1
0
mirror of https://git.dev.opencascade.org/repos/occt.git synced 2025-04-07 18:30:55 +03:00
occt/src/GeomFill/GeomFill_DiscreteTrihedron.cxx
abv 92efcf78a6 0026936: Drawbacks of inlining in new type system in OCCT 7.0 -- automatic
Automatic restore of IMPLEMENT_STANDARD_RTTIEXT macro (upgrade -rtti)
2015-12-04 14:15:06 +03:00

395 lines
13 KiB
C++
Executable File

// Created on: 2013-02-05
// Created by: Julia GERASIMOVA
// Copyright (c) 2001-2013 OPEN CASCADE SAS
//
// This file is part of Open CASCADE Technology software library.
//
// This library is free software; you can redistribute it and/or modify it under
// the terms of the GNU Lesser General Public License version 2.1 as published
// by the Free Software Foundation, with special exception defined in the file
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
// distribution for complete text of the license and disclaimer of any warranty.
//
// Alternatively, this file may be used under the terms of Open CASCADE
// commercial license or contractual agreement.
#include <Adaptor3d_HCurve.hxx>
#include <GeomAbs_CurveType.hxx>
#include <GeomFill_DiscreteTrihedron.hxx>
#include <GeomFill_Frenet.hxx>
#include <GeomFill_HSequenceOfAx2.hxx>
#include <GeomFill_TrihedronLaw.hxx>
#include <gp_Vec.hxx>
#include <Standard_ConstructionError.hxx>
#include <Standard_OutOfRange.hxx>
#include <Standard_Type.hxx>
#include <TColStd_Array1OfReal.hxx>
#include <TColStd_HSequenceOfReal.hxx>
IMPLEMENT_STANDARD_RTTIEXT(GeomFill_DiscreteTrihedron,GeomFill_TrihedronLaw)
static const Standard_Real TolConf = Precision::Confusion();
//=======================================================================
//function : GeomFill_DiscreteTrihedron
//purpose : Constructor
//=======================================================================
GeomFill_DiscreteTrihedron::GeomFill_DiscreteTrihedron() :
myUseFrenet(Standard_False)
{
myFrenet = new GeomFill_Frenet();
myKnots = new TColStd_HSequenceOfReal();
myTrihedrons = new GeomFill_HSequenceOfAx2();
}
//=======================================================================
//function : Copy
//purpose :
//=======================================================================
Handle(GeomFill_TrihedronLaw) GeomFill_DiscreteTrihedron::Copy() const
{
Handle(GeomFill_DiscreteTrihedron) copy = new (GeomFill_DiscreteTrihedron)();
if (!myCurve.IsNull()) copy->SetCurve(myCurve);
return copy;
}
//=======================================================================
//function : SetCurve
//purpose :
//=======================================================================
void GeomFill_DiscreteTrihedron::SetCurve(const Handle(Adaptor3d_HCurve)& C)
{
GeomFill_TrihedronLaw::SetCurve(C);
if (! C.IsNull()) {
GeomAbs_CurveType type;
type = C->GetType();
switch (type) {
case GeomAbs_Circle:
case GeomAbs_Ellipse:
case GeomAbs_Hyperbola:
case GeomAbs_Parabola:
case GeomAbs_Line:
{
// No probleme
myUseFrenet = Standard_True;
myFrenet->SetCurve(C);
break;
}
default :
{
myUseFrenet = Standard_False;
// We have to fill <myKnots> and <myTrihedrons>
Init();
break;
}
}
}
}
//=======================================================================
//function : Init
//purpose :
//=======================================================================
void GeomFill_DiscreteTrihedron::Init()
{
Standard_Integer NbIntervals = myTrimmed->NbIntervals(GeomAbs_CN);
TColStd_Array1OfReal Knots(1, NbIntervals+1);
myTrimmed->Intervals(Knots, GeomAbs_CN);
//Standard_Real Tol = Precision::Confusion();
Standard_Integer NbSamples = 10;
Standard_Integer i, j;
for (i = 1; i <= NbIntervals; i++)
{
Standard_Real delta = (Knots(i+1) - Knots(i))/NbSamples;
for (j = 0; j < NbSamples; j++)
{
Standard_Real Param = Knots(i) + j*delta;
myKnots->Append(Param);
}
}
myKnots->Append(Knots(NbIntervals+1));
gp_Pnt Origin(0.,0.,0.), Pnt, SubPnt;
gp_Vec Tangent;
gp_Dir TangDir;
Standard_Real norm;
for (i = 1; i <= myKnots->Length(); i++)
{
Standard_Real Param = myKnots->Value(i);
myTrimmed->D1(Param, Pnt, Tangent);
norm = Tangent.Magnitude();
if (norm < TolConf)
{
Standard_Real subdelta = (myKnots->Value(i+1) - myKnots->Value(i))/NbSamples;
if (subdelta < Precision::PConfusion())
subdelta = myKnots->Value(i+1) - myKnots->Value(i);
SubPnt = myTrimmed->Value(Param + subdelta);
Tangent.SetXYZ(SubPnt.XYZ() - Pnt.XYZ());
}
//Tangent.Normalize();
TangDir = Tangent; //normalize;
Tangent = TangDir;
if (i == 1) //first point
{
gp_Ax2 FirstAxis(Origin, TangDir);
myTrihedrons->Append(FirstAxis);
}
else
{
gp_Ax2 LastAxis = myTrihedrons->Value(myTrihedrons->Length());
gp_Vec LastTangent = LastAxis.Direction();
gp_Vec AxisOfRotation = LastTangent ^ Tangent;
if (AxisOfRotation.Magnitude() <= gp::Resolution()) //tangents are equal or opposite
{
Standard_Real ScalarProduct = LastTangent * Tangent;
if (ScalarProduct > 0.) //tangents are equal
myTrihedrons->Append(LastAxis);
else //tangents are opposite
{
Standard_Real NewParam = (myKnots->Value(i-1) + myKnots->Value(i))/2.;
if (NewParam - myKnots->Value(i-1) < gp::Resolution())
Standard_ConstructionError::Raise("GeomFill_DiscreteTrihedron : impassable singularities on path curve");
myKnots->InsertBefore(i, NewParam);
i--;
}
}
else //good value of angle
{
Standard_Real theAngle = LastTangent.AngleWithRef(Tangent, AxisOfRotation);
gp_Ax1 theAxisOfRotation(Origin, AxisOfRotation);
gp_Ax2 NewAxis = LastAxis.Rotated(theAxisOfRotation, theAngle);
NewAxis.SetDirection(TangDir); //to prevent accumulation of floating computations error
myTrihedrons->Append(NewAxis);
}
}
}
}
//=======================================================================
//function : D0
//purpose :
//=======================================================================
Standard_Boolean GeomFill_DiscreteTrihedron::D0(const Standard_Real Param,
gp_Vec& Tangent,
gp_Vec& Normal,
gp_Vec& BiNormal)
{
if (myUseFrenet)
{
myFrenet->D0(Param, Tangent, Normal, BiNormal);
}
else
{
//Locate <Param> in the sequence <myKnots>
Standard_Integer Index = -1;
Standard_Real TolPar = Precision::PConfusion();
//Standard_Real TolConf = Precision::Confusion();
Standard_Integer NbSamples = 10;
gp_Pnt Origin(0.,0.,0.);
Standard_Integer i;
//gp_Ax2 PrevAxis;
//Standard_Real PrevParam;
Standard_Integer I1, I2;
I1 = 1;
I2 = myKnots->Length();
for (;;)
{
i = (I1 + I2)/2;
if (Param <= myKnots->Value(i))
I2 = i;
else
I1 = i;
if (I2 - I1 <= 1)
break;
}
Index = I1;
if (Abs(Param - myKnots->Value(I2)) < TolPar)
Index = I2;
Standard_Real PrevParam = myKnots->Value(Index);
gp_Ax2 PrevAxis = myTrihedrons->Value(Index);
gp_Ax2 theAxis;
if (Abs(Param - PrevParam) < TolPar)
theAxis = PrevAxis;
else //<Param> is between knots
{
myTrimmed->D1(Param, myPoint, Tangent);
Standard_Real norm = Tangent.Magnitude();
if (norm < TolConf)
{
Standard_Real subdelta = (myKnots->Value(Index+1) - Param)/NbSamples;
if (subdelta < Precision::PConfusion())
subdelta = myKnots->Value(Index+1) - Param;
gp_Pnt SubPnt = myTrimmed->Value(Param + subdelta);
Tangent.SetXYZ(SubPnt.XYZ() - myPoint.XYZ());
}
//Tangent.Normalize();
gp_Dir TangDir(Tangent); //normalize;
Tangent = TangDir;
gp_Vec PrevTangent = PrevAxis.Direction();
gp_Vec AxisOfRotation = PrevTangent ^ Tangent;
if (AxisOfRotation.Magnitude() <= gp::Resolution()) //tangents are equal
{
//we assume that tangents can not be opposite
theAxis = PrevAxis;
}
else //good value of angle
{
Standard_Real theAngle = PrevTangent.AngleWithRef(Tangent, AxisOfRotation);
gp_Ax1 theAxisOfRotation(Origin, AxisOfRotation);
theAxis = PrevAxis.Rotated(theAxisOfRotation, theAngle);
}
theAxis.SetDirection(TangDir); //to prevent accumulation of floating computations error
} //end of else (Param is between knots)
Tangent = theAxis.Direction();
Normal = theAxis.XDirection();
BiNormal = theAxis.YDirection();
}
return Standard_True;
}
//=======================================================================
//function : D1
//purpose :
//=======================================================================
Standard_Boolean GeomFill_DiscreteTrihedron::D1(const Standard_Real Param,
gp_Vec& Tangent,
gp_Vec& DTangent,
gp_Vec& Normal,
gp_Vec& DNormal,
gp_Vec& BiNormal,
gp_Vec& DBiNormal)
{
if (myUseFrenet)
{
myFrenet->D1(Param, Tangent, DTangent, Normal, DNormal, BiNormal, DBiNormal);
}
else
{
D0(Param, Tangent, Normal, BiNormal);
DTangent.SetCoord(0.,0.,0.);
DNormal.SetCoord(0.,0.,0.);
DBiNormal.SetCoord(0.,0.,0.);
}
return Standard_True;
}
//=======================================================================
//function : D2
//purpose :
//=======================================================================
Standard_Boolean GeomFill_DiscreteTrihedron::D2(const Standard_Real Param,
gp_Vec& Tangent,
gp_Vec& DTangent,
gp_Vec& D2Tangent,
gp_Vec& Normal,
gp_Vec& DNormal,
gp_Vec& D2Normal,
gp_Vec& BiNormal,
gp_Vec& DBiNormal,
gp_Vec& D2BiNormal)
{
if (myUseFrenet)
{
myFrenet->D2(Param, Tangent, DTangent, D2Tangent,
Normal, DNormal, D2Normal,
BiNormal, DBiNormal, D2BiNormal);
}
else
{
D0(Param, Tangent, Normal, BiNormal);
DTangent.SetCoord(0.,0.,0.);
DNormal.SetCoord(0.,0.,0.);
DBiNormal.SetCoord(0.,0.,0.);
D2Tangent.SetCoord(0.,0.,0.);
D2Normal.SetCoord(0.,0.,0.);
D2BiNormal.SetCoord(0.,0.,0.);
}
return Standard_True;
}
//=======================================================================
//function : NbIntervals
//purpose :
//=======================================================================
Standard_Integer GeomFill_DiscreteTrihedron::NbIntervals(const GeomAbs_Shape) const
{
return (myTrimmed->NbIntervals(GeomAbs_CN));
}
//=======================================================================
//function : Intervals
//purpose :
//=======================================================================
void GeomFill_DiscreteTrihedron::Intervals(TColStd_Array1OfReal& T,
const GeomAbs_Shape) const
{
myTrimmed->Intervals(T, GeomAbs_CN);
}
void GeomFill_DiscreteTrihedron::GetAverageLaw(gp_Vec& ATangent,
gp_Vec& ANormal,
gp_Vec& ABiNormal)
{
Standard_Integer Num = 20; //order of digitalization
gp_Vec T, N, BN;
ATangent = gp_Vec(0, 0, 0);
ANormal = gp_Vec(0, 0, 0);
ABiNormal = gp_Vec(0, 0, 0);
Standard_Real Step = (myTrimmed->LastParameter() -
myTrimmed->FirstParameter()) / Num;
Standard_Real Param;
for (Standard_Integer i = 0; i <= Num; i++) {
Param = myTrimmed->FirstParameter() + i*Step;
if (Param > myTrimmed->LastParameter()) Param = myTrimmed->LastParameter();
D0(Param, T, N, BN);
ATangent += T;
ANormal += N;
ABiNormal += BN;
}
ATangent /= Num + 1;
ANormal /= Num + 1;
ATangent.Normalize();
ABiNormal = ATangent.Crossed(ANormal).Normalized();
ANormal = ABiNormal.Crossed(ATangent);
}
//=======================================================================
//function : IsConstant
//purpose :
//=======================================================================
Standard_Boolean GeomFill_DiscreteTrihedron::IsConstant() const
{
return (myCurve->GetType() == GeomAbs_Line);
}
//=======================================================================
//function : IsOnlyBy3dCurve
//purpose :
//=======================================================================
Standard_Boolean GeomFill_DiscreteTrihedron::IsOnlyBy3dCurve() const
{
return Standard_True;
}