mirror of
https://git.dev.opencascade.org/repos/occt.git
synced 2025-04-10 18:51:21 +03:00
981 lines
30 KiB
C++
Executable File
981 lines
30 KiB
C++
Executable File
|
|
#include <stdio.h>
|
|
|
|
#include <Extrema_ExtElC.ixx>
|
|
#include <StdFail_InfiniteSolutions.hxx>
|
|
#include <StdFail_NotDone.hxx>
|
|
#include <ElCLib.hxx>
|
|
#include <math_TrigonometricFunctionRoots.hxx>
|
|
#include <math_DirectPolynomialRoots.hxx>
|
|
#include <Standard_OutOfRange.hxx>
|
|
#include <Standard_NotImplemented.hxx>
|
|
#include <Precision.hxx>
|
|
#include <Extrema_ExtPElC.hxx>
|
|
#include <IntAna_QuadQuadGeo.hxx>
|
|
#include <Extrema_ExtPElC.hxx>
|
|
|
|
#include <gp_Pln.hxx>
|
|
#include <gp_Ax3.hxx>
|
|
#include <gp_Ax2.hxx>
|
|
#include <gp_Pnt.hxx>
|
|
#include <gp_Dir.hxx>
|
|
#include <gp_Ax1.hxx>
|
|
|
|
//=======================================================================
|
|
//class : ExtremaExtElC_TrigonometricRoots
|
|
//purpose :
|
|
//== Classe Interne (Donne des racines classees d un polynome trigo)
|
|
//== Code duplique avec IntAna_IntQuadQuad.cxx (lbr le 26 mars 98)
|
|
//== Solution fiable aux problemes de coefficients proches de 0
|
|
//== avec essai de rattrapage si coeff<1.e-10 (jct le 27 avril 98)
|
|
//=======================================================================
|
|
class ExtremaExtElC_TrigonometricRoots {
|
|
private:
|
|
Standard_Real Roots[4];
|
|
Standard_Boolean done;
|
|
Standard_Integer NbRoots;
|
|
Standard_Boolean infinite_roots;
|
|
public:
|
|
ExtremaExtElC_TrigonometricRoots(const Standard_Real CC,
|
|
const Standard_Real SC,
|
|
const Standard_Real C,
|
|
const Standard_Real S,
|
|
const Standard_Real Cte,
|
|
const Standard_Real Binf,
|
|
const Standard_Real Bsup);
|
|
//
|
|
Standard_Boolean IsDone() {
|
|
return done;
|
|
}
|
|
//
|
|
Standard_Boolean IsARoot(Standard_Real u) {
|
|
Standard_Integer i;
|
|
Standard_Real PIpPI, aEps;
|
|
//
|
|
aEps=RealEpsilon();
|
|
PIpPI=Standard_PI+Standard_PI;
|
|
for(Standard_Integer i=0 ; i<NbRoots; i++) {
|
|
if(Abs(u - Roots[i])<=aEps) {
|
|
return Standard_True ;
|
|
}
|
|
if(Abs(u - Roots[i]-PIpPI)<=aEps) {
|
|
return Standard_True;
|
|
}
|
|
}
|
|
return Standard_False;
|
|
}
|
|
//
|
|
Standard_Integer NbSolutions() {
|
|
if(!done) {
|
|
StdFail_NotDone::Raise();
|
|
}
|
|
return NbRoots;
|
|
}
|
|
//
|
|
Standard_Boolean InfiniteRoots() {
|
|
if(!done) {
|
|
StdFail_NotDone::Raise();
|
|
}
|
|
return infinite_roots;
|
|
}
|
|
//
|
|
Standard_Real Value(const Standard_Integer& n) {
|
|
if((!done)||(n>NbRoots)) {
|
|
StdFail_NotDone::Raise();
|
|
}
|
|
return Roots[n-1];
|
|
}
|
|
};
|
|
//=======================================================================
|
|
//function : ExtremaExtElC_TrigonometricRoots
|
|
//purpose :
|
|
//=======================================================================
|
|
ExtremaExtElC_TrigonometricRoots::
|
|
ExtremaExtElC_TrigonometricRoots(const Standard_Real CC,
|
|
const Standard_Real SC,
|
|
const Standard_Real C,
|
|
const Standard_Real S,
|
|
const Standard_Real Cte,
|
|
const Standard_Real Binf,
|
|
const Standard_Real Bsup)
|
|
{
|
|
Standard_Integer i, nbessai;
|
|
Standard_Real cc ,sc, c, s, cte;
|
|
//
|
|
nbessai = 1;
|
|
cc = CC;
|
|
sc = SC;
|
|
c = C;
|
|
s = S;
|
|
cte = Cte;
|
|
done=Standard_False;
|
|
while (nbessai<=2 && !done) {
|
|
//-- F= AA*CN*CN+2*BB*CN*SN+CC*CN+DD*SN+EE;
|
|
math_TrigonometricFunctionRoots MTFR(cc,sc,c,s,cte,Binf,Bsup);
|
|
//
|
|
if(MTFR.IsDone()) {
|
|
done=Standard_True;
|
|
if(MTFR.InfiniteRoots()) {
|
|
infinite_roots=Standard_True;
|
|
}
|
|
else { //else #1
|
|
Standard_Boolean Triee;
|
|
Standard_Integer j, SvNbRoots;
|
|
Standard_Real aTwoPI, aMaxCoef, aPrecision;
|
|
//
|
|
aTwoPI=PI+PI;
|
|
NbRoots=MTFR.NbSolutions();
|
|
for(i=0;i<NbRoots;++i) {
|
|
Roots[i]=MTFR.Value(i+1);
|
|
if(Roots[i]<0.) {
|
|
Roots[i]=Roots[i]+aTwoPI;
|
|
}
|
|
if(Roots[i]>aTwoPI) {
|
|
Roots[i]=Roots[i]-aTwoPI;
|
|
}
|
|
}
|
|
//-- La recherche directe donne n importe quoi.
|
|
// modified by OCC Tue Oct 3 18:41:27 2006.BEGIN
|
|
aMaxCoef = Max(CC,SC);
|
|
aMaxCoef = Max(aMaxCoef,C);
|
|
aMaxCoef = Max(aMaxCoef,S);
|
|
aMaxCoef = Max(aMaxCoef,Cte);
|
|
aPrecision = Max(1.e-8, 1.e-12*aMaxCoef);
|
|
// modified by OCC Tue Oct 3 18:41:33 2006.END
|
|
|
|
SvNbRoots=NbRoots;
|
|
for(i=0; i<SvNbRoots; ++i) {
|
|
Standard_Real y;
|
|
Standard_Real co=cos(Roots[i]);
|
|
Standard_Real si=sin(Roots[i]);
|
|
y=co*(CC*co + (SC+SC)*si + C) + S*si + Cte;
|
|
// modified by OCC Tue Oct 3 18:43:00 2006
|
|
if(Abs(y)>aPrecision) {
|
|
NbRoots--;
|
|
Roots[i]=1000.0;
|
|
}
|
|
}
|
|
//
|
|
do {
|
|
Standard_Real t;
|
|
//
|
|
Triee=Standard_True;
|
|
for(i=1, j=0; i<SvNbRoots; ++i, ++j) {
|
|
if(Roots[i]<Roots[j]) {
|
|
Triee=Standard_False;
|
|
t=Roots[i];
|
|
Roots[i]=Roots[j];
|
|
Roots[j]=t;
|
|
}
|
|
}
|
|
}
|
|
while(!Triee);
|
|
//
|
|
infinite_roots=Standard_False;
|
|
if(NbRoots==0) {
|
|
//--!!!!! Detection du cas Pol = Cte ( 1e-50 ) !!!!
|
|
if((Abs(CC) + Abs(SC) + Abs(C) + Abs(S)) < 1e-10) {
|
|
if(Abs(Cte) < 1e-10) {
|
|
infinite_roots=Standard_True;
|
|
}
|
|
}
|
|
}
|
|
} // else #1
|
|
} // if(MTFR.IsDone()) {
|
|
else {
|
|
// on essaie en mettant les tres petits coeff. a ZERO
|
|
if (Abs(CC)<1e-10) {
|
|
cc = 0.0;
|
|
}
|
|
if (Abs(SC)<1e-10) {
|
|
sc = 0.0;
|
|
}
|
|
if (Abs(C)<1e-10) {
|
|
c = 0.0;
|
|
}
|
|
if (Abs(S)<1e-10){
|
|
s = 0.0;
|
|
}
|
|
if (Abs(Cte)<1e-10){
|
|
cte = 0.0;
|
|
}
|
|
nbessai++;
|
|
}
|
|
} // while (nbessai<=2 && !done) {
|
|
}
|
|
|
|
//=======================================================================
|
|
//function : Extrema_ExtElC
|
|
//purpose :
|
|
//=======================================================================
|
|
Extrema_ExtElC::Extrema_ExtElC ()
|
|
{
|
|
myDone = Standard_False;
|
|
}
|
|
//=======================================================================
|
|
//function : Extrema_ExtElC
|
|
//purpose :
|
|
//=======================================================================
|
|
Extrema_ExtElC::Extrema_ExtElC (const gp_Lin& C1,
|
|
const gp_Lin& C2,
|
|
const Standard_Real)
|
|
// Fonction:
|
|
// Recherche de la distance minimale entre 2 droites.
|
|
|
|
// Methode:
|
|
// Soit D1 et D2, les 2 directions des droites C1 et C2.
|
|
// 2 cas sont consideres:
|
|
// 1- si Angle(D1,D2) < AngTol, les droites sont paralleles.
|
|
// La distance est la distance entre un point quelconque de C1 et la droite
|
|
// C2.
|
|
// 2- si Angle(D1,D2) > AngTol:
|
|
// Soit P1=C1(u1) et P2=C2(u2) les 2 points solutions:
|
|
// Alors, ( P1P2.D1 = 0. (1)
|
|
// ( P1P2.D2 = 0. (2)
|
|
// Soit O1 et O2 les origines de C1 et C2;
|
|
// Alors, (1) <=> (O1P2-u1*D1).D1 = 0. car O1P1 = u1*D1
|
|
// <=> u1 = O1P2.D1 car D1.D1 = 1.
|
|
// (2) <=> (P1O2+u2*D2).D2 = 0. car O2P2 = u2*D2
|
|
// <=> u2 = O2P1.D2 car D2.D2 = 1.
|
|
// <=> u2 = (O2O1+O1P1).D2
|
|
// <=> u2 = O2O1.D2+((O1P2.T1)T1).T2) car O1P1 = u1*T1 = (O1P2.T1)T1
|
|
// <=> u2 = O2O1.D2+(((O1O2+O2P2).D1)D1).D2)
|
|
// <=> u2 = O2O1.D2+((O1O2.D1)D1).D2)+(O2P2.D1)(D1.D2)
|
|
// <=> u2 = ((O1O2.D1)D1-O1O2).D2 + u2*(D2.D1)(D1.D2)
|
|
// <=> u2 = (((O1O2.D1)D1-O1O2).D2) / 1.-(D1.D2)**2
|
|
{
|
|
myDone = Standard_False;
|
|
myNbExt = 0;
|
|
|
|
gp_Dir D1 = C1.Position().Direction();
|
|
gp_Dir D2 = C2.Position().Direction();
|
|
// MSV 16/01/2000: avoid "divide by zero"
|
|
Standard_Real D1DotD2 = D1.Dot(D2);
|
|
Standard_Real aSin = 1.-D1DotD2*D1DotD2;
|
|
if (aSin < gp::Resolution() ||
|
|
D1.IsParallel(D2, Precision::Angular())) {
|
|
myIsPar = Standard_True;
|
|
mySqDist[0] = C2.SquareDistance(C1.Location());
|
|
mySqDist[1] = mySqDist[0];
|
|
}
|
|
else {
|
|
myIsPar = Standard_False;
|
|
gp_Pnt O1 = C1.Location();
|
|
gp_Pnt O2 = C2.Location();
|
|
gp_Vec O1O2 (O1,O2);
|
|
Standard_Real U2 = (D1.XYZ()*(O1O2.Dot(D1))-(O1O2.XYZ())).Dot(D2.XYZ());
|
|
if( Precision::IsInfinite(U2) ) {
|
|
myIsPar = Standard_True;
|
|
mySqDist[0] = C2.SquareDistance(C1.Location());
|
|
mySqDist[1] = mySqDist[0];
|
|
}
|
|
else {
|
|
U2 /= aSin;
|
|
if( Precision::IsInfinite(U2) ) {
|
|
myIsPar = Standard_True;
|
|
mySqDist[0] = C2.SquareDistance(C1.Location());
|
|
mySqDist[1] = mySqDist[0];
|
|
}
|
|
else {
|
|
gp_Pnt P2(ElCLib::Value(U2,C2));
|
|
Standard_Real U1 = (gp_Vec(O1,P2)).Dot(D1);
|
|
if( Precision::IsInfinite(U1) ) {
|
|
myIsPar = Standard_True;
|
|
mySqDist[0] = C2.SquareDistance(C1.Location());
|
|
mySqDist[1] = mySqDist[0];
|
|
}
|
|
else {
|
|
gp_Pnt P1(ElCLib::Value(U1,C1));
|
|
mySqDist[myNbExt] = P1.SquareDistance(P2);
|
|
myPoint[myNbExt][0] = Extrema_POnCurv(U1,P1);
|
|
myPoint[myNbExt][1] = Extrema_POnCurv(U2,P2);
|
|
myNbExt = 1;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
myDone = Standard_True;
|
|
}
|
|
//=======================================================================
|
|
//function : Extrema_ExtElC
|
|
//purpose :
|
|
//=======================================================================
|
|
Extrema_ExtElC::Extrema_ExtElC (const gp_Lin& C1,
|
|
const gp_Circ& C2,
|
|
const Standard_Real)
|
|
/*-----------------------------------------------------------------------------
|
|
Fonction:
|
|
Recherche des distances extremales entre la droite C1 et le cercle C2.
|
|
|
|
Methode:
|
|
Soit P1=C1(u1) et P2=C2(u2) deux points solutions
|
|
D la direction de la droite C1
|
|
T la tangente au point P2;
|
|
Alors, ( P1P2.D = 0. (1)
|
|
( P1P2.T = 0. (2)
|
|
Soit O1 et O2 les origines de C1 et C2;
|
|
Alors, (1) <=> (O1P2-u1*D).D = 0. car O1P1 = u1*D
|
|
<=> u1 = O1P2.D car D.D = 1.
|
|
(2) <=> P1O2.T = 0. car O2P2.T = 0.
|
|
<=> ((P2O1.D)D+O1O2).T = 0. car P1O1 = -u1*D = (P2O1.D)D
|
|
<=> (((P2O2+O2O1).D)D+O1O2).T = 0.
|
|
<=> ((P2O2.D)(D.T)+((O2O1.D)D-O2O1).T = 0.
|
|
On se place dans le repere du cercle; soit:
|
|
Cos = Cos(u2) et Sin = Sin(u2),
|
|
P2 (R*Cos,R*Sin,0.),
|
|
T (-R*Sin,R*Cos,0.),
|
|
D (Dx,Dy,Dz),
|
|
V (Vx,Vy,Vz) = (O2O1.D)D-O2O1;
|
|
Alors, on obtient l'equation en Cos et Sin suivante:
|
|
-(2*R*R*Dx*Dy) * Cos**2 + A1
|
|
R*R*(Dx**2-Dy**2) * Cos*Sin + 2* A2
|
|
R*Vy * Cos + A3
|
|
-R*Vx * Sin + A4
|
|
R*R*Dx*Dy = 0. A5
|
|
On utilise l'algorithme math_TrigonometricFunctionRoots pour resoudre
|
|
cette equation.
|
|
-----------------------------------------------------------------------------*/
|
|
{
|
|
myIsPar = Standard_False;
|
|
myDone = Standard_False;
|
|
myNbExt = 0;
|
|
|
|
// Calcul de T1 dans le repere du cercle ...
|
|
gp_Dir D = C1.Direction();
|
|
gp_Dir D1 = D;
|
|
gp_Dir x2, y2, z2;
|
|
x2 = C2.XAxis().Direction();
|
|
y2 = C2.YAxis().Direction();
|
|
z2 = C2.Axis().Direction();
|
|
Standard_Real Dx = D.Dot(x2);
|
|
Standard_Real Dy = D.Dot(y2);
|
|
Standard_Real Dz = D.Dot(z2);
|
|
D.SetCoord(Dx,Dy,Dz);
|
|
|
|
// Calcul de V dans le repere du cercle:
|
|
gp_Pnt O1 = C1.Location();
|
|
gp_Pnt O2 = C2.Location();
|
|
gp_Vec O2O1 (O2,O1);
|
|
O2O1.SetCoord(O2O1.Dot(x2), O2O1.Dot(y2), O2O1.Dot(z2));
|
|
gp_XYZ Vxyz = (D.XYZ()*(O2O1.Dot(D)))-O2O1.XYZ();
|
|
|
|
// Calcul des coefficients de l equation en Cos et Sin ...
|
|
Standard_Real R = C2.Radius();
|
|
Standard_Real A5 = R*R*Dx*Dy;
|
|
Standard_Real A1 = -2.*A5;
|
|
Standard_Real A2 = R*R*(Dx*Dx-Dy*Dy)/2.0;
|
|
Standard_Real A3 = R*Vxyz.Y();
|
|
Standard_Real A4 = -R*Vxyz.X();
|
|
// Standard_Real TolU = Tol * R;
|
|
|
|
|
|
if(fabs(A5) <= 1.e-12) A5 = 0.;
|
|
if(fabs(A1) <= 1.e-12) A1 = 0.;
|
|
if(fabs(A2) <= 1.e-12) A2 = 0.;
|
|
if(fabs(A3) <= 1.e-12) A3 = 0.;
|
|
if(fabs(A4) <= 1.e-12) A4 = 0.;
|
|
|
|
|
|
ExtremaExtElC_TrigonometricRoots Sol(A1,A2,A3,A4,A5,0.,PI+PI);
|
|
if (!Sol.IsDone()) { return; }
|
|
if (Sol.InfiniteRoots()) {
|
|
myIsPar = Standard_True;
|
|
mySqDist[0] = R*R;
|
|
myDone = Standard_True;
|
|
return;
|
|
}
|
|
// Stockage des solutions ...
|
|
gp_Pnt P1,P2;
|
|
Standard_Real U1,U2;
|
|
Standard_Integer NbSol = Sol.NbSolutions();
|
|
for (Standard_Integer NoSol = 1; NoSol <= NbSol; NoSol++) {
|
|
U2 = Sol.Value(NoSol);
|
|
P2 = ElCLib::Value(U2,C2);
|
|
U1 = (gp_Vec(O1,P2)).Dot(D1);
|
|
P1 = ElCLib::Value(U1,C1);
|
|
mySqDist[myNbExt] = P1.SquareDistance(P2);
|
|
myPoint[myNbExt][0] = Extrema_POnCurv(U1,P1);
|
|
myPoint[myNbExt][1] = Extrema_POnCurv(U2,P2);
|
|
myNbExt++;
|
|
}
|
|
myDone = Standard_True;
|
|
}
|
|
//=======================================================================
|
|
//function : Extrema_ExtElC
|
|
//purpose :
|
|
//=======================================================================
|
|
Extrema_ExtElC::Extrema_ExtElC (const gp_Lin& C1,
|
|
const gp_Elips& C2)
|
|
{
|
|
/*-----------------------------------------------------------------------------
|
|
Fonction:
|
|
Recherche des distances extremales entre la droite C1 et l ellipse C2.
|
|
|
|
Methode:
|
|
Soit P1=C1(u1) et P2=C2(u2) deux points solutions
|
|
D la direction de la droite C1
|
|
T la tangente au point P2;
|
|
Alors, ( P1P2.D = 0. (1)
|
|
( P1P2.T = 0. (2)
|
|
Soit O1 et O2 les origines de C1 et C2;
|
|
Alors, (1) <=> (O1P2-u1*D).D = 0. car O1P1 = u1*D
|
|
<=> u1 = O1P2.D car D.D = 1.
|
|
(2) <=> P1O2.T = 0. car O2P2.T = 0.
|
|
<=> ((P2O1.D)D+O1O2).T = 0. car P1O1 = -u1*D = (P2O1.D)D
|
|
<=> (((P2O2+O2O1).D)D+O1O2).T = 0.
|
|
<=> ((P2O2.D)(D.T)+((O2O1.D)D-O2O1).T = 0.
|
|
On se place dans le repere de l ellipse; soit:
|
|
Cos = Cos(u2) et Sin = Sin(u2),
|
|
P2 (MajR*Cos,MinR*Sin,0.),
|
|
T (-MajR*Sin,MinR*Cos,0.),
|
|
D (Dx,Dy,Dz),
|
|
V (Vx,Vy,Vz) = (O2O1.D)D-O2O1;
|
|
Alors, on obtient l'equation en Cos et Sin suivante:
|
|
-(2*MajR*MinR*Dx*Dy) * Cos**2 +
|
|
(MajR*MajR*Dx**2-MinR*MinR*Dy**2) * Cos*Sin +
|
|
MinR*Vy * Cos +
|
|
- MajR*Vx * Sin +
|
|
MinR*MajR*Dx*Dy = 0.
|
|
On utilise l'algorithme math_TrigonometricFunctionRoots pour resoudre
|
|
cette equation.
|
|
-----------------------------------------------------------------------------*/
|
|
myIsPar = Standard_False;
|
|
myDone = Standard_False;
|
|
myNbExt = 0;
|
|
|
|
// Calcul de T1 dans le repere de l'ellipse ...
|
|
gp_Dir D = C1.Direction();
|
|
gp_Dir D1 = D;
|
|
gp_Dir x2, y2, z2;
|
|
x2 = C2.XAxis().Direction();
|
|
y2 = C2.YAxis().Direction();
|
|
z2 = C2.Axis().Direction();
|
|
Standard_Real Dx = D.Dot(x2);
|
|
Standard_Real Dy = D.Dot(y2);
|
|
Standard_Real Dz = D.Dot(z2);
|
|
D.SetCoord(Dx,Dy,Dz);
|
|
|
|
// Calcul de V ...
|
|
gp_Pnt O1 = C1.Location();
|
|
gp_Pnt O2 = C2.Location();
|
|
gp_Vec O2O1 (O2,O1);
|
|
O2O1.SetCoord(O2O1.Dot(x2), O2O1.Dot(y2), O2O1.Dot(z2));
|
|
gp_XYZ Vxyz = (D.XYZ()*(O2O1.Dot(D)))-O2O1.XYZ();
|
|
|
|
// Calcul des coefficients de l equation en Cos et Sin ...
|
|
Standard_Real MajR = C2.MajorRadius();
|
|
Standard_Real MinR = C2.MinorRadius();
|
|
Standard_Real A5 = MajR*MinR*Dx*Dy;
|
|
Standard_Real A1 = -2.*A5;
|
|
Standard_Real R2 = MajR*MajR;
|
|
Standard_Real r2 = MinR*MinR;
|
|
Standard_Real A2 =(R2*Dx*Dx -r2*Dy*Dy -R2 +r2)/2.0;
|
|
Standard_Real A3 = MinR*Vxyz.Y();
|
|
Standard_Real A4 = -MajR*Vxyz.X();
|
|
//
|
|
//modified by NIZNHY-PKV Thu Feb 03 14:51:04 2011f
|
|
Standard_Real aEps=1.e-12;
|
|
//
|
|
if(fabs(A5) <= aEps) A5 = 0.;
|
|
if(fabs(A1) <= aEps) A1 = 0.;
|
|
if(fabs(A2) <= aEps) A2 = 0.;
|
|
if(fabs(A3) <= aEps) A3 = 0.;
|
|
if(fabs(A4) <= aEps) A4 = 0.;
|
|
//modified by NIZNHY-PKV Thu Feb 03 14:51:08 2011t
|
|
//
|
|
ExtremaExtElC_TrigonometricRoots Sol(A1,A2,A3,A4,A5,0.,PI+PI);
|
|
if (!Sol.IsDone()) { return; }
|
|
|
|
// Stockage des solutions ...
|
|
gp_Pnt P1,P2;
|
|
Standard_Real U1,U2;
|
|
Standard_Integer NbSol = Sol.NbSolutions();
|
|
for (Standard_Integer NoSol = 1; NoSol <= NbSol; NoSol++) {
|
|
U2 = Sol.Value(NoSol);
|
|
P2 = ElCLib::Value(U2,C2);
|
|
U1 = (gp_Vec(O1,P2)).Dot(D1);
|
|
P1 = ElCLib::Value(U1,C1);
|
|
mySqDist[myNbExt] = P1.SquareDistance(P2);
|
|
myPoint[myNbExt][0] = Extrema_POnCurv(U1,P1);
|
|
myPoint[myNbExt][1] = Extrema_POnCurv(U2,P2);
|
|
myNbExt++;
|
|
}
|
|
myDone = Standard_True;
|
|
}
|
|
|
|
//=======================================================================
|
|
//function : Extrema_ExtElC
|
|
//purpose :
|
|
//=======================================================================
|
|
Extrema_ExtElC::Extrema_ExtElC (const gp_Lin& C1,
|
|
const gp_Hypr& C2)
|
|
{
|
|
/*-----------------------------------------------------------------------------
|
|
Fonction:
|
|
Recherche des distances extremales entre la droite C1 et l'hyperbole C2.
|
|
|
|
Methode:
|
|
Soit P1=C1(u1) et P2=C2(u2) deux points solutions
|
|
D la direction de la droite C1
|
|
T la tangente au point P2;
|
|
Alors, ( P1P2.D = 0. (1)
|
|
( P1P2.T = 0. (2)
|
|
Soit O1 et O2 les origines de C1 et C2;
|
|
Alors, (1) <=> (O1P2-u1*D).D = 0. car O1P1 = u1*D
|
|
<=> u1 = O1P2.D car D.D = 1.
|
|
(2) <=> (P1O2 + O2P2).T= 0.
|
|
<=> ((P2O1.D)D+O1O2 + O2P2).T = 0. car P1O1 = -u1*D = (P2O1.D)D
|
|
<=> (((P2O2+O2O1).D)D+O1O2 + O2P2).T = 0.
|
|
<=> (P2O2.D)(D.T)+((O2O1.D)D-O2O1).T + O2P2.T= 0.
|
|
On se place dans le repere de l'hyperbole; soit:
|
|
en ecrivant P (R* Chu, r* Shu, 0.0)
|
|
et Chu = (v**2 + 1)/(2*v) ,
|
|
Shu = (V**2 - 1)/(2*v)
|
|
|
|
T(R*Shu, r*Chu)
|
|
D (Dx,Dy,Dz),
|
|
V (Vx,Vy,Vz) = (O2O1.D)D-O2O1;
|
|
|
|
Alors, on obtient l'equation en v suivante:
|
|
(-2*R*r*Dx*Dy - R*R*Dx*Dx-r*r*Dy*Dy + R*R + r*r) * v**4 +
|
|
(2*R*Vx + 2*r*Vy) * v**3 +
|
|
(-2*R*Vx + 2*r*Vy) * v +
|
|
(-2*R*r*Dx*Dy - (R*R*Dx*Dx-r*r*Dy*Dy + R*R + r*r)) = 0
|
|
|
|
|
|
On utilise l'algorithme math_DirectPolynomialRoots pour resoudre
|
|
cette equation.
|
|
-----------------------------------------------------------------------------*/
|
|
myIsPar = Standard_False;
|
|
myDone = Standard_False;
|
|
myNbExt = 0;
|
|
|
|
// Calcul de T1 dans le repere de l'hyperbole ...
|
|
gp_Dir D = C1.Direction();
|
|
gp_Dir D1 = D;
|
|
gp_Dir x2, y2, z2;
|
|
x2 = C2.XAxis().Direction();
|
|
y2 = C2.YAxis().Direction();
|
|
z2 = C2.Axis().Direction();
|
|
Standard_Real Dx = D.Dot(x2);
|
|
Standard_Real Dy = D.Dot(y2);
|
|
Standard_Real Dz = D.Dot(z2);
|
|
D.SetCoord(Dx,Dy,Dz);
|
|
|
|
// Calcul de V ...
|
|
gp_Pnt O1 = C1.Location();
|
|
gp_Pnt O2 = C2.Location();
|
|
gp_Vec O2O1 (O2,O1);
|
|
O2O1.SetCoord(O2O1.Dot(x2), O2O1.Dot(y2), O2O1.Dot(z2));
|
|
gp_XYZ Vxyz = (D.XYZ()*(O2O1.Dot(D)))-O2O1.XYZ();
|
|
Standard_Real Vx = Vxyz.X();
|
|
Standard_Real Vy = Vxyz.Y();
|
|
|
|
// Calcul des coefficients de l equation en v
|
|
Standard_Real R = C2.MajorRadius();
|
|
Standard_Real r = C2.MinorRadius();
|
|
Standard_Real a = -2*R*r*Dx*Dy;
|
|
Standard_Real b = -R*R*Dx*Dx - r*r*Dy*Dy + R*R + r*r;
|
|
Standard_Real A1 = a + b;
|
|
Standard_Real A2 = 2*R*Vx + 2*r*Vy;
|
|
Standard_Real A4 = -2*R*Vx + 2*r*Vy;
|
|
Standard_Real A5 = a - b;
|
|
|
|
math_DirectPolynomialRoots Sol(A1,A2,0.0,A4, A5);
|
|
if (!Sol.IsDone()) { return; }
|
|
|
|
// Stockage des solutions ...
|
|
gp_Pnt P1,P2;
|
|
Standard_Real U1,U2, v;
|
|
Standard_Integer NbSol = Sol.NbSolutions();
|
|
for (Standard_Integer NoSol = 1; NoSol <= NbSol; NoSol++) {
|
|
v = Sol.Value(NoSol);
|
|
if (v > 0.0) {
|
|
U2 = Log(v);
|
|
P2 = ElCLib::Value(U2,C2);
|
|
U1 = (gp_Vec(O1,P2)).Dot(D1);
|
|
P1 = ElCLib::Value(U1,C1);
|
|
mySqDist[myNbExt] = P1.SquareDistance(P2);
|
|
myPoint[myNbExt][0] = Extrema_POnCurv(U1,P1);
|
|
myPoint[myNbExt][1] = Extrema_POnCurv(U2,P2);
|
|
myNbExt++;
|
|
}
|
|
}
|
|
myDone = Standard_True;
|
|
}
|
|
//=======================================================================
|
|
//function : Extrema_ExtElC
|
|
//purpose :
|
|
//=======================================================================
|
|
Extrema_ExtElC::Extrema_ExtElC (const gp_Lin& C1,
|
|
const gp_Parab& C2)
|
|
{
|
|
/*-----------------------------------------------------------------------------
|
|
Fonction:
|
|
Recherche des distances extremales entre la droite C1 et la parabole C2.
|
|
|
|
Methode:
|
|
Soit P1=C1(u1) et P2=C2(u2) deux points solutions
|
|
D la direction de la droite C1
|
|
T la tangente au point P2;
|
|
Alors, ( P1P2.D = 0. (1)
|
|
( P1P2.T = 0. (2)
|
|
Soit O1 et O2 les origines de C1 et C2;
|
|
Alors, (1) <=> (O1P2-u1*D).D = 0. car O1P1 = u1*D
|
|
<=> u1 = O1P2.D car D.D = 1.
|
|
(2) <=> (P1O2 + O2P2).T= 0.
|
|
<=> ((P2O1.D)D+O1O2 + O2P2).T = 0. car P1O1 = -u1*D = (P2O1.D)D
|
|
<=> (((P2O2+O2O1).D)D+O1O2 + O2P2).T = 0.
|
|
<=> (P2O2.D)(D.T)+((O2O1.D)D-O2O1).T + O2P2.T = 0.
|
|
On se place dans le repere de la parabole; soit:
|
|
P2 (y*y/(2*p), y, 0)
|
|
T (y/p, 1, 0)
|
|
D (Dx,Dy,Dz),
|
|
V (Vx,Vy,Vz) = (O2O1.D)D-O2O1;
|
|
|
|
Alors, on obtient l'equation en y suivante:
|
|
((1-Dx*Dx)/(2*p*p)) * y*y*y + A1
|
|
(-3*Dx*Dy/(2*p)) * y*y + A2
|
|
(1-Dy*Dy + Vx/p) * y + A3
|
|
Vy = 0. A4
|
|
|
|
On utilise l'algorithme math_DirectPolynomialRoots pour resoudre
|
|
cette equation.
|
|
-----------------------------------------------------------------------------*/
|
|
myIsPar = Standard_False;
|
|
myDone = Standard_False;
|
|
myNbExt = 0;
|
|
|
|
// Calcul de T1 dans le repere de la parabole ...
|
|
gp_Dir D = C1.Direction();
|
|
gp_Dir D1 = D;
|
|
gp_Dir x2, y2, z2;
|
|
x2 = C2.XAxis().Direction();
|
|
y2 = C2.YAxis().Direction();
|
|
z2 = C2.Axis().Direction();
|
|
Standard_Real Dx = D.Dot(x2);
|
|
Standard_Real Dy = D.Dot(y2);
|
|
Standard_Real Dz = D.Dot(z2);
|
|
D.SetCoord(Dx,Dy,Dz);
|
|
|
|
// Calcul de V ...
|
|
gp_Pnt O1 = C1.Location();
|
|
gp_Pnt O2 = C2.Location();
|
|
gp_Vec O2O1 (O2,O1);
|
|
O2O1.SetCoord(O2O1.Dot(x2), O2O1.Dot(y2), O2O1.Dot(z2));
|
|
gp_XYZ Vxyz = (D.XYZ()*(O2O1.Dot(D)))-O2O1.XYZ();
|
|
|
|
// Calcul des coefficients de l equation en y
|
|
Standard_Real P = C2.Parameter();
|
|
Standard_Real A1 = (1-Dx*Dx)/(2.0*P*P);
|
|
Standard_Real A2 = (-3.0*Dx*Dy/(2.0*P));
|
|
Standard_Real A3 = (1 - Dy*Dy + Vxyz.X()/P);
|
|
Standard_Real A4 = Vxyz.Y();
|
|
|
|
math_DirectPolynomialRoots Sol(A1,A2,A3,A4);
|
|
if (!Sol.IsDone()) { return; }
|
|
|
|
// Stockage des solutions ...
|
|
gp_Pnt P1,P2;
|
|
Standard_Real U1,U2;
|
|
Standard_Integer NbSol = Sol.NbSolutions();
|
|
for (Standard_Integer NoSol = 1; NoSol <= NbSol; NoSol++) {
|
|
U2 = Sol.Value(NoSol);
|
|
P2 = ElCLib::Value(U2,C2);
|
|
U1 = (gp_Vec(O1,P2)).Dot(D1);
|
|
P1 = ElCLib::Value(U1,C1);
|
|
mySqDist[myNbExt] = P1.SquareDistance(P2);
|
|
myPoint[myNbExt][0] = Extrema_POnCurv(U1,P1);
|
|
myPoint[myNbExt][1] = Extrema_POnCurv(U2,P2);
|
|
myNbExt++;
|
|
}
|
|
myDone = Standard_True;
|
|
}
|
|
//=======================================================================
|
|
//function : Extrema_ExtElC
|
|
//purpose :
|
|
//=======================================================================
|
|
Extrema_ExtElC::Extrema_ExtElC (const gp_Circ& C1,
|
|
const gp_Circ& C2)
|
|
{
|
|
Standard_Boolean bIsSamePlane, bIsSameAxe;
|
|
Standard_Real aTolD, aTolD2, aTolA, aD2, aDC2;
|
|
gp_Pnt aPc1, aPc2;
|
|
gp_Dir aDc1, aDc2;
|
|
//
|
|
myIsPar = Standard_False;
|
|
myDone = Standard_False;
|
|
myNbExt = 0;
|
|
//
|
|
aTolA=Precision::Angular();
|
|
aTolD=Precision::Confusion();
|
|
aTolD2=aTolD*aTolD;
|
|
//
|
|
aPc1=C1.Location();
|
|
aDc1=C1.Axis().Direction();
|
|
|
|
aPc2=C2.Location();
|
|
aDc2=C2.Axis().Direction();
|
|
gp_Pln aPlc1(aPc1, aDc1);
|
|
//
|
|
aD2=aPlc1.SquareDistance(aPc2);
|
|
bIsSamePlane=aDc1.IsParallel(aDc2, aTolA) && aD2<aTolD2;
|
|
if (!bIsSamePlane) {
|
|
return;
|
|
}
|
|
//
|
|
aDC2=aPc1.SquareDistance(aPc2);
|
|
bIsSameAxe=aDC2<aTolD2;
|
|
//
|
|
if(bIsSameAxe) {
|
|
myIsPar = Standard_True;
|
|
Standard_Real dR = C1.Radius() - C2.Radius();
|
|
Standard_Real dC = C1.Location().Distance(C2.Location());
|
|
mySqDist[0] = dR*dR + dC*dC;
|
|
dR = C1.Radius() + C2.Radius();
|
|
mySqDist[1] = dR*dR + dC*dC;
|
|
myDone = Standard_True;
|
|
}
|
|
else {
|
|
Standard_Boolean bIn, bOut;
|
|
Standard_Integer j1, j2;
|
|
Standard_Real aR1, aR2, aD12, aT11, aT12, aT21, aT22;
|
|
gp_Circ aC1, aC2;
|
|
gp_Pnt aP11, aP12, aP21, aP22;
|
|
//
|
|
myDone = Standard_True;
|
|
//
|
|
aR1=C1.Radius();
|
|
aR2=C2.Radius();
|
|
//
|
|
j1=0;
|
|
j2=1;
|
|
aC1=C1;
|
|
aC2=C2;
|
|
if (aR2>aR1) {
|
|
j1=1;
|
|
j2=0;
|
|
aC1=C2;
|
|
aC2=C1;
|
|
}
|
|
//
|
|
aR1=aC1.Radius(); // max radius
|
|
aR2=aC2.Radius(); // min radius
|
|
//
|
|
aPc1=aC1.Location();
|
|
aPc2=aC2.Location();
|
|
//
|
|
aD12=aPc1.Distance(aPc2);
|
|
gp_Vec aVec12(aPc1, aPc2);
|
|
gp_Dir aDir12(aVec12);
|
|
//
|
|
// 1. Four common solutions
|
|
myNbExt=4;
|
|
//
|
|
aP11.SetXYZ(aPc1.XYZ()-aR1*aDir12.XYZ());
|
|
aP12.SetXYZ(aPc1.XYZ()+aR1*aDir12.XYZ());
|
|
aP21.SetXYZ(aPc2.XYZ()-aR2*aDir12.XYZ());
|
|
aP22.SetXYZ(aPc2.XYZ()+aR2*aDir12.XYZ());
|
|
//
|
|
aT11=ElCLib::Parameter(aC1, aP11);
|
|
aT12=ElCLib::Parameter(aC1, aP12);
|
|
aT21=ElCLib::Parameter(aC2, aP21);
|
|
aT22=ElCLib::Parameter(aC2, aP22);
|
|
//
|
|
// P11, P21
|
|
myPoint[0][j1].SetValues(aT11, aP11);
|
|
myPoint[0][j2].SetValues(aT21, aP21);
|
|
mySqDist[0]=aP11.SquareDistance(aP21);
|
|
// P11, P22
|
|
myPoint[1][j1].SetValues(aT11, aP11);
|
|
myPoint[1][j2].SetValues(aT22, aP22);
|
|
mySqDist[1]=aP11.SquareDistance(aP22);
|
|
//
|
|
// P12, P21
|
|
myPoint[2][j1].SetValues(aT12, aP12);
|
|
myPoint[2][j2].SetValues(aT21, aP21);
|
|
mySqDist[2]=aP12.SquareDistance(aP21);
|
|
//
|
|
// P12, P22
|
|
myPoint[3][j1].SetValues(aT12, aP12);
|
|
myPoint[3][j2].SetValues(aT22, aP22);
|
|
mySqDist[3]=aP12.SquareDistance(aP22);
|
|
//
|
|
// 2. Check for intersections
|
|
bOut=aD12>(aR1+aR2+aTolD);
|
|
bIn =aD12<(aR1-aR2-aTolD);
|
|
if (!bOut && !bIn) {
|
|
Standard_Boolean bNbExt6;
|
|
Standard_Real aAlpha, aBeta, aT[2], aVal, aDist2;
|
|
gp_Pnt aPt, aPL1, aPL2;
|
|
gp_Dir aDLt;
|
|
//
|
|
aAlpha=0.5*(aR1*aR1-aR2*aR2+aD12*aD12)/aD12;
|
|
aVal=aR1*aR1-aAlpha*aAlpha;
|
|
if (aVal<0.) {// see pkv/900/L4 for details
|
|
aVal=-aVal;
|
|
}
|
|
aBeta=Sqrt(aVal);
|
|
//aBeta=Sqrt(aR1*aR1-aAlpha*aAlpha);
|
|
//--
|
|
aPt.SetXYZ(aPc1.XYZ()+aAlpha*aDir12.XYZ());
|
|
//
|
|
aDLt=aDc1^aDir12;
|
|
aPL1.SetXYZ(aPt.XYZ()+aBeta*aDLt.XYZ());
|
|
aPL2.SetXYZ(aPt.XYZ()-aBeta*aDLt.XYZ());
|
|
//
|
|
aDist2=aPL1.SquareDistance(aPL2);
|
|
bNbExt6=aDist2>aTolD2;
|
|
//
|
|
myNbExt=5;// just in case. see pkv/900/L4 for details
|
|
aT[j1]=ElCLib::Parameter(aC1, aPL1);
|
|
aT[j2]=ElCLib::Parameter(aC2, aPL1);
|
|
myPoint[4][j1].SetValues(aT[j1], aPL1);
|
|
myPoint[4][j2].SetValues(aT[j2], aPL1);
|
|
mySqDist[4]=0.;
|
|
//
|
|
if (bNbExt6) {
|
|
myNbExt=6;
|
|
aT[j1]=ElCLib::Parameter(aC1, aPL2);
|
|
aT[j2]=ElCLib::Parameter(aC2, aPL2);
|
|
myPoint[5][j1].SetValues(aT[j1], aPL2);
|
|
myPoint[5][j2].SetValues(aT[j2], aPL2);
|
|
mySqDist[5]=0.;
|
|
}
|
|
//
|
|
}// if (!bOut || !bIn) {
|
|
}// else
|
|
}
|
|
//=======================================================================
|
|
//function : Extrema_ExtElC
|
|
//purpose :
|
|
//=======================================================================
|
|
Extrema_ExtElC::Extrema_ExtElC (const gp_Circ&, const gp_Elips&)
|
|
{
|
|
Standard_NotImplemented::Raise();
|
|
}
|
|
//=======================================================================
|
|
//function : Extrema_ExtElC
|
|
//purpose :
|
|
//=======================================================================
|
|
Extrema_ExtElC::Extrema_ExtElC (const gp_Circ&, const gp_Hypr&)
|
|
{
|
|
Standard_NotImplemented::Raise();
|
|
}
|
|
//=======================================================================
|
|
//function : Extrema_ExtElC
|
|
//purpose :
|
|
//=======================================================================
|
|
Extrema_ExtElC::Extrema_ExtElC (const gp_Circ&, const gp_Parab&)
|
|
{
|
|
Standard_NotImplemented::Raise();
|
|
}
|
|
//=======================================================================
|
|
//function : Extrema_ExtElC
|
|
//purpose :
|
|
//=======================================================================
|
|
Extrema_ExtElC::Extrema_ExtElC (const gp_Elips&, const gp_Elips&)
|
|
{
|
|
Standard_NotImplemented::Raise();
|
|
}
|
|
//=======================================================================
|
|
//function : Extrema_ExtElC
|
|
//purpose :
|
|
//=======================================================================
|
|
Extrema_ExtElC::Extrema_ExtElC (const gp_Elips&, const gp_Hypr&)
|
|
{
|
|
Standard_NotImplemented::Raise();
|
|
}
|
|
//=======================================================================
|
|
//function : Extrema_ExtElC
|
|
//purpose :
|
|
//=======================================================================
|
|
Extrema_ExtElC::Extrema_ExtElC (const gp_Elips&, const gp_Parab&)
|
|
{
|
|
Standard_NotImplemented::Raise();
|
|
}
|
|
//=======================================================================
|
|
//function : Extrema_ExtElC
|
|
//purpose :
|
|
//=======================================================================
|
|
Extrema_ExtElC::Extrema_ExtElC (const gp_Hypr&, const gp_Hypr&)
|
|
{
|
|
Standard_NotImplemented::Raise();
|
|
}
|
|
//=======================================================================
|
|
//function : Extrema_ExtElC
|
|
//purpose :
|
|
//=======================================================================
|
|
Extrema_ExtElC::Extrema_ExtElC (const gp_Hypr&, const gp_Parab&)
|
|
{
|
|
Standard_NotImplemented::Raise();
|
|
}
|
|
//=======================================================================
|
|
//function : Extrema_ExtElC
|
|
//purpose :
|
|
//=======================================================================
|
|
Extrema_ExtElC::Extrema_ExtElC (const gp_Parab&, const gp_Parab&)
|
|
{
|
|
Standard_NotImplemented::Raise();
|
|
}
|
|
//=======================================================================
|
|
//function : IsDone
|
|
//purpose :
|
|
//=======================================================================
|
|
Standard_Boolean Extrema_ExtElC::IsDone () const {
|
|
return myDone;
|
|
}
|
|
//=======================================================================
|
|
//function : IsParallel
|
|
//purpose :
|
|
//=======================================================================
|
|
Standard_Boolean Extrema_ExtElC::IsParallel () const
|
|
{
|
|
if (!IsDone()) {
|
|
StdFail_NotDone::Raise();
|
|
}
|
|
return myIsPar;
|
|
}
|
|
//=======================================================================
|
|
//function : NbExt
|
|
//purpose :
|
|
//=======================================================================
|
|
Standard_Integer Extrema_ExtElC::NbExt () const
|
|
{
|
|
if (IsParallel()) {
|
|
StdFail_InfiniteSolutions::Raise();
|
|
}
|
|
return myNbExt;
|
|
}
|
|
//=======================================================================
|
|
//function : SquareDistance
|
|
//purpose :
|
|
//=======================================================================
|
|
Standard_Real Extrema_ExtElC::SquareDistance (const Standard_Integer N) const
|
|
{
|
|
if (!myDone) {
|
|
StdFail_NotDone::Raise();
|
|
}
|
|
if (myIsPar) {
|
|
if (N < 1 || N > 2) {
|
|
Standard_OutOfRange::Raise();
|
|
}
|
|
}
|
|
else {
|
|
if (N < 1 || N > NbExt()) {
|
|
Standard_OutOfRange::Raise();
|
|
}
|
|
}
|
|
return mySqDist[N-1];
|
|
}
|
|
void Extrema_ExtElC::Points (const Standard_Integer N,
|
|
Extrema_POnCurv& P1,
|
|
Extrema_POnCurv& P2) const
|
|
{
|
|
if (N < 1 || N > NbExt()) {
|
|
Standard_OutOfRange::Raise();
|
|
}
|
|
P1 = myPoint[N-1][0];
|
|
P2 = myPoint[N-1][1];
|
|
}
|