1
0
mirror of https://git.dev.opencascade.org/repos/occt.git synced 2025-04-07 18:30:55 +03:00
occt/src/GeomFill/GeomFill_DraftTrihedron.cxx
abv 92efcf78a6 0026936: Drawbacks of inlining in new type system in OCCT 7.0 -- automatic
Automatic restore of IMPLEMENT_STANDARD_RTTIEXT macro (upgrade -rtti)
2015-12-04 14:15:06 +03:00

384 lines
10 KiB
C++

// Created on: 1998-04-15
// Created by: Stephanie HUMEAU
// Copyright (c) 1998-1999 Matra Datavision
// Copyright (c) 1999-2014 OPEN CASCADE SAS
//
// This file is part of Open CASCADE Technology software library.
//
// This library is free software; you can redistribute it and/or modify it under
// the terms of the GNU Lesser General Public License version 2.1 as published
// by the Free Software Foundation, with special exception defined in the file
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
// distribution for complete text of the license and disclaimer of any warranty.
//
// Alternatively, this file may be used under the terms of Open CASCADE
// commercial license or contractual agreement.
#include <Adaptor3d_HCurve.hxx>
#include <GeomAbs_CurveType.hxx>
#include <GeomFill_DraftTrihedron.hxx>
#include <GeomFill_TrihedronLaw.hxx>
#include <gp_Vec.hxx>
#include <Precision.hxx>
#include <Standard_ConstructionError.hxx>
#include <Standard_OutOfRange.hxx>
#include <Standard_Type.hxx>
IMPLEMENT_STANDARD_RTTIEXT(GeomFill_DraftTrihedron,GeomFill_TrihedronLaw)
//=======================================================================
//function : DDeriv
//purpose : computes (F/|F|)''
//=======================================================================
static gp_Vec DDeriv(const gp_Vec& F, const gp_Vec& DF, const gp_Vec& D2F)
{
Standard_Real Norma = F.Magnitude();
gp_Vec Result = (D2F - 2*DF*(F*DF)/(Norma*Norma))/Norma -
F*((DF.SquareMagnitude() + F*D2F
- 3*(F*DF)*(F*DF)/(Norma*Norma))/(Norma*Norma*Norma));
return Result;
}
//=======================================================================
//function : DraftTrihedron
//purpose : Constructor
//=======================================================================
GeomFill_DraftTrihedron::GeomFill_DraftTrihedron(const gp_Vec& BiNormal,
const Standard_Real Angle)
{
B = BiNormal;
B.Normalize();
SetAngle(Angle);
}
//=======================================================================
//function : Setangle
//purpose :
//=======================================================================
void GeomFill_DraftTrihedron::SetAngle(const Standard_Real Angle)
{
myAngle = M_PI/2 + Angle;
myCos = Cos(myAngle);
}
//=======================================================================
//function : D0
//purpose : calculation of trihedron
//=======================================================================
Standard_Boolean GeomFill_DraftTrihedron::D0(const Standard_Real Param,
gp_Vec& Tangent,
gp_Vec& Normal,
gp_Vec& BiNormal)
{
gp_Pnt P;
gp_Vec T;
myTrimmed->D1(Param,P,T);
T.Normalize();
gp_Vec b = T.Crossed(B);
Standard_Real normb = b.Magnitude();
b /= normb;
if (normb < 1.e-12)
return Standard_False;
gp_Vec v = b.Crossed(T);
Standard_Real mu = myCos ;
mu = myCos;
//La Normal est portee par la regle
Normal.SetLinearForm(Sqrt(1-mu*mu), b, mu, v);
// Le reste suit....
// La tangente est perpendiculaire a la normale et a la direction de depouille
Tangent = Normal.Crossed(B);
Tangent.Normalize();
BiNormal = Tangent;
BiNormal.Cross(Normal);
return Standard_True;
}
//=======================================================================
//function : D1
//purpose : calculation of trihedron and first derivative
//=======================================================================
Standard_Boolean GeomFill_DraftTrihedron::D1(const Standard_Real Param,
gp_Vec& Tangent,
gp_Vec& DTangent,
gp_Vec& Normal,
gp_Vec& DNormal,
gp_Vec& BiNormal,
gp_Vec& DBiNormal)
{
gp_Pnt P;
gp_Vec T, DT, aux;
myTrimmed->D2(Param, P, T, aux);
Standard_Real normT, normb;
normT = T.Magnitude();
T /= normT;
DT.SetLinearForm(-(T.Dot(aux)), T, aux);
DT /= normT;
gp_Vec db, b = T.Crossed(B);
normb = b.Magnitude();
if (normb < 1.e-12)
return Standard_False;
b /= normb;
aux = DT.Crossed(B);
db.SetLinearForm( -(b.Dot(aux)), b, aux);
db /= normb;
gp_Vec v = b.Crossed(T);
gp_Vec dv = db.Crossed(T) + b.Crossed(DT);
Standard_Real mu = myCos;
Normal.SetLinearForm(Sqrt(1-mu*mu), b, mu, v);
DNormal.SetLinearForm(Sqrt(1-mu*mu), db, mu, dv);
Tangent = Normal.Crossed(B);
normT = Tangent.Magnitude();
Tangent/= normT;
aux = DNormal.Crossed(B);
DTangent.SetLinearForm( -(Tangent.Dot(aux)), Tangent, aux);
DTangent /= normT;
BiNormal = Tangent;
BiNormal.Cross(Normal);
DBiNormal.SetLinearForm(DTangent.Crossed(Normal),Tangent.Crossed(DNormal));
return Standard_True;
}
//=======================================================================
//function : D2
//purpose : calculation of trihedron and derivatives 1 et 2
//=======================================================================
Standard_Boolean GeomFill_DraftTrihedron::D2(const Standard_Real Param,
gp_Vec& Tangent,
gp_Vec& DTangent,
gp_Vec& D2Tangent,
gp_Vec& Normal,
gp_Vec& DNormal,
gp_Vec& D2Normal,
gp_Vec& BiNormal,
gp_Vec& DBiNormal,
gp_Vec& D2BiNormal)
{
gp_Pnt P;
gp_Vec T, DT, D2T, aux, aux2;
Standard_Real dot;
myTrimmed->D3(Param, P, T, aux, aux2);
Standard_Real normT, normb;
D2T = DDeriv(T, aux, aux2);
normT = T.Magnitude();
T /= normT;
dot = T.Dot(aux);
DT.SetLinearForm(-dot, T, aux);
DT /= normT;
gp_Vec db, d2b, b = T.Crossed(B);
normb = b.Magnitude();
if (normb < 1.e-12)
return Standard_False;
aux = DT.Crossed(B); aux2 = D2T.Crossed(B);
d2b = DDeriv(b, aux, aux2);
b /= normb;
dot = b.Dot(aux);
db.SetLinearForm( -dot, b, aux);
db /= normb;
gp_Vec v = b.Crossed(T);
gp_Vec dv = db.Crossed(T) + b.Crossed(DT);
gp_Vec d2v = d2b.Crossed(T) + 2*db.Crossed(DT) + b.Crossed(D2T);
Standard_Real mu = myCos, rac;
rac = Sqrt(1-mu*mu);
Normal .SetLinearForm( rac, b , mu, v);
DNormal .SetLinearForm( rac, db , mu, dv);
D2Normal.SetLinearForm( rac, d2b, mu, d2v);
Tangent = Normal.Crossed(B);
normT = Tangent.Magnitude();
aux = DNormal.Crossed(B);
aux2 = D2Normal.Crossed(B);
D2Tangent = DDeriv(Tangent, aux, aux2);
Tangent/= normT;
dot = Tangent.Dot(aux);
DTangent.SetLinearForm( -dot, Tangent, aux);
DTangent /= normT;
BiNormal = Tangent;
BiNormal.Cross(Normal);
DBiNormal.SetLinearForm(DTangent.Crossed(Normal),Tangent.Crossed(DNormal));
D2BiNormal.SetLinearForm(1, D2Tangent.Crossed(Normal),
2, DTangent.Crossed(DNormal),
Tangent.Crossed(D2Normal));
return Standard_True;
}
//=======================================================================
//function : Copy
//purpose :
//=======================================================================
Handle(GeomFill_TrihedronLaw) GeomFill_DraftTrihedron::Copy() const
{
Handle(GeomFill_DraftTrihedron) copy =
new (GeomFill_DraftTrihedron) (B,myAngle-M_PI/2);
copy->SetCurve(myCurve);
return copy;
}
//=======================================================================
//function : NbIntervals
//purpose :
//=======================================================================
Standard_Integer GeomFill_DraftTrihedron::NbIntervals(const GeomAbs_Shape S) const
{
GeomAbs_Shape tmpS=GeomAbs_C0;
switch (S) {
case GeomAbs_C0: tmpS = GeomAbs_C2; break;
case GeomAbs_C1: tmpS = GeomAbs_C3; break;
case GeomAbs_C2:
case GeomAbs_C3:
case GeomAbs_CN: tmpS = GeomAbs_CN; break;
default: Standard_OutOfRange::Raise();
}
return myCurve->NbIntervals(tmpS);
}
//======================================================================
//function :Intervals
//purpose :
//=======================================================================
void GeomFill_DraftTrihedron::Intervals(TColStd_Array1OfReal& TT,
const GeomAbs_Shape S) const
{
GeomAbs_Shape tmpS=GeomAbs_C0;
switch (S) {
case GeomAbs_C0: tmpS = GeomAbs_C2; break;
case GeomAbs_C1: tmpS = GeomAbs_C3; break;
case GeomAbs_C2:
case GeomAbs_C3:
case GeomAbs_CN: tmpS = GeomAbs_CN; break;
default: Standard_OutOfRange::Raise();
}
myCurve->Intervals(TT, tmpS);
}
//=======================================================================
//function : GetAverageLaw
//purpose :
//=======================================================================
void GeomFill_DraftTrihedron::GetAverageLaw(gp_Vec& ATangent,
gp_Vec& ANormal,
gp_Vec& ABiNormal)
{
Standard_Integer Num = 20; //order of digitalization
gp_Vec T, N, BN;
ATangent = gp_Vec(0, 0, 0);
ANormal = gp_Vec(0, 0, 0);
ABiNormal = gp_Vec(0, 0, 0);
Standard_Real Step = (myTrimmed->LastParameter() -
myTrimmed->FirstParameter()) / Num;
Standard_Real Param;
for (Standard_Integer i = 0; i <= Num; i++) {
Param = myTrimmed->FirstParameter() + i*Step;
if (Param > myTrimmed->LastParameter()) Param = myTrimmed->LastParameter();
D0(Param, T, N, BN);
ATangent += T;
ANormal += N;
ABiNormal += BN;
}
ANormal /= Num + 1;
ABiNormal /= Num + 1;
ATangent /= Num + 1;
}
//=======================================================================
//function : IsConstant
//purpose :
//=======================================================================
Standard_Boolean GeomFill_DraftTrihedron::IsConstant() const
{
return (myCurve->GetType() == GeomAbs_Line);
}
//=======================================================================
//function : IsOnlyBy3dCurve
//purpose :
//=======================================================================
Standard_Boolean GeomFill_DraftTrihedron::IsOnlyBy3dCurve() const
{
GeomAbs_CurveType TheType = myCurve->GetType();
gp_Ax1 TheAxe;
switch (TheType) {
case GeomAbs_Circle:
{
TheAxe = myCurve->Circle().Axis();
break;
}
case GeomAbs_Ellipse:
{
TheAxe = myCurve->Ellipse().Axis();
break;
}
case GeomAbs_Hyperbola:
{
TheAxe = myCurve->Hyperbola().Axis();
break;
}
case GeomAbs_Parabola:
{
TheAxe = myCurve->Parabola().Axis();
break;
}
case GeomAbs_Line:
{ //La normale du plan de la courbe est il perpendiculaire a la BiNormale ?
gp_Vec V;
V.SetXYZ(myCurve->Line().Direction().XYZ());
return V.IsParallel(B, Precision::Angular());
}
default:
return Standard_False; // pas de risques
}
// La normale du plan de la courbe est il // a la BiNormale ?
gp_Vec V;
V.SetXYZ(TheAxe.Direction().XYZ());
return V.IsParallel(B, Precision::Angular());
}