1
0
mirror of https://git.dev.opencascade.org/repos/occt.git synced 2025-04-05 18:16:23 +03:00
occt/src/BRepOffset/BRepOffset.cxx

318 lines
11 KiB
C++

// Created on: 1995-10-25
// Created by: Bruno DUMORTIER
// Copyright (c) 1995-1999 Matra Datavision
// Copyright (c) 1999-2014 OPEN CASCADE SAS
//
// This file is part of Open CASCADE Technology software library.
//
// This library is free software; you can redistribute it and/or modify it under
// the terms of the GNU Lesser General Public License version 2.1 as published
// by the Free Software Foundation, with special exception defined in the file
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
// distribution for complete text of the license and disclaimer of any warranty.
//
// Alternatively, this file may be used under the terms of Open CASCADE
// commercial license or contractual agreement.
#include <BRepOffset.hxx>
#include <BRep_Tool.hxx>
#include <Geom_ConicalSurface.hxx>
#include <Geom_CylindricalSurface.hxx>
#include <Geom_OffsetSurface.hxx>
#include <Geom_Plane.hxx>
#include <Geom_RectangularTrimmedSurface.hxx>
#include <Geom_SphericalSurface.hxx>
#include <Geom_Surface.hxx>
#include <Geom_SurfaceOfLinearExtrusion.hxx>
#include <Geom_SurfaceOfRevolution.hxx>
#include <Geom_ToroidalSurface.hxx>
#include <gp_Ax1.hxx>
#include <gp_Ax3.hxx>
#include <gp_Dir.hxx>
#include <gp_Vec.hxx>
#include <NCollection_LocalArray.hxx>
#include <Precision.hxx>
#include <TopExp.hxx>
#include <TopExp_Explorer.hxx>
#include <TopoDS.hxx>
#include <TopoDS_Edge.hxx>
#include <TopoDS_Face.hxx>
#include <TopoDS_Vertex.hxx>
//=======================================================================
//function : Surface
//purpose :
//=======================================================================
Handle(Geom_Surface) BRepOffset::Surface(const Handle(Geom_Surface)& Surface,
const Standard_Real Offset,
BRepOffset_Status& theStatus,
Standard_Boolean allowC0)
{
Standard_Real Tol = Precision::Confusion();
theStatus = BRepOffset_Good;
Handle(Geom_Surface) Result;
Handle(Standard_Type) TheType = Surface->DynamicType();
if (TheType == STANDARD_TYPE(Geom_Plane)) {
Handle(Geom_Plane) P =
Handle(Geom_Plane)::DownCast(Surface);
gp_Vec T = P->Position().XDirection()^P->Position().YDirection();
T *= Offset;
Result = Handle(Geom_Plane)::DownCast(P->Translated(T));
}
else if (TheType == STANDARD_TYPE(Geom_CylindricalSurface)) {
Handle(Geom_CylindricalSurface) C =
Handle(Geom_CylindricalSurface)::DownCast(Surface);
Standard_Real Radius = C->Radius();
gp_Ax3 Axis = C->Position();
if (Axis.Direct())
Radius += Offset;
else
Radius -= Offset;
if ( Radius >= Tol ) {
Result = new Geom_CylindricalSurface( Axis, Radius);
}
else if ( Radius <= -Tol ){
Axis.Rotate(gp_Ax1(Axis.Location(),Axis.Direction()),M_PI);
Result = new Geom_CylindricalSurface( Axis, Abs(Radius));
theStatus = BRepOffset_Reversed;
}
else {
theStatus = BRepOffset_Degenerated;
}
}
else if (TheType == STANDARD_TYPE(Geom_ConicalSurface)) {
Handle(Geom_ConicalSurface) C =
Handle(Geom_ConicalSurface)::DownCast(Surface);
Standard_Real Alpha = C->SemiAngle();
Standard_Real Radius = C->RefRadius() + Offset * Cos(Alpha);
gp_Ax3 Axis = C->Position();
if ( Radius >= 0.) {
gp_Vec Z( Axis.Direction());
Z *= - Offset * Sin(Alpha);
Axis.Translate(Z);
}
else {
Radius = -Radius;
gp_Vec Z( Axis.Direction());
Z *= - Offset * Sin(Alpha);
Axis.Translate(Z);
Axis.Rotate(gp_Ax1(Axis.Location(),Axis.Direction()),M_PI);
Alpha = -Alpha;
}
Result = new Geom_ConicalSurface(Axis, Alpha, Radius);
}
else if (TheType == STANDARD_TYPE(Geom_SphericalSurface)) {
Handle(Geom_SphericalSurface) S =
Handle(Geom_SphericalSurface)::DownCast(Surface);
Standard_Real Radius = S->Radius();
gp_Ax3 Axis = S->Position();
if (Axis.Direct())
Radius += Offset;
else
Radius -= Offset;
if ( Radius >= Tol) {
Result = new Geom_SphericalSurface(Axis, Radius);
}
else if ( Radius <= -Tol ) {
Axis.Rotate(gp_Ax1(Axis.Location(),Axis.Direction()),M_PI);
Axis.ZReverse();
Result = new Geom_SphericalSurface(Axis, -Radius);
theStatus = BRepOffset_Reversed;
}
else {
theStatus = BRepOffset_Degenerated;
}
}
else if (TheType == STANDARD_TYPE(Geom_ToroidalSurface)) {
Handle(Geom_ToroidalSurface) S =
Handle(Geom_ToroidalSurface)::DownCast(Surface);
Standard_Real MajorRadius = S->MajorRadius();
Standard_Real MinorRadius = S->MinorRadius();
gp_Ax3 Axis = S->Position();
if (MinorRadius < MajorRadius) { // A FINIR
if (Axis.Direct())
MinorRadius += Offset;
else
MinorRadius -= Offset;
if (MinorRadius >= Tol) {
Result = new Geom_ToroidalSurface(Axis,MajorRadius,MinorRadius);
}
else if (MinorRadius <= -Tol) {
theStatus = BRepOffset_Reversed;
}
else {
theStatus = BRepOffset_Degenerated;
}
}
}
else if (TheType == STANDARD_TYPE(Geom_SurfaceOfRevolution)) {
}
else if (TheType == STANDARD_TYPE(Geom_SurfaceOfLinearExtrusion)) {
}
else if (TheType == STANDARD_TYPE(Geom_BSplineSurface)) {
}
else if (TheType == STANDARD_TYPE(Geom_RectangularTrimmedSurface)) {
Handle(Geom_RectangularTrimmedSurface) S =
Handle(Geom_RectangularTrimmedSurface)::DownCast(Surface);
Standard_Real U1,U2,V1,V2;
S->Bounds(U1,U2,V1,V2);
Handle(Geom_Surface) Off = BRepOffset::Surface (S->BasisSurface(), Offset, theStatus, allowC0);
Result = new Geom_RectangularTrimmedSurface (Off,U1,U2,V1,V2);
}
else if (TheType == STANDARD_TYPE(Geom_OffsetSurface)) {
}
if ( Result.IsNull()) {
Result = new Geom_OffsetSurface( Surface, Offset, allowC0);
}
return Result;
}
//=======================================================================
//function : CollapseSingularities
//purpose :
//=======================================================================
Handle(Geom_Surface) BRepOffset::CollapseSingularities (const Handle(Geom_Surface)& theSurface,
const TopoDS_Face& theFace,
Standard_Real thePrecision)
{
// check surface type to see if it can be processed
Handle(Standard_Type) aType = theSurface->DynamicType();
if (aType != STANDARD_TYPE(Geom_BSplineSurface))
{
// for the moment, only bspline surfaces are treated;
// in the future, bezier surfaces and surfaces of revolution can be also handled
return theSurface;
}
// find singularities (vertices of degenerated edges)
NCollection_List<gp_Pnt> aDegenPnt;
NCollection_List<Standard_Real> aDegenTol;
for (TopExp_Explorer anExp (theFace, TopAbs_EDGE); anExp.More(); anExp.Next())
{
TopoDS_Edge anEdge = TopoDS::Edge (anExp.Current());
if (! BRep_Tool::Degenerated (anEdge))
{
continue;
}
TopoDS_Vertex aV1, aV2;
TopExp::Vertices (anEdge, aV1, aV2);
if (! aV1.IsSame (aV2))
{
continue;
}
aDegenPnt.Append (BRep_Tool::Pnt (aV1));
aDegenTol.Append (BRep_Tool::Tolerance (aV1));
}
// iterate by sides of the surface
if (aType == STANDARD_TYPE(Geom_BSplineSurface))
{
Handle(Geom_BSplineSurface) aBSpline = Handle(Geom_BSplineSurface)::DownCast (theSurface);
const TColgp_Array2OfPnt& aPoles = aBSpline->Poles();
Handle(Geom_BSplineSurface) aCopy;
// iterate by sides: {U=0; V=0; U=1; V=1}
Standard_Integer RowStart[4] = {aPoles.LowerRow(), aPoles.LowerRow(), aPoles.UpperRow(), aPoles.LowerRow()};
Standard_Integer ColStart[4] = {aPoles.LowerCol(), aPoles.LowerCol(), aPoles.LowerCol(), aPoles.UpperCol()};
Standard_Integer RowStep[4] = {0, 1, 0, 1};
Standard_Integer ColStep[4] = {1, 0, 1, 0};
Standard_Integer NbSteps[4] = {aPoles.RowLength(), aPoles.ColLength(), aPoles.RowLength(), aPoles.ColLength()};
for (Standard_Integer iSide = 0; iSide < 4; iSide++)
{
// compute center of gravity of side poles
gp_XYZ aSum;
for (int iPole = 0; iPole < NbSteps[iSide]; iPole++)
{
aSum += aPoles (RowStart[iSide] + iPole * RowStep[iSide], ColStart[iSide] + iPole * ColStep[iSide]).XYZ();
}
gp_Pnt aCenter (aSum / NbSteps[iSide]);
// determine if all poles of the side fit into:
Standard_Boolean isCollapsed = Standard_True; // aCenter precisely (with gp::Resolution())
Standard_Boolean isSingular = Standard_True; // aCenter with thePrecision
NCollection_LocalArray<Standard_Boolean,4> isDegenerated (aDegenPnt.Extent()); // degenerated vertex
for (size_t iDegen = 0; iDegen < isDegenerated.Size(); ++iDegen) isDegenerated[iDegen] = Standard_True;
for (int iPole = 0; iPole < NbSteps[iSide]; iPole++)
{
const gp_Pnt& aPole = aPoles (RowStart[iSide] + iPole * RowStep[iSide], ColStart[iSide] + iPole * ColStep[iSide]);
// distance from CG
Standard_Real aDistCG = aCenter.Distance (aPole);
if (aDistCG > gp::Resolution())
isCollapsed = Standard_False;
if (aDistCG > thePrecision)
isSingular = Standard_False;
// distances from degenerated points
NCollection_List<gp_Pnt>::Iterator aDegPntIt (aDegenPnt);
NCollection_List<Standard_Real>::Iterator aDegTolIt(aDegenTol);
for (size_t iDegen = 0; iDegen < isDegenerated.Size(); aDegPntIt.Next(), aDegTolIt.Next(), ++iDegen)
{
if (isDegenerated[iDegen] && aDegPntIt.Value().Distance (aPole) >= aDegTolIt.Value())
{
isDegenerated[iDegen] = Standard_False;
}
}
}
if (isCollapsed)
{
continue; // already Ok, nothing to be done
}
// decide to collapse the side: either if it is singular with thePrecision,
// or if it fits into one (and only one) degenerated point
if (! isSingular)
{
Standard_Integer aNbFit = 0;
NCollection_List<gp_Pnt>::Iterator aDegPntIt (aDegenPnt);
NCollection_List<Standard_Real>::Iterator aDegTolIt(aDegenTol);
for (size_t iDegen = 0; iDegen < isDegenerated.Size(); ++iDegen)
{
if (isDegenerated[iDegen])
{
// remove degenerated point as soon as it fits at least one side, to prevent total collapse
aDegenPnt.Remove (aDegPntIt);
aDegenTol.Remove (aDegTolIt);
aNbFit++;
}
else
{
aDegPntIt.Next();
aDegTolIt.Next();
}
}
// if side fits more than one degenerated vertex, do not collapse it
// to be on the safe side
isSingular = (aNbFit == 1);
}
// do collapse
if (isSingular)
{
if (aCopy.IsNull())
{
aCopy = Handle(Geom_BSplineSurface)::DownCast (theSurface->Copy());
}
for (int iPole = 0; iPole < NbSteps[iSide]; iPole++)
{
aCopy->SetPole (RowStart[iSide] + iPole * RowStep[iSide], ColStart[iSide] + iPole * ColStep[iSide], aCenter);
}
}
}
if (! aCopy.IsNull())
return aCopy;
}
return theSurface;
}