1
0
mirror of https://git.dev.opencascade.org/repos/occt.git synced 2025-04-10 18:51:21 +03:00
occt/src/BRepBlend/BRepBlend_AppFuncRoot.cxx
abv 0797d9d30a 0025418: Debug output to be limited to OCC development environment
Macros ending on "DEB" are replaced by OCCT_DEBUG across OCCT code; new macros described in documentation.
Macros starting with DEB are changed to start with "OCCT_DEBUG_".
Some code cleaned.
2014-11-05 16:55:24 +03:00

398 lines
12 KiB
C++

// Created on: 1998-05-12
// Created by: Philippe NOUAILLE
// Copyright (c) 1998-1999 Matra Datavision
// Copyright (c) 1999-2014 OPEN CASCADE SAS
//
// This file is part of Open CASCADE Technology software library.
//
// This library is free software; you can redistribute it and/or modify it under
// the terms of the GNU Lesser General Public License version 2.1 as published
// by the Free Software Foundation, with special exception defined in the file
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
// distribution for complete text of the license and disclaimer of any warranty.
//
// Alternatively, this file may be used under the terms of Open CASCADE
// commercial license or contractual agreement.
#include <BRepBlend_AppFuncRoot.ixx>
#include <Blend_AppFunction.hxx>
#include <Blend_Point.hxx>
#include <BRepBlend_Line.hxx>
#include <math_FunctionSetRoot.hxx>
#include <TColgp_HArray1OfPnt.hxx>
#include <TColgp_HArray1OfPnt2d.hxx>
#include <TColgp_HArray1OfVec.hxx>
#include <TColgp_HArray1OfVec2d.hxx>
#include <TColStd_HArray1OfReal.hxx>
#include <TColStd_HArray1OfInteger.hxx>
BRepBlend_AppFuncRoot::BRepBlend_AppFuncRoot(Handle(BRepBlend_Line)& Line,
Blend_AppFunction& Func,
const Standard_Real Tol3d,
const Standard_Real Tol2d)
:myLine(Line),
myFunc(&Func),
myTolerance(1,Func.NbVariables()),
X1(1,Func.NbVariables()),
X2(1,Func.NbVariables()),
XInit(1,Func.NbVariables()),
Sol(1,Func.NbVariables())
{
Standard_Integer NbPoles, NbKnots, Degree, NbPoles2d;
Standard_Integer ii;
// Tolerances
Func.GetTolerance(myTolerance, Tol3d);
Standard_Integer dim = Func.NbVariables();
for (ii=1; ii<= dim; ii++) {
if (myTolerance(ii)>Tol2d) { myTolerance(ii) = Tol2d;}
}
// Tables
Func.GetShape( NbPoles, NbKnots, Degree, NbPoles2d);
// Calculation of BaryCentre (rationnal case).
if (Func.IsRational()) {
Standard_Real Xmax =-1.e100, Xmin = 1.e100,
Ymax =-1.e100, Ymin = 1.e100,
Zmax =-1.e100, Zmin = 1.e100;
Blend_Point P;
for (ii=1; ii<=myLine->NbPoints(); ii++) {
P = myLine->Point(ii);
Xmax = Max ( Max(P.PointOnS1().X(), P.PointOnS2().X()), Xmax);
Xmin = Min ( Min(P.PointOnS1().X(), P.PointOnS2().X()), Xmin);
Ymax = Max ( Max(P.PointOnS1().Y(), P.PointOnS2().Y()), Ymax);
Ymin = Min ( Min(P.PointOnS1().Y(), P.PointOnS2().Y()), Ymin);
Zmax = Max ( Max(P.PointOnS1().Z(), P.PointOnS2().Z()), Zmax);
Zmin = Min ( Min(P.PointOnS1().Z(), P.PointOnS2().Z()), Zmin);
myBary.SetCoord((Xmax+Xmin)/2, (Ymax+Ymin)/2, (Zmax+Zmin)/2);
}
}
else {myBary.SetCoord(0,0,0);}
}
//================================================================================
// Function: D0
// Purpose : Calculation of section for v = Param, if calculation fails
// Standard_False is raised.
//================================================================================
Standard_Boolean BRepBlend_AppFuncRoot::D0(const Standard_Real Param,
const Standard_Real /*First*/,
const Standard_Real /*Last*/,
TColgp_Array1OfPnt& Poles,
TColgp_Array1OfPnt2d& Poles2d,
TColStd_Array1OfReal& Weigths)
{
Standard_Boolean Ok=Standard_True;
Blend_AppFunction* Func = (Blend_AppFunction*)myFunc;
Ok = SearchPoint( *Func, Param, myPnt);
if (Ok) (*Func).Section(myPnt,
Poles,
Poles2d,
Weigths);
return Ok;
}
//================================================================================
// Function: D1
// Purpose : Calculation of the partial derivative of the section corresponding to v
// for v = Param, if the calculation fails Standard_False is raised.
//================================================================================
Standard_Boolean BRepBlend_AppFuncRoot::D1(const Standard_Real Param,
const Standard_Real /*First*/,
const Standard_Real /*Last*/,
TColgp_Array1OfPnt& Poles,
TColgp_Array1OfVec& DPoles,
TColgp_Array1OfPnt2d& Poles2d,
TColgp_Array1OfVec2d& DPoles2d,
TColStd_Array1OfReal& Weigths,
TColStd_Array1OfReal& DWeigths)
{
Standard_Boolean Ok=Standard_True;
Blend_AppFunction* Func = (Blend_AppFunction*)myFunc;
Ok = SearchPoint( *Func, Param, myPnt);
if (Ok) {
Ok = (*Func).Section(myPnt,
Poles, DPoles,
Poles2d, DPoles2d,
Weigths, DWeigths);
}
return Ok;
}
//===========================================================================
// Function: D2
// Purpose : Calculation of the derivative and second partial of the
// section corresponding to v.
// For v = Param, if the calculation fails Standard_False is raised.
//===========================================================================
Standard_Boolean BRepBlend_AppFuncRoot::D2(const Standard_Real Param,
const Standard_Real /*First*/,
const Standard_Real /*Last*/,
TColgp_Array1OfPnt& Poles,
TColgp_Array1OfVec& DPoles,
TColgp_Array1OfVec& D2Poles,
TColgp_Array1OfPnt2d& Poles2d,
TColgp_Array1OfVec2d& DPoles2d,
TColgp_Array1OfVec2d& D2Poles2d,
TColStd_Array1OfReal& Weigths,
TColStd_Array1OfReal& DWeigths,
TColStd_Array1OfReal& D2Weigths)
{
Standard_Boolean Ok=Standard_True;
Blend_AppFunction* Func = (Blend_AppFunction*)myFunc;
Ok = SearchPoint( *Func, Param, myPnt);
if (Ok) {
Ok = (*Func).Section(myPnt,
Poles, DPoles, D2Poles,
Poles2d, DPoles2d, D2Poles2d,
Weigths, DWeigths, D2Weigths);
}
return Ok;
}
Standard_Integer BRepBlend_AppFuncRoot::Nb2dCurves() const
{
Blend_AppFunction* Func = (Blend_AppFunction*)myFunc;
Standard_Integer i,j,k,nbpol2d;
(*Func).GetShape(i,j,k,nbpol2d);
return nbpol2d;
}
void BRepBlend_AppFuncRoot::SectionShape(Standard_Integer& NbPoles,
Standard_Integer& NbKnots,
Standard_Integer& Degree) const
{
Blend_AppFunction* Func = (Blend_AppFunction*)myFunc;
Standard_Integer ii;
(*Func).GetShape( NbPoles, NbKnots, Degree, ii);
}
void BRepBlend_AppFuncRoot::Knots(TColStd_Array1OfReal& TKnots) const
{
Blend_AppFunction* Func = (Blend_AppFunction*)myFunc;
Func->Knots(TKnots);
}
void BRepBlend_AppFuncRoot::Mults(TColStd_Array1OfInteger& TMults) const
{
Blend_AppFunction* Func = (Blend_AppFunction*)myFunc;
Func->Mults(TMults);
}
Standard_Boolean BRepBlend_AppFuncRoot::IsRational() const
{
Blend_AppFunction* Func = (Blend_AppFunction*)myFunc;
return (*Func).IsRational();
}
Standard_Integer BRepBlend_AppFuncRoot::NbIntervals(const GeomAbs_Shape S) const
{
Blend_AppFunction* Func = (Blend_AppFunction*)myFunc;
return Func->NbIntervals(S);
}
void BRepBlend_AppFuncRoot::Intervals(TColStd_Array1OfReal& T,const GeomAbs_Shape S) const
{
Blend_AppFunction* Func = (Blend_AppFunction*)myFunc;
Func->Intervals(T, S);
}
void BRepBlend_AppFuncRoot::SetInterval(const Standard_Real First,const Standard_Real Last)
{
Blend_AppFunction* Func = (Blend_AppFunction*)myFunc;
Func->Set(First, Last);
}
void BRepBlend_AppFuncRoot::Resolution(const Standard_Integer Index,
const Standard_Real Tol,
Standard_Real& TolU,
Standard_Real& TolV) const
{
Blend_AppFunction* Func = (Blend_AppFunction*)myFunc;
Func->Resolution(Index,Tol,TolU,TolV);
}
void BRepBlend_AppFuncRoot::GetTolerance(const Standard_Real BoundTol,
const Standard_Real SurfTol,
const Standard_Real AngleTol,
TColStd_Array1OfReal& Tol3d) const
{
Standard_Integer ii;
math_Vector V3d(1, Tol3d.Length()), V1d(1, Tol3d.Length());
Blend_AppFunction* Func = (Blend_AppFunction*)myFunc;
Func->GetTolerance(BoundTol, SurfTol, AngleTol, V3d, V1d);
for (ii=1; ii<=Tol3d.Length(); ii++) Tol3d(ii) = V3d(ii);
}
void BRepBlend_AppFuncRoot::SetTolerance(const Standard_Real Tol3d,
const Standard_Real Tol2d)
{
Blend_AppFunction* Func = (Blend_AppFunction*)myFunc;
Standard_Integer ii, dim = Func->NbVariables();
Func->GetTolerance(myTolerance, Tol3d);
for (ii=1; ii<=dim; ii++) {
if (myTolerance(ii)>Tol2d) { myTolerance(ii) = Tol2d;}
}
}
gp_Pnt BRepBlend_AppFuncRoot::BarycentreOfSurf() const
{
return myBary;
}
Standard_Real BRepBlend_AppFuncRoot::MaximalSection() const
{
Blend_AppFunction* Func = (Blend_AppFunction*)myFunc;
return Func->GetSectionSize();
}
void BRepBlend_AppFuncRoot::GetMinimalWeight(TColStd_Array1OfReal& Weigths) const
{
Blend_AppFunction* Func = (Blend_AppFunction*)myFunc;
Func->GetMinimalWeight(Weigths);
}
//================================================================================
//
// Function : SearchPoint
//
// Purpose : Find point solution with parameter Param (on 2 Surfaces)
//
// Algorithm :
// 1) Approximative solution is found from already calculated Points
// 2) Convergence is done by a method of type Newton
//
// Possible causes of fails :
// - Singularity on surfaces.
// - no information oin the "line" resulting from processing.
//
//================================================================================
Standard_Boolean BRepBlend_AppFuncRoot::SearchPoint(Blend_AppFunction& Func,
const Standard_Real Param,
Blend_Point& Pnt)
{
Standard_Boolean Trouve;
Standard_Integer dim = Func.NbVariables();
// (1) Find a point of init
Standard_Integer I1=1, I2=myLine->NbPoints(), Index;
Standard_Real t1, t2;
// (1.a) It is checked if it is inside
if (Param < myLine->Point(I1).Parameter()) {return Standard_False;}
if (Param > myLine->Point(I2).Parameter()) {return Standard_False;}
// (1.b) Find the interval
Trouve = SearchLocation(Param, I1, I2, Index);
// (1.c) If the point is already calculated it is returned
if (Trouve) {
Pnt = myLine->Point(Index);
Vec(XInit,Pnt);
}
else {
// (1.d) Intialisation by linear interpolation
Pnt = myLine->Point(Index);
Vec(X1,Pnt);
t1 = Pnt.Parameter();
Pnt = myLine->Point(Index+1);
Vec(X2,Pnt);
t2 = Pnt.Parameter();
Standard_Real Parammt1 = (Param-t1) / (t2-t1);
Standard_Real t2mParam = (t2-Param) / (t2-t1);
for(Standard_Integer i = 1; i <= dim; i++){
XInit(i) = X2(i) * Parammt1 + X1(i) * t2mParam;
}
}
// (2) Calculation of the solution ------------------------
Func.Set(Param);
Func.GetBounds(X1, X2);
math_FunctionSetRoot rsnld(Func, myTolerance, 30);
rsnld.Perform(Func, XInit, X1, X2);
if (!rsnld.IsDone()) {
# ifdef BREPBLEND_DEB
cout << "AppFunc : RNLD Not done en t = " << Param << endl;
# endif
return Standard_False;
}
rsnld.Root(Sol);
// (3) Storage of the point
Point(Func,Param,Sol,Pnt);
// (4) Insertion of the point if the calculation seems long.
if ((!Trouve)&&(rsnld.NbIterations()>3)) {
#ifdef OCCT_DEBUG
cout << "Evaluation in t = " << Param << "given" << endl;
rsnld.Dump(cout);
#endif
myLine->InsertBefore(Index+1, Pnt);
}
return Standard_True;
}
//=============================================================================
//
// Function : SearchLocation
//
// Purpose : Binary search of the line of the parametric interval containing
// Param in the list of calculated points (myline)
// if the point of parameter Param is already stored in the list
// True is raised and ParamIndex corresponds to line of Point.
// Complexity of this algorithm is log(n)/log(2)
//================================================================================
Standard_Boolean BRepBlend_AppFuncRoot::SearchLocation(const Standard_Real Param,
const Standard_Integer FirstIndex,
const Standard_Integer LastIndex,
Standard_Integer& ParamIndex) const
{
Standard_Integer Ideb = FirstIndex, Ifin = LastIndex, Idemi;
Standard_Real Valeur;
Valeur = myLine->Point(Ideb).Parameter();
if (Param == Valeur) {
ParamIndex = Ideb;
return Standard_True;
}
Valeur = myLine->Point(Ifin).Parameter();
if (Param == Valeur) {
ParamIndex = Ifin;
return Standard_True;
}
while ( Ideb+1 != Ifin) {
Idemi = (Ideb+Ifin)/2;
Valeur = myLine->Point(Idemi).Parameter();
if (Valeur < Param) {Ideb = Idemi;}
else {
if ( Valeur > Param) { Ifin = Idemi;}
else { ParamIndex = Idemi;
return Standard_True;}
}
}
ParamIndex = Ideb;
return Standard_False;
}