|
if (!Same) {
|
|
B = M_PI-B;
|
|
V1 = -L*cos(B-A);
|
|
V2 = -L*cos(B+A);
|
|
}
|
|
else {
|
|
V1 = L * cos(B-A);
|
|
V2 = L * cos(B+A);
|
|
}
|
|
Standard_Real Sense = OZ.Dot(gp_Dir(DirZ));
|
|
V1 *= Sense; V2 *= Sense;
|
|
V1 += Vm; V2 += Vm;
|
|
|
|
gp_Pnt Ps;
|
|
Ps = ElSLib::Value(U1,V1,S);
|
|
mySqDist[0] = Ps.SquareDistance(P);
|
|
myPoint[0] = Extrema_POnSurf(U1,V1,Ps);
|
|
Ps = ElSLib::Value(U2,V2,S);
|
|
mySqDist[1] = Ps.SquareDistance(P);
|
|
myPoint[1] = Extrema_POnSurf(U2,V2,Ps);
|
|
|
|
myNbExt = 2;
|
|
myDone = Standard_True;
|
|
}
|
|
//=============================================================================
|
|
|
|
Extrema_ExtPElS::Extrema_ExtPElS (const gp_Pnt& P,
|
|
const gp_Sphere& S,
|
|
const Standard_Real Tol)
|
|
{
|
|
Perform(P, S, Tol);
|
|
}
|
|
/*-----------------------------------------------------------------------------
|
|
Function:
|
|
Find 2 extreme distances between point P and sphere S.
|
|
|
|
Method:
|
|
Let O be the origin of the sphere.
|
|
2 cases are considered:
|
|
1- distance(P,O) < Tol:
|
|
There is an infinite number of solutions; IsDone() = Standard_False
|
|
2- distance(P,O) > Tol:
|
|
Let Pp be the projection of point P in the plane XOY of the sphere;
|
|
2 cases are considered:
|
|
1- distance(Pp,O) < Tol:
|
|
2 solutions are: (0,-M_PI/2.) and (0.,M_PI/2.)
|
|
2- distance(Pp,O) > Tol:
|
|
Let U1 = angle(OX,OPp) with 0. < U1 < 2.*M_PI,
|
|
U2 = U1 + M_PI avec 0. < U2 < 2*M_PI,
|
|
V1 = angle(OPp,OP) with -M_PI/2. < V1 < M_PI/2. ,
|
|
then (U1, V1) corresponds to the min distance
|
|
and (U2,-V1) corresponds to the max distance.
|
|
-----------------------------------------------------------------------------*/
|
|
|
|
void Extrema_ExtPElS::Perform(const gp_Pnt& P,
|
|
const gp_Sphere& S,
|
|
const Standard_Real Tol)
|
|
{
|
|
myDone = Standard_False;
|
|
myNbExt = 0;
|
|
|
|
gp_Ax3 Pos = S.Position();
|
|
gp_Vec OP (Pos.Location(),P);
|
|
|
|
// Case when P is mixed with O ...
|
|
if (OP.SquareMagnitude() < Tol * Tol) { return; }
|
|
|
|
// Projection if P in plane XOY of the sphere ...
|
|
gp_Pnt O = Pos.Location();
|
|
gp_Vec OZ (Pos.Direction());
|
|
Standard_Real Zp = OP.Dot(OZ);
|
|
gp_Pnt Pp = P.Translated(OZ.Multiplied(-Zp));
|
|
|
|
// Calculation of extrema ...
|
|
gp_Vec OPp (O,Pp);
|
|
Standard_Real U1, U2, V;
|
|
if (OPp.SquareMagnitude() < Tol * Tol) {
|
|
U1 = 0.;
|
|
U2 = 0.;
|
|
if (Zp < 0.) { V = -M_PI / 2.; }
|
|
else { V = M_PI / 2.; }
|
|
}
|
|
else {
|
|
gp_Vec myZ = Pos.XDirection()^Pos.YDirection();
|
|
U1 = gp_Vec(Pos.XDirection()).AngleWithRef(OPp,myZ);
|
|
if (U1 > -ExtPElS_MyEps && U1 < ExtPElS_MyEps) { U1 = 0.; }
|
|
U2 = U1 + M_PI;
|
|
if (U1 < 0.) { U1 += 2. * M_PI; }
|
|
V = OP.Angle(OPp);
|
|
if (Zp < 0.) { V = -V; }
|
|
}
|
|
|
|
gp_Pnt Ps;
|
|
Ps = ElSLib::Value(U1,V,S);
|
|
mySqDist[0] = Ps.SquareDistance(P);
|
|
myPoint[0] = Extrema_POnSurf(U1,V,Ps);
|
|
Ps = ElSLib::Value(U2,-V,S);
|
|
mySqDist[1] = Ps.SquareDistance(P);
|
|
myPoint[1] = Extrema_POnSurf(U2,-V,Ps);
|
|
|
|
myNbExt = 2;
|
|
myDone = Standard_True;
|
|
}
|
|
//=============================================================================
|
|
|
|
Extrema_ExtPElS::Extrema_ExtPElS (const gp_Pnt& P,
|
|
const gp_Torus& S,
|
|
const Standard_Real Tol)
|
|
{
|
|
Perform(P, S, Tol);
|
|
}
|
|
/*-----------------------------------------------------------------------------
|
|
Function:
|
|
Find 2 extreme distances between point P and torus S.
|
|
|
|
Method:
|
|
Let Pp be the projection of point P in plane XOY of the torus;
|
|
2 cases are consideres:
|
|
1- distance(Pp,O) < Tol:
|
|
There is an infinite number of solutions; IsDone() = Standard_False.
|
|
2- distance(Pp,O) > Tol:
|
|
One is located in plane PpOZ;
|
|
Let V1 = angle(OX,OPp) with 0. < V1 < 2.*M_PI,
|
|
V2 = V1 + M_PI with 0. < V2 < 2.*M_PI,
|
|
O1 and O2 centers of circles (O1 on coord. posit.)
|
|
U1 = angle(OPp,O1P),
|
|
U2 = angle(OPp,PO2);
|
|
then (U1,V1) corresponds to the min distance
|
|
and (U2,V2) corresponds to the max distance.
|
|
-----------------------------------------------------------------------------*/
|
|
void Extrema_ExtPElS::Perform(const gp_Pnt& P,
|
|
const gp_Torus& S,
|
|
const Standard_Real Tol)
|
|
{
|
|
const Standard_Real tol2 = Tol*Tol;
|
|
myDone = Standard_False;
|
|
myNbExt = 0;
|
|
|
|
// Projection of P in plane XOY ...
|
|
gp_Ax3 Pos = S.Position();
|
|
gp_Pnt O = Pos.Location();
|
|
gp_Vec OZ (Pos.Direction());
|
|
gp_Pnt Pp = P.Translated(OZ.Multiplied(-(gp_Vec(O,P).Dot(Pos.Direction()))));
|
|
|
|
// Calculation of extrema ...
|
|
gp_Vec OPp (O,Pp);
|
|
Standard_Real R2 = OPp.SquareMagnitude();
|
|
if (R2 < tol2) { return; }
|
|
|
|
gp_Vec myZ = Pos.XDirection()^Pos.YDirection();
|
|
Standard_Real U1 = gp_Vec(Pos.XDirection()).AngleWithRef(OPp,myZ);
|
|
if (U1 > -ExtPElS_MyEps && U1 < ExtPElS_MyEps) { U1 = 0.; }
|
|
Standard_Real U2 = U1 + M_PI;
|
|
if (U1 < 0.) { U1 += 2. * M_PI; }
|
|
Standard_Real R = sqrt(R2);
|
|
gp_Vec OO1 = OPp.Divided(R).Multiplied(S.MajorRadius());
|
|
gp_Vec OO2 = OO1.Multiplied(-1.);
|
|
gp_Pnt O1 = O.Translated(OO1);
|
|
gp_Pnt O2 = O.Translated(OO2);
|
|
|
|
if(O1.SquareDistance(P) < tol2) { return; }
|
|
if(O2.SquareDistance(P) < tol2) { return; }
|
|
|
|
Standard_Real V1 = OPp.AngleWithRef(gp_Vec(O1,P),OPp.Crossed(OZ));
|
|
if (V1 > -ExtPElS_MyEps && V1 < ExtPElS_MyEps) { V1 = 0.; }
|
|
OPp.Reverse();
|
|
Standard_Real V2 = OPp.AngleWithRef(gp_Vec(P,O2),OPp.Crossed(OZ));
|
|
if (V2 > -ExtPElS_MyEps && V2 < ExtPElS_MyEps) { V2 = 0.; }
|
|
|
|
if (V1 < 0.) { V1 += 2. * M_PI; }
|
|
if (V2 < 0.) { V2 += 2. * M_PI; }
|
|
|
|
gp_Pnt Ps;
|
|
Ps = ElSLib::Value(U1,V1,S);
|
|
mySqDist[0] = Ps.SquareDistance(P);
|
|
myPoint[0] = Extrema_POnSurf(U1,V1,Ps);
|
|
|
|
Ps = ElSLib::Value(U1,V1+M_PI,S);
|
|
mySqDist[1] = Ps.SquareDistance(P);
|
|
myPoint[1] = Extrema_POnSurf(U1,V1+M_PI,Ps);
|
|
|
|
Ps = ElSLib::Value(U2,V2,S);
|
|
mySqDist[2] = Ps.SquareDistance(P);
|
|
myPoint[2] = Extrema_POnSurf(U2,V2,Ps);
|
|
|
|
Ps = ElSLib::Value(U2,V2+M_PI,S);
|
|
mySqDist[3] = Ps.SquareDistance(P);
|
|
myPoint[3] = Extrema_POnSurf(U2,V2+M_PI,Ps);
|
|
|
|
myNbExt = 4;
|
|
myDone = Standard_True;
|
|
}
|
|
|
|
|
|
Extrema_ExtPElS::Extrema_ExtPElS (const gp_Pnt& P,
|
|
const gp_Pln& S,
|
|
const Standard_Real Tol)
|
|
{
|
|
Perform(P, S, Tol);
|
|
}
|
|
|
|
void Extrema_ExtPElS::Perform (const gp_Pnt& P,
|
|
const gp_Pln& S,
|
|
// const Standard_Real Tol)
|
|
const Standard_Real )
|
|
{
|
|
myDone = Standard_False;
|
|
myNbExt = 0;
|
|
|
|
// Projection of point P in plane XOY of the cylinder ...
|
|
gp_Pnt O = S.Location();
|
|
gp_Vec OZ (S.Axis().Direction());
|
|
Standard_Real U, V = gp_Vec(O,P).Dot(OZ);
|
|
gp_Pnt Pp = P.Translated(OZ.Multiplied(-V));
|
|
|
|
ElSLib::Parameters(S, P, U, V);
|
|
mySqDist[0] = Pp.SquareDistance(P);
|
|
myPoint[0] = Extrema_POnSurf(U,V,Pp);
|
|
myNbExt = 1;
|
|
myDone = Standard_True;
|
|
}
|
|
|
|
|
|
//=============================================================================
|
|
|
|
Standard_Boolean Extrema_ExtPElS::IsDone () const { return myDone; }
|
|
//=============================================================================
|
|
|
|
Standard_Integer Extrema_ExtPElS::NbExt () const
|
|
{
|
|
if (!IsDone()) { throw StdFail_NotDone(); }
|
|
return myNbExt;
|
|
}
|
|
//=============================================================================
|
|
|
|
Standard_Real Extrema_ExtPElS::SquareDistance (const Standard_Integer N) const
|
|
{
|
|
if ((N < 1) || (N > NbExt()))
|
|
{
|
|
throw Standard_OutOfRange();
|
|
}
|
|
return mySqDist[N-1];
|
|
}
|
|
//=============================================================================
|
|
|
|
const Extrema_POnSurf& Extrema_ExtPElS::Point (const Standard_Integer N) const
|
|
{
|
|
if ((N < 1) || (N > NbExt()))
|
|
{
|
|
throw Standard_OutOfRange();
|
|
}
|
|
return myPoint[N-1];
|
|
}
|
|
//=============================================================================
|