1
0
mirror of https://git.dev.opencascade.org/repos/occt.git synced 2025-04-21 10:13:43 +03:00
occt/src/BRepFill/BRepFill_PipeShell.hxx

252 lines
9.4 KiB
C++

// Created on: 1998-07-22
// Created by: Philippe MANGIN
// Copyright (c) 1998-1999 Matra Datavision
// Copyright (c) 1999-2014 OPEN CASCADE SAS
//
// This file is part of Open CASCADE Technology software library.
//
// This library is free software; you can redistribute it and/or modify it under
// the terms of the GNU Lesser General Public License version 2.1 as published
// by the Free Software Foundation, with special exception defined in the file
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
// distribution for complete text of the license and disclaimer of any warranty.
//
// Alternatively, this file may be used under the terms of Open CASCADE
// commercial license or contractual agreement.
#ifndef _BRepFill_PipeShell_HeaderFile
#define _BRepFill_PipeShell_HeaderFile
#include <Standard.hxx>
#include <Standard_Type.hxx>
#include <TopoDS_Wire.hxx>
#include <TopoDS_Shape.hxx>
#include <BRepFill_SequenceOfSection.hxx>
#include <TopTools_DataMapOfShapeListOfShape.hxx>
#include <Standard_Integer.hxx>
#include <TopTools_HArray2OfShape.hxx>
#include <GeomFill_Trihedron.hxx>
#include <BRepFill_TransitionStyle.hxx>
#include <GeomFill_PipeError.hxx>
#include <Standard_Transient.hxx>
#include <BRepFill_TypeOfContact.hxx>
#include <TopTools_ListOfShape.hxx>
#include <TopTools_SequenceOfShape.hxx>
#include <TColStd_SequenceOfInteger.hxx>
class Law_Function;
class BRepFill_LocationLaw;
class BRepFill_SectionLaw;
class gp_Ax2;
class gp_Dir;
class TopoDS_Vertex;
class gp_Trsf;
class BRepFill_Sweep;
class BRepFill_PipeShell;
DEFINE_STANDARD_HANDLE(BRepFill_PipeShell, Standard_Transient)
//! Computes a topological shell using some wires
//! (spines and profiles) and displacement option
//! Perform general sweeping construction
class BRepFill_PipeShell : public Standard_Transient
{
public:
//! Set an sweep's mode
//! If no mode are set, the mode used in MakePipe is used
Standard_EXPORT BRepFill_PipeShell(const TopoDS_Wire& Spine);
//! Set an Frenet or an CorrectedFrenet trihedron
//! to perform the sweeping
Standard_EXPORT void Set (const Standard_Boolean Frenet = Standard_False);
//! Set a Discrete trihedron
//! to perform the sweeping
Standard_EXPORT void SetDiscrete();
//! Set an fixed trihedron to perform the sweeping
//! all sections will be parallel.
Standard_EXPORT void Set (const gp_Ax2& Axe);
//! Set an fixed BiNormal direction to perform
//! the sweeping
Standard_EXPORT void Set (const gp_Dir& BiNormal);
//! Set support to the spine to define the BiNormal
//! at the spine, like the normal the surfaces.
//! Warning: To be effective, Each edge of the <spine> must
//! have an representation on one face of<SpineSupport>
Standard_EXPORT Standard_Boolean Set (const TopoDS_Shape& SpineSupport);
//! Set an auxiliary spine to define the Normal
//! For each Point of the Spine P, an Point Q is evalued
//! on <AuxiliarySpine>
//! If <CurvilinearEquivalence>
//! Q split <AuxiliarySpine> with the same length ratio
//! than P split <Spline>.
//! Else the plan define by P and the tangent to the <Spine>
//! intersect <AuxiliarySpine> in Q.
//! If <KeepContact> equals BRepFill_NoContact: The Normal is defined
//! by the vector PQ.
//! If <KeepContact> equals BRepFill_Contact: The Normal is defined to
//! achieve that the sweeped section is in contact to the
//! auxiliarySpine. The width of section is constant all along the path.
//! In other words, the auxiliary spine lies on the swept surface,
//! but not necessarily is a boundary of this surface. However,
//! the auxiliary spine has to be close enough to the main spine
//! to provide intersection with any section all along the path.
//! If <KeepContact> equals BRepFill_ContactOnBorder: The auxiliary spine
//! becomes a boundary of the swept surface and the width of section varies
//! along the path.
Standard_EXPORT void Set (const TopoDS_Wire& AuxiliarySpine, const Standard_Boolean CurvilinearEquivalence = Standard_True, const BRepFill_TypeOfContact KeepContact = BRepFill_NoContact);
//! Define the maximum V degree of resulting surface
Standard_EXPORT void SetMaxDegree (const Standard_Integer NewMaxDegree);
//! Define the maximum number of spans in V-direction
//! on resulting surface
Standard_EXPORT void SetMaxSegments (const Standard_Integer NewMaxSegments);
//! Set the flag that indicates attempt to approximate
//! a C1-continuous surface if a swept surface proved
//! to be C0.
//! Give section to sweep.
//! Possibilities are :
//! - Give one or several profile
//! - Give one profile and an homotetic law.
//! - Automatic compute of correspondence between profile, and section on the sweeped shape
//! - correspondence between profile, and section on the sweeped shape defined by a vertex of the spine
Standard_EXPORT void SetForceApproxC1 (const Standard_Boolean ForceApproxC1);
//! Set an section. The correspondence with the spine, will be automatically performed.
Standard_EXPORT void Add (const TopoDS_Shape& Profile, const Standard_Boolean WithContact = Standard_False, const Standard_Boolean WithCorrection = Standard_False);
//! Set an section. The correspondence with the spine, is given by Location.
Standard_EXPORT void Add (const TopoDS_Shape& Profile, const TopoDS_Vertex& Location, const Standard_Boolean WithContact = Standard_False, const Standard_Boolean WithCorrection = Standard_False);
//! Set an section and an homotetic law.
//! The homotetie's centers is given by point on the <Spine>.
Standard_EXPORT void SetLaw (const TopoDS_Shape& Profile, const Handle(Law_Function)& L, const Standard_Boolean WithContact = Standard_False, const Standard_Boolean WithCorrection = Standard_False);
//! Set an section and an homotetic law.
//! The homotetie center is given by point on the <Spine>
Standard_EXPORT void SetLaw (const TopoDS_Shape& Profile, const Handle(Law_Function)& L, const TopoDS_Vertex& Location, const Standard_Boolean WithContact = Standard_False, const Standard_Boolean WithCorrection = Standard_False);
//! Delete an section.
Standard_EXPORT void DeleteProfile (const TopoDS_Shape& Profile);
//! Say if <me> is ready to build the shape
//! return False if <me> do not have section definition
Standard_EXPORT Standard_Boolean IsReady() const;
//! Get a status, when Simulate or Build failed.
Standard_EXPORT GeomFill_PipeError GetStatus() const;
Standard_EXPORT void SetTolerance (const Standard_Real Tol3d = 1.0e-4, const Standard_Real BoundTol = 1.0e-4, const Standard_Real TolAngular = 1.0e-2);
//! Set the Transition Mode to manage discontinuities
//! on the sweep.
Standard_EXPORT void SetTransition (const BRepFill_TransitionStyle Mode = BRepFill_Modified, const Standard_Real Angmin = 1.0e-2, const Standard_Real Angmax = 6.0);
//! Perform simulation of the sweep :
//! Some Section are returned.
Standard_EXPORT void Simulate (const Standard_Integer NumberOfSection, TopTools_ListOfShape& Sections);
//! Builds the resulting shape (redefined from MakeShape).
Standard_EXPORT Standard_Boolean Build();
//! Transform the sweeping Shell in Solid.
//! If the section are not closed returns False
Standard_EXPORT Standard_Boolean MakeSolid();
//! Returns the result Shape.
Standard_EXPORT const TopoDS_Shape& Shape() const;
Standard_EXPORT Standard_Real ErrorOnSurface() const;
//! Returns the TopoDS Shape of the bottom of the sweep.
Standard_EXPORT const TopoDS_Shape& FirstShape() const;
//! Returns the TopoDS Shape of the top of the sweep.
Standard_EXPORT const TopoDS_Shape& LastShape() const;
//! Returns the list of original profiles
void Profiles(TopTools_ListOfShape& theProfiles)
{
for (Standard_Integer i = 1; i <= mySeq.Length(); ++i)
theProfiles.Append(mySeq(i).OriginalShape());
}
//! Returns the spine
const TopoDS_Wire& Spine()
{
return mySpine;
}
//! Returns the list of shapes generated from the
//! shape <S>.
Standard_EXPORT void Generated (const TopoDS_Shape& S, TopTools_ListOfShape& L);
DEFINE_STANDARD_RTTIEXT(BRepFill_PipeShell,Standard_Transient)
protected:
private:
Standard_EXPORT void Prepare();
Standard_EXPORT void Place (const BRepFill_Section& Sec, TopoDS_Wire& W, gp_Trsf& Trsf, Standard_Real& param);
Standard_EXPORT void ResetLoc();
Standard_EXPORT void BuildHistory (const BRepFill_Sweep& theSweep);
TopoDS_Wire mySpine;
TopoDS_Shape myFirst;
TopoDS_Shape myLast;
TopoDS_Shape myShape;
BRepFill_SequenceOfSection mySeq;
TopTools_SequenceOfShape WSeq;
TColStd_SequenceOfInteger myIndOfSec;
TopTools_DataMapOfShapeListOfShape myEdgeNewEdges;
TopTools_DataMapOfShapeListOfShape myGenMap;
Standard_Real myTol3d;
Standard_Real myBoundTol;
Standard_Real myTolAngular;
Standard_Real angmin;
Standard_Real angmax;
Standard_Integer myMaxDegree;
Standard_Integer myMaxSegments;
Standard_Boolean myForceApproxC1;
Handle(Law_Function) myLaw;
Standard_Boolean myIsAutomaticLaw;
Handle(BRepFill_LocationLaw) myLocation;
Handle(BRepFill_SectionLaw) mySection;
Handle(TopTools_HArray2OfShape) myFaces;
GeomFill_Trihedron myTrihedron;
BRepFill_TransitionStyle myTransition;
GeomFill_PipeError myStatus;
Standard_Real myErrorOnSurf;
};
#endif // _BRepFill_PipeShell_HeaderFile