mirror of
https://git.dev.opencascade.org/repos/occt.git
synced 2025-09-08 14:17:06 +03:00
275 lines
9.1 KiB
C++
275 lines
9.1 KiB
C++
// Copyright (c) 1995-1999 Matra Datavision
|
|
// Copyright (c) 1999-2014 OPEN CASCADE SAS
|
|
//
|
|
// This file is part of Open CASCADE Technology software library.
|
|
//
|
|
// This library is free software; you can redistribute it and/or modify it under
|
|
// the terms of the GNU Lesser General Public License version 2.1 as published
|
|
// by the Free Software Foundation, with special exception defined in the file
|
|
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
|
|
// distribution for complete text of the license and disclaimer of any warranty.
|
|
//
|
|
// Alternatively, this file may be used under the terms of Open CASCADE
|
|
// commercial license or contractual agreement.
|
|
|
|
|
|
#include <ElCLib.hxx>
|
|
#include <GccAna_Circ2d3Tan.hxx>
|
|
#include <GccAna_CircLin2dBisec.hxx>
|
|
#include <GccAna_Lin2dBisec.hxx>
|
|
#include <GccEnt_BadQualifier.hxx>
|
|
#include <GccEnt_QualifiedCirc.hxx>
|
|
#include <GccEnt_QualifiedLin.hxx>
|
|
#include <GccInt_BParab.hxx>
|
|
#include <GccInt_IType.hxx>
|
|
#include <gp_Circ2d.hxx>
|
|
#include <gp_Dir2d.hxx>
|
|
#include <gp_Lin2d.hxx>
|
|
#include <gp_Pnt2d.hxx>
|
|
#include <IntAna2d_AnaIntersection.hxx>
|
|
#include <IntAna2d_Conic.hxx>
|
|
#include <IntAna2d_IntPoint.hxx>
|
|
#include <TColStd_Array1OfReal.hxx>
|
|
|
|
//=========================================================================
|
|
// Creation of a circle tangent to a circle and two straight lines. +
|
|
//=========================================================================
|
|
GccAna_Circ2d3Tan::GccAna_Circ2d3Tan (const GccEnt_QualifiedCirc& Qualified1 ,
|
|
const GccEnt_QualifiedLin& Qualified2 ,
|
|
const GccEnt_QualifiedLin& Qualified3 ,
|
|
const Standard_Real Tolerance )
|
|
|
|
//=========================================================================
|
|
// Initialisation of fields. +
|
|
//=========================================================================
|
|
|
|
:cirsol(1,8) ,
|
|
qualifier1(1,8) ,
|
|
qualifier2(1,8) ,
|
|
qualifier3(1,8) ,
|
|
TheSame1(1,8) ,
|
|
TheSame2(1,8) ,
|
|
TheSame3(1,8) ,
|
|
pnttg1sol(1,8) ,
|
|
pnttg2sol(1,8) ,
|
|
pnttg3sol(1,8) ,
|
|
par1sol(1,8) ,
|
|
par2sol(1,8) ,
|
|
par3sol(1,8) ,
|
|
pararg1(1,8) ,
|
|
pararg2(1,8) ,
|
|
pararg3(1,8)
|
|
{
|
|
|
|
TheSame1.Init(0);
|
|
|
|
gp_Dir2d dirx(1.0,0.0);
|
|
Standard_Real Tol = Abs(Tolerance);
|
|
WellDone = Standard_False;
|
|
NbrSol = 0;
|
|
if (!(Qualified1.IsEnclosed() || Qualified1.IsEnclosing() ||
|
|
Qualified1.IsOutside() || Qualified1.IsUnqualified()) ||
|
|
!(Qualified2.IsEnclosed() ||
|
|
Qualified2.IsOutside() || Qualified2.IsUnqualified()) ||
|
|
!(Qualified3.IsEnclosed() ||
|
|
Qualified3.IsOutside() || Qualified3.IsUnqualified())) {
|
|
throw GccEnt_BadQualifier();
|
|
return;
|
|
}
|
|
|
|
//=========================================================================
|
|
// Processing. +
|
|
//=========================================================================
|
|
|
|
gp_Circ2d C1 = Qualified1.Qualified();
|
|
gp_Lin2d L2 = Qualified2.Qualified();
|
|
gp_Lin2d L3 = Qualified3.Qualified();
|
|
Standard_Real R1 = C1.Radius();
|
|
gp_Pnt2d center1(C1.Location());
|
|
gp_Pnt2d origin2(L2.Location());
|
|
gp_Dir2d dir2(L2.Direction());
|
|
gp_Dir2d normL2(-dir2.Y(),dir2.X());
|
|
gp_Pnt2d origin3(L3.Location());
|
|
gp_Dir2d dir3(L3.Direction());
|
|
gp_Dir2d normL3(-dir3.Y(),dir3.X());
|
|
|
|
TColStd_Array1OfReal Radius(1,2);
|
|
GccAna_CircLin2dBisec Bis1(C1,L2);
|
|
GccAna_Lin2dBisec Bis2(L2,L3);
|
|
if (Bis1.IsDone() && Bis2.IsDone()) {
|
|
Standard_Integer nbsolution1 = Bis1.NbSolutions();
|
|
Standard_Integer nbsolution2 = Bis2.NbSolutions();
|
|
for (Standard_Integer i = 1 ; i <= nbsolution1; i++) {
|
|
Handle(GccInt_Bisec) Sol1 = Bis1.ThisSolution(i);
|
|
GccInt_IType typ1 = Sol1->ArcType();
|
|
IntAna2d_AnaIntersection Intp;
|
|
for (Standard_Integer k = 1 ; k <= nbsolution2; k++) {
|
|
if (typ1 == GccInt_Lin) {
|
|
Intp.Perform(Sol1->Line(),Bis2.ThisSolution(k));
|
|
}
|
|
else if (typ1 == GccInt_Par) {
|
|
Intp.Perform(Bis2.ThisSolution(k),IntAna2d_Conic(Sol1->Parabola()));
|
|
}
|
|
if (Intp.IsDone()) {
|
|
if ((!Intp.IsEmpty())&&(!Intp.ParallelElements())&&
|
|
(!Intp.IdenticalElements())) {
|
|
for (Standard_Integer j = 1 ; j <= Intp.NbPoints() ; j++) {
|
|
gp_Pnt2d Center(Intp.Point(j).Value());
|
|
Standard_Real dist1 = Center.Distance(center1);
|
|
Standard_Real dist2 = L2.Distance(Center);
|
|
Standard_Real dist3 = L3.Distance(Center);
|
|
Standard_Integer nbsol1 = 0;
|
|
Standard_Integer nbsol3 = 0;
|
|
Standard_Boolean ok = Standard_False;
|
|
if (Qualified1.IsEnclosed()) {
|
|
if (dist1-R1 < Tolerance) {
|
|
Radius(1) = Abs(R1-dist1);
|
|
nbsol1 = 1;
|
|
ok = Standard_True;
|
|
}
|
|
}
|
|
else if (Qualified1.IsOutside()) {
|
|
if (R1-dist1 < Tolerance) {
|
|
Radius(1) = Abs(R1-dist1);
|
|
nbsol1 = 1;
|
|
ok = Standard_True;
|
|
}
|
|
}
|
|
else if (Qualified1.IsEnclosing()) {
|
|
ok = Standard_True;
|
|
nbsol1 = 1;
|
|
Radius(1) = Abs(R1-dist1);
|
|
}
|
|
else if (Qualified1.IsUnqualified()) {
|
|
ok = Standard_True;
|
|
nbsol1 = 2;
|
|
Radius(1) = Abs(R1-dist1);
|
|
Radius(2) = R1+dist1;
|
|
}
|
|
if (Qualified2.IsEnclosed() && ok) {
|
|
if ((((origin2.X()-Center.X())*(-dir2.Y()))+
|
|
((origin2.Y()-Center.Y())*(dir2.X())))<=0){
|
|
for (Standard_Integer ii = 1 ; ii <= nbsol1 ; ii++) {
|
|
if (Abs(dist2-Radius(ii)) < Tol) {
|
|
ok = Standard_True;
|
|
Radius(1) = Radius(ii);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
else if (Qualified2.IsOutside() && ok) {
|
|
if ((((origin2.X()-Center.X())*(-dir2.Y()))+
|
|
((origin2.Y()-Center.Y())*(dir2.X())))>=0){
|
|
for (Standard_Integer ii = 1 ; ii <= nbsol1 ; ii++) {
|
|
if (Abs(dist2-Radius(ii)) < Tol) {
|
|
ok = Standard_True;
|
|
Radius(1) = Radius(ii);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
else if (Qualified2.IsUnqualified() && ok) {
|
|
for (Standard_Integer ii = 1 ; ii <= nbsol1 ; ii++) {
|
|
if (Abs(dist2-Radius(ii)) < Tol) {
|
|
ok = Standard_True;
|
|
Radius(1) = Radius(ii);
|
|
}
|
|
}
|
|
}
|
|
if (Qualified3.IsEnclosed() && ok) {
|
|
if ((((origin3.X()-Center.X())*(-dir3.Y()))+
|
|
((origin3.Y()-Center.Y())*(dir3.X())))<=0){
|
|
if (Abs(dist3-Radius(1)) < Tol) {
|
|
ok = Standard_True;
|
|
nbsol3 = 1;
|
|
}
|
|
}
|
|
}
|
|
else if (Qualified3.IsOutside() && ok) {
|
|
if ((((origin3.X()-Center.X())*(-dir3.Y()))+
|
|
((origin3.Y()-Center.Y())*(dir3.X())))>=0){
|
|
if (Abs(dist3-Radius(1)) < Tol) {
|
|
ok = Standard_True;
|
|
nbsol3 = 1;
|
|
}
|
|
}
|
|
}
|
|
else if (Qualified3.IsUnqualified() && ok) {
|
|
if (Abs(dist3-Radius(1)) < Tol) {
|
|
ok = Standard_True;
|
|
nbsol3 = 1;
|
|
}
|
|
}
|
|
if (ok) {
|
|
for (Standard_Integer m = 1 ; m <= nbsol3 ; m++) {
|
|
NbrSol++;
|
|
cirsol(NbrSol) = gp_Circ2d(gp_Ax2d(Center,dirx),Radius(m));
|
|
// ==========================================================
|
|
Standard_Real distcc1 = Center.Distance(center1);
|
|
if (!Qualified1.IsUnqualified()) {
|
|
qualifier1(NbrSol) = Qualified1.Qualifier();
|
|
}
|
|
else if (Abs(distcc1+Radius(m)-R1) < Tol) {
|
|
qualifier1(NbrSol) = GccEnt_enclosed;
|
|
}
|
|
else if (Abs(distcc1-R1-Radius(m)) < Tol) {
|
|
qualifier1(NbrSol) = GccEnt_outside;
|
|
}
|
|
else { qualifier1(NbrSol) = GccEnt_enclosing; }
|
|
gp_Dir2d dc2(origin2.XY()-Center.XY());
|
|
if (!Qualified2.IsUnqualified()) {
|
|
qualifier2(NbrSol) = Qualified2.Qualifier();
|
|
}
|
|
else if (dc2.Dot(normL2) > 0.0) {
|
|
qualifier2(NbrSol) = GccEnt_outside;
|
|
}
|
|
else { qualifier2(NbrSol) = GccEnt_enclosed; }
|
|
gp_Dir2d dc3(origin3.XY()-Center.XY());
|
|
if (!Qualified3.IsUnqualified()) {
|
|
qualifier3(NbrSol) = Qualified3.Qualifier();
|
|
}
|
|
else if (dc3.Dot(normL3) > 0.0) {
|
|
qualifier3(NbrSol) = GccEnt_outside;
|
|
}
|
|
else { qualifier3(NbrSol) = GccEnt_enclosed; }
|
|
if (Center.Distance(center1) <= Tolerance &&
|
|
Abs(Radius(m)-R1) <= Tolerance) {
|
|
TheSame1(NbrSol) = 1;
|
|
}
|
|
else {
|
|
TheSame1(NbrSol) = 0;
|
|
gp_Dir2d dc(center1.XY()-Center.XY());
|
|
pnttg1sol(NbrSol)=gp_Pnt2d(Center.XY()+Radius(m)*dc.XY());
|
|
par1sol(NbrSol)=ElCLib::Parameter(cirsol(NbrSol),
|
|
pnttg1sol(NbrSol));
|
|
pararg1(NbrSol)=ElCLib::Parameter(C1,pnttg1sol(NbrSol));
|
|
}
|
|
TheSame2(NbrSol) = 0;
|
|
TheSame3(NbrSol) = 0;
|
|
gp_Dir2d dc(origin2.XY()-Center.XY());
|
|
Standard_Real sign = dc.Dot(gp_Dir2d(-dir2.Y(),dir2.X()));
|
|
dc = gp_Dir2d(sign*gp_XY(-dir2.Y(),dir2.X()));
|
|
pnttg2sol(NbrSol) = gp_Pnt2d(Center.XY()+Radius(m)*dc.XY());
|
|
par2sol(NbrSol)=ElCLib::Parameter(cirsol(NbrSol),
|
|
pnttg2sol(NbrSol));
|
|
pararg2(NbrSol)=ElCLib::Parameter(L2,pnttg2sol(NbrSol));
|
|
dc = gp_Dir2d(origin3.XY()-Center.XY());
|
|
sign = dc.Dot(gp_Dir2d(-dir3.Y(),dir3.X()));
|
|
dc = gp_Dir2d(sign*gp_XY(-dir3.Y(),dir3.X()));
|
|
pnttg3sol(NbrSol) = gp_Pnt2d(Center.XY()+Radius(m)*dc.XY());
|
|
par3sol(NbrSol)=ElCLib::Parameter(cirsol(NbrSol),
|
|
pnttg3sol(NbrSol));
|
|
pararg3(NbrSol)=ElCLib::Parameter(L3,pnttg3sol(NbrSol));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
WellDone = Standard_True;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|