mirror of
https://git.dev.opencascade.org/repos/occt.git
synced 2025-04-05 18:16:23 +03:00
Macro NO_CXX_EXCEPTION was removed from code. Method Raise() was replaced by explicit throw statement. Method Standard_Failure::Caught() was replaced by normal C++mechanism of exception transfer. Method Standard_Failure::Caught() is deprecated now. Eliminated empty constructors. Updated samples. Eliminate empty method ChangeValue from NCollection_Map class. Removed not operable methods from NCollection classes.
456 lines
13 KiB
C++
456 lines
13 KiB
C++
// Created on: 1993-03-04
|
|
// Created by: Jacques GOUSSARD
|
|
// Copyright (c) 1993-1999 Matra Datavision
|
|
// Copyright (c) 1999-2014 OPEN CASCADE SAS
|
|
//
|
|
// This file is part of Open CASCADE Technology software library.
|
|
//
|
|
// This library is free software; you can redistribute it and/or modify it under
|
|
// the terms of the GNU Lesser General Public License version 2.1 as published
|
|
// by the Free Software Foundation, with special exception defined in the file
|
|
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
|
|
// distribution for complete text of the license and disclaimer of any warranty.
|
|
//
|
|
// Alternatively, this file may be used under the terms of Open CASCADE
|
|
// commercial license or contractual agreement.
|
|
|
|
|
|
#include <Contap_ContAna.hxx>
|
|
#include <gp.hxx>
|
|
#include <gp_Cone.hxx>
|
|
#include <gp_Cylinder.hxx>
|
|
#include <gp_Dir.hxx>
|
|
#include <gp_Lin.hxx>
|
|
#include <gp_Pnt.hxx>
|
|
#include <gp_Sphere.hxx>
|
|
#include <gp_XYZ.hxx>
|
|
#include <Standard_DomainError.hxx>
|
|
#include <Standard_OutOfRange.hxx>
|
|
#include <StdFail_NotDone.hxx>
|
|
|
|
static const Standard_Real Tolpetit = 1.e-8;
|
|
|
|
Contap_ContAna::Contap_ContAna (): done(Standard_False) {}
|
|
|
|
void Contap_ContAna::Perform (const gp_Sphere& S,
|
|
const gp_Dir& D)
|
|
{
|
|
done = Standard_False;
|
|
typL = GeomAbs_Circle;
|
|
pt1 = S.Location();
|
|
dir1 = D;
|
|
if (Abs(D.Dot(S.XAxis().Direction())) < 0.9999999999999) {
|
|
dir2 = D.Crossed(S.XAxis().Direction());
|
|
}
|
|
else {
|
|
dir2 = D.Crossed(S.YAxis().Direction());
|
|
}
|
|
prm = S.Radius();
|
|
nbSol = 1;
|
|
done = Standard_True;
|
|
}
|
|
|
|
void Contap_ContAna::Perform (const gp_Sphere& S,
|
|
const gp_Dir& D,
|
|
const Standard_Real Angle)
|
|
{
|
|
done = Standard_False;
|
|
typL = GeomAbs_Circle;
|
|
|
|
dir1 = D;
|
|
if (Abs(D.Dot(S.XAxis().Direction())) < 0.9999999999999) {
|
|
dir2 = D.Crossed(S.XAxis().Direction());
|
|
}
|
|
else {
|
|
dir2 = D.Crossed(S.YAxis().Direction());
|
|
}
|
|
Standard_Real alpha = (S.Direct() ? Angle : -Angle);
|
|
pt1.SetXYZ(S.Location().XYZ() - S.Radius()*sin(alpha)*D.XYZ()) ;
|
|
prm = S.Radius()*cos(alpha);
|
|
nbSol = 1;
|
|
done = Standard_True;
|
|
}
|
|
|
|
void Contap_ContAna::Perform (const gp_Sphere& S,
|
|
const gp_Pnt& Eye)
|
|
{
|
|
done = Standard_False;
|
|
|
|
Standard_Real radius = S.Radius();
|
|
Standard_Real dist = Eye.Distance(S.Location());
|
|
if (dist <= radius) {
|
|
nbSol = 0;
|
|
}
|
|
else {
|
|
prm = radius*sqrt(1.-radius*radius/(dist*dist));
|
|
if (prm < Tolpetit) {
|
|
nbSol = 0;
|
|
}
|
|
else {
|
|
gp_XYZ locxyz(S.Location().XYZ());
|
|
dir1.SetXYZ(Eye.XYZ()-locxyz);
|
|
pt1.SetXYZ(locxyz + (radius*radius/dist)*dir1.XYZ());
|
|
if (Abs(dir1.Dot(S.XAxis().Direction())) < 0.9999999999999) {
|
|
dir2 = dir1.Crossed(S.XAxis().Direction());
|
|
}
|
|
else {
|
|
dir2 = dir1.Crossed(S.YAxis().Direction());
|
|
}
|
|
nbSol = 1;
|
|
typL = GeomAbs_Circle;
|
|
}
|
|
}
|
|
done = Standard_True;
|
|
}
|
|
|
|
void Contap_ContAna::Perform (const gp_Cylinder& C,
|
|
const gp_Dir& D)
|
|
{
|
|
done = Standard_False;
|
|
|
|
gp_XYZ normale(C.Position().Direction().XYZ());
|
|
normale.Cross(D.XYZ());
|
|
if (normale.Modulus() <= 1e-15) {
|
|
nbSol = 0;
|
|
}
|
|
else {
|
|
normale.Normalize();
|
|
typL = GeomAbs_Line;
|
|
dir1 = C.Position().Direction();
|
|
dir2 = dir1;
|
|
pt1.SetXYZ(C.Location().XYZ() + C.Radius()*normale);
|
|
pt2.SetXYZ(C.Location().XYZ() - C.Radius()*normale);
|
|
nbSol = 2;
|
|
}
|
|
|
|
done = Standard_True;
|
|
}
|
|
|
|
void Contap_ContAna::Perform (const gp_Cylinder& C,
|
|
const gp_Dir& D,
|
|
const Standard_Real Angle)
|
|
{
|
|
done = Standard_False;
|
|
|
|
Standard_Real Coefcos = D.Dot(C.Position().XDirection());
|
|
Standard_Real Coefsin = D.Dot(C.Position().YDirection());
|
|
Standard_Real Coefcst = cos(M_PI*0.5 + Angle);
|
|
|
|
Standard_Real norm1 = Coefcos*Coefcos + Coefsin*Coefsin;
|
|
Standard_Real norm2 = sqrt(norm1);
|
|
|
|
if (Abs(Coefcst) < norm2) {
|
|
typL = GeomAbs_Line;
|
|
nbSol = 2;
|
|
dir1 = dir2 = C.Position().Direction();
|
|
|
|
if (!C.Direct()) { // The normal is inverted.
|
|
Coefcos = -Coefcos;
|
|
Coefsin = -Coefsin;
|
|
}
|
|
|
|
// Necessary to solve Coefcos*cos(t) + Coefsin*sin(t) = Coefcst
|
|
// and the origins of solution are in the reference of the
|
|
// cylinder in (R*cost0, R*sint0,0) and (R*cost1,R*sint1,0)
|
|
// By setting cos(phi) = Coefcos/Sqrt(Coefcos**2 + Coefsin**2) and
|
|
// sin(phi) = Coefsin/Sqrt(Coefcos**2 + Coefsin**2)
|
|
// and by using trigonometric relations the values of cosinus
|
|
// and sinus to the solutions are obtained.
|
|
|
|
prm = Sqrt(norm1 - Coefcst*Coefcst);
|
|
Standard_Real cost0,sint0,cost1,sint1;
|
|
|
|
cost0 = (Coefcos*Coefcst - Coefsin*prm)/norm1;
|
|
cost1 = (Coefcos*Coefcst + Coefsin*prm)/norm1;
|
|
|
|
sint0 = ( Coefcos*prm + Coefsin*Coefcst)/norm1;
|
|
sint1 = (-Coefcos*prm + Coefsin*Coefcst)/norm1;
|
|
|
|
gp_XYZ Xdir(C.Position().XDirection().XYZ());
|
|
gp_XYZ Ydir(C.Position().YDirection().XYZ());
|
|
gp_XYZ dirxyz;
|
|
|
|
dirxyz.SetLinearForm(cost0,Xdir,sint0,Ydir);
|
|
dirxyz.Multiply(C.Radius());
|
|
pt1.SetXYZ(C.Location().XYZ().Added(dirxyz));
|
|
|
|
dirxyz.SetLinearForm(cost1,Xdir,sint1,Ydir);
|
|
dirxyz.Multiply(C.Radius());
|
|
pt2.SetXYZ(C.Location().XYZ().Added(dirxyz));
|
|
}
|
|
else {
|
|
nbSol = 0;
|
|
}
|
|
|
|
done = Standard_True;
|
|
}
|
|
|
|
void Contap_ContAna::Perform (const gp_Cylinder& C,
|
|
const gp_Pnt& Eye)
|
|
{
|
|
done = Standard_False;
|
|
|
|
Standard_Real radius = C.Radius();
|
|
gp_Lin theaxis(C.Axis());
|
|
Standard_Real dist = theaxis.Distance(Eye);
|
|
if (dist <= radius) {
|
|
nbSol = 0;
|
|
}
|
|
else {
|
|
typL = GeomAbs_Line;
|
|
prm = radius*sqrt(1.-radius*radius/(dist*dist));
|
|
dir1 = C.Axis().Direction();
|
|
dir2 = dir1;
|
|
gp_XYZ axeye(theaxis.Normal(Eye).Direction().XYZ()); // orientate the axis to the outside
|
|
gp_XYZ normale((theaxis.Direction().Crossed(axeye)).XYZ());
|
|
// normale.Normalize();
|
|
pt1.SetXYZ(C.Location().XYZ() + (radius*radius/dist)*axeye);
|
|
pt2.SetXYZ(pt1.XYZ() - prm*normale);
|
|
pt1.SetXYZ(pt1.XYZ() + prm*normale);
|
|
nbSol = 2;
|
|
}
|
|
done = Standard_True;
|
|
}
|
|
|
|
void Contap_ContAna::Perform (const gp_Cone& C,
|
|
const gp_Dir& D)
|
|
{
|
|
done = Standard_False;
|
|
|
|
Standard_Real Tgtalpha = Tan(C.SemiAngle());
|
|
|
|
Standard_Real Coefcos = D.Dot(C.Position().XDirection());
|
|
Standard_Real Coefsin = D.Dot(C.Position().YDirection());
|
|
Standard_Real Coefcst = D.Dot(C.Axis().Direction())*Tgtalpha;
|
|
|
|
Standard_Real norm1 = Coefcos*Coefcos + Coefsin*Coefsin;
|
|
Standard_Real norm2 = Sqrt(norm1);
|
|
// if (Abs(Abs(Coefcst)-norm2) <= Tolpetit) { // tol angulaire 1.e-8
|
|
// typL = GeomAbs_Line;
|
|
// nbSol = 1;
|
|
// pt1 = C.Apex();
|
|
// dir1 = D;
|
|
// }
|
|
// else if (Abs(Coefcst) < norm2) {
|
|
|
|
if (Abs(Coefcst) < norm2) {
|
|
typL = GeomAbs_Line;
|
|
nbSol = 2;
|
|
pt1 = C.Apex();
|
|
pt2 = pt1;
|
|
// Necessary to solve Coefcos*cos(t) + Coefsin*sin(t) = Coefcst
|
|
// and director vectors of solutions are
|
|
// cos(t0) * XDirection + sin(t0) * YDirection + ZDirection/Tgtalpha
|
|
// By setting cos(phi) = Coefcos/Sqrt(Coefcos**2 + Coefsin**2) and
|
|
// sin(phi) = Coefsin/Sqrt(Coefcos**2 + Coefsin**2)
|
|
// and by using trigonometric relations the values of cosinus
|
|
// and sinus to the solutions are obtained.
|
|
|
|
prm = Sqrt(norm1 - Coefcst*Coefcst);
|
|
Standard_Real cost0,sint0,cost1,sint1;
|
|
|
|
cost0 = (Coefcos*Coefcst - Coefsin*prm)/norm1;
|
|
cost1 = (Coefcos*Coefcst + Coefsin*prm)/norm1;
|
|
|
|
sint0 = ( Coefcos*prm + Coefsin*Coefcst)/norm1;
|
|
sint1 = (-Coefcos*prm + Coefsin*Coefcst)/norm1;
|
|
|
|
gp_XYZ Xdir(C.Position().XDirection().XYZ());
|
|
gp_XYZ Ydir(C.Position().YDirection().XYZ());
|
|
gp_XYZ Zdir(C.Axis().Direction().XYZ());
|
|
gp_XYZ dirxyz;
|
|
dirxyz.SetLinearForm(cost0,Xdir,sint0,Ydir,1./Tgtalpha,Zdir);
|
|
dir1.SetXYZ(dirxyz);
|
|
pt1.SetXYZ(pt1.XYZ()+dirxyz);
|
|
dirxyz.SetLinearForm(cost1,Xdir,sint1,Ydir,1./Tgtalpha,Zdir);
|
|
dir2.SetXYZ(dirxyz);
|
|
pt2.SetXYZ(pt2.XYZ()+dirxyz);
|
|
}
|
|
else {
|
|
nbSol = 0;
|
|
}
|
|
done = Standard_True;
|
|
}
|
|
|
|
void Contap_ContAna::Perform (const gp_Cone& C,
|
|
const gp_Dir& D,
|
|
const Standard_Real Angle)
|
|
{
|
|
done = Standard_False;
|
|
nbSol = 0;
|
|
|
|
Standard_Real Ang = C.SemiAngle();
|
|
Standard_Real Cosa = cos(Ang);
|
|
Standard_Real Sina = sin(Ang);
|
|
|
|
Standard_Real Coefcos = D.Dot(C.Position().XDirection());
|
|
Standard_Real Coefsin = D.Dot(C.Position().YDirection());
|
|
|
|
Standard_Real Coefcst1 = cos(M_PI*0.5 + Angle);
|
|
|
|
Standard_Real norm1 = Coefcos*Coefcos + Coefsin*Coefsin;
|
|
Standard_Real norm2 = Sqrt(norm1);
|
|
|
|
Standard_Real Coefnz = D.Dot(C.Axis().Direction())*Sina;
|
|
Standard_Real Coefcst = (Coefcst1 + Coefnz)/Cosa;
|
|
|
|
if (Abs(Coefcst) < norm2) {
|
|
typL = GeomAbs_Line;
|
|
nbSol+= 2;
|
|
pt1 = C.Apex();
|
|
pt2 = pt1;
|
|
|
|
// It is requiredto solve Coefcos*cos(t) + Coefsin*sin(t) = Coefcst
|
|
// and the director vectors of solutions are
|
|
// cos(t0) * XDirection + sin(t0) * YDirection + ZDirection/Tgtalpha
|
|
// By setting cos(phi) = Coefcos/Sqrt(Coefcos**2 + Coefsin**2) and
|
|
// sin(phi) = Coefsin/Sqrt(Coefcos**2 + Coefsin**2)
|
|
// and by using trigonometric relations the values of cosinus
|
|
// and sinus to the solutions are obtained.
|
|
|
|
prm = Sqrt(norm1 - Coefcst*Coefcst);
|
|
Standard_Real cost0,sint0,cost1,sint1;
|
|
|
|
cost0 = (Coefcos*Coefcst - Coefsin*prm)/norm1;
|
|
cost1 = (Coefcos*Coefcst + Coefsin*prm)/norm1;
|
|
|
|
sint0 = ( Coefcos*prm + Coefsin*Coefcst)/norm1;
|
|
sint1 = (-Coefcos*prm + Coefsin*Coefcst)/norm1;
|
|
|
|
gp_XYZ Xdir(C.Position().XDirection().XYZ());
|
|
gp_XYZ Ydir(C.Position().YDirection().XYZ());
|
|
gp_XYZ Zdir(C.Axis().Direction().XYZ());
|
|
if (!C.Direct()) {
|
|
Zdir.Reverse();
|
|
}
|
|
gp_XYZ dirxyz;
|
|
dirxyz.SetLinearForm(cost0,Xdir,sint0,Ydir,Cosa/Sina,Zdir);
|
|
dir1.SetXYZ(dirxyz);
|
|
pt1.SetXYZ(pt1.XYZ()+dirxyz);
|
|
dirxyz.SetLinearForm(cost1,Xdir,sint1,Ydir,Cosa/Sina,Zdir);
|
|
dir2.SetXYZ(dirxyz);
|
|
pt2.SetXYZ(pt2.XYZ()+dirxyz);
|
|
}
|
|
|
|
Coefcst = (Coefcst1 - Coefnz)/Cosa;
|
|
|
|
if (Abs(Coefcst) < norm2) {
|
|
typL = GeomAbs_Line;
|
|
nbSol+= 2;
|
|
pt3 = C.Apex();
|
|
pt4 = pt3;
|
|
|
|
prm = Sqrt(norm1 - Coefcst*Coefcst);
|
|
Standard_Real cost0,sint0,cost1,sint1;
|
|
|
|
cost0 = (Coefcos*Coefcst - Coefsin*prm)/norm1;
|
|
cost1 = (Coefcos*Coefcst + Coefsin*prm)/norm1;
|
|
|
|
sint0 = ( Coefcos*prm + Coefsin*Coefcst)/norm1;
|
|
sint1 = (-Coefcos*prm + Coefsin*Coefcst)/norm1;
|
|
|
|
gp_XYZ Xdir(C.Position().XDirection().XYZ());
|
|
gp_XYZ Ydir(C.Position().YDirection().XYZ());
|
|
gp_XYZ Zdir(C.Axis().Direction().XYZ());
|
|
if (!C.Direct()) {
|
|
Zdir.Reverse();
|
|
}
|
|
gp_XYZ dirxyz;
|
|
dirxyz.SetLinearForm(cost0,Xdir,sint0,Ydir,-Cosa/Sina,Zdir);
|
|
dir3.SetXYZ(dirxyz);
|
|
pt3.SetXYZ(pt3.XYZ()+dirxyz);
|
|
dirxyz.SetLinearForm(cost1,Xdir,sint1,Ydir,-Cosa/Sina,Zdir);
|
|
dir4.SetXYZ(dirxyz);
|
|
pt4.SetXYZ(pt4.XYZ()+dirxyz);
|
|
if (nbSol == 2) {
|
|
pt1 = pt3;
|
|
pt2 = pt4;
|
|
dir1 = dir3;
|
|
dir2 = dir4;
|
|
}
|
|
}
|
|
|
|
done = Standard_True;
|
|
}
|
|
|
|
void Contap_ContAna::Perform (const gp_Cone& C,
|
|
const gp_Pnt& Eye)
|
|
{
|
|
done = Standard_False;
|
|
|
|
Standard_Real Tgtalpha = Tan(C.SemiAngle());
|
|
|
|
gp_XYZ apexeye(Eye.XYZ());
|
|
apexeye.Subtract(C.Apex().XYZ());
|
|
|
|
Standard_Real Coefcos = apexeye.Dot(C.Position().XDirection().XYZ());
|
|
Standard_Real Coefsin = apexeye.Dot(C.Position().YDirection().XYZ());
|
|
Standard_Real Coefcst = apexeye.Dot(C.Axis().Direction().XYZ())*Tgtalpha;
|
|
|
|
Standard_Real norm1 = Coefcos*Coefcos + Coefsin*Coefsin;
|
|
Standard_Real norm2 = Sqrt(Coefcos*Coefcos + Coefsin*Coefsin);
|
|
// if (Abs(Abs(Coefcst)-norm2) <= Tolpetit) { // tol angulaire 1.e-8
|
|
// typL = GeomAbs_Line;
|
|
// nbSol = 1;
|
|
// pt1 = C.Apex();
|
|
// dir1.SetXYZ(apexeye);
|
|
// }
|
|
// else if (Abs(Coefcst) < norm2) {
|
|
|
|
if (Abs(Coefcst) < norm2) {
|
|
typL = GeomAbs_Line;
|
|
nbSol = 2;
|
|
pt1 = C.Apex();
|
|
pt2 = pt1;
|
|
// It is required to solve Coefcos*cos(t) + Coefsin*sin(t) = Coefcst
|
|
// and the director vectors of solutions are
|
|
// cos(t0) * XDirection + sin(t0) * YDirection + ZDirection/Tgtalpha
|
|
// By setting cos(phi) = Coefcos/Sqrt(Coefcos**2 + Coefsin**2) and
|
|
// sin(phi) = Coefsin/Sqrt(Coefcos**2 + Coefsin**2)
|
|
// and by using trigonometric relations the values of cosinus
|
|
// and sinus to the solutions are obtained.
|
|
|
|
prm = Sqrt(norm1 - Coefcst*Coefcst);
|
|
Standard_Real cost0,sint0,cost1,sint1;
|
|
|
|
cost0 = (Coefcos*Coefcst - Coefsin*prm)/norm1;
|
|
cost1 = (Coefcos*Coefcst + Coefsin*prm)/norm1;
|
|
|
|
sint0 = ( Coefcos*prm + Coefsin*Coefcst)/norm1;
|
|
sint1 = (-Coefcos*prm + Coefsin*Coefcst)/norm1;
|
|
|
|
gp_XYZ Xdir(C.Position().XDirection().XYZ());
|
|
gp_XYZ Ydir(C.Position().YDirection().XYZ());
|
|
gp_XYZ Zdir(C.Axis().Direction().XYZ());
|
|
gp_XYZ dirxyz;
|
|
dirxyz.SetLinearForm(cost0,Xdir,sint0,Ydir,1./Tgtalpha,Zdir);
|
|
dir1.SetXYZ(dirxyz);
|
|
pt1.SetXYZ(pt1.XYZ()+dirxyz);
|
|
dirxyz.SetLinearForm(cost1,Xdir,sint1,Ydir,1./Tgtalpha,Zdir);
|
|
dir2.SetXYZ(dirxyz);
|
|
pt2.SetXYZ(pt2.XYZ()+dirxyz);
|
|
}
|
|
else {
|
|
nbSol = 0;
|
|
}
|
|
done = Standard_True;
|
|
}
|
|
|
|
gp_Lin Contap_ContAna::Line (const Standard_Integer Index) const
|
|
{
|
|
if (!done) {throw StdFail_NotDone();}
|
|
if (typL != GeomAbs_Line || nbSol == 0) {throw Standard_DomainError();}
|
|
if (Index <=0 || Index > nbSol) {throw Standard_OutOfRange();}
|
|
switch (Index) {
|
|
case 1:
|
|
return gp_Lin(pt1,dir1);
|
|
case 2:
|
|
return gp_Lin(pt2,dir2);
|
|
case 3:
|
|
return gp_Lin(pt3,dir3);
|
|
case 4:
|
|
return gp_Lin(pt4,dir4);
|
|
}
|
|
throw Standard_OutOfRange("Program error in Contap_ContAna");
|
|
}
|