1
0
mirror of https://git.dev.opencascade.org/repos/occt.git synced 2025-04-10 18:51:21 +03:00
occt/src/Geom2dGcc/Geom2dGcc_Lin2dTanObl.cxx
dpasukhi b2fedee6a1 0033375: Coding - Static Analyzing processing. Performance
Performance update applied:
  - moving to const reference as much as possible
Result of CLANG_TIDY (static analyzing filter: perform*)
2023-05-19 19:33:59 +01:00

247 lines
7.9 KiB
C++

// Created on: 1992-10-21
// Created by: Remi GILET
// Copyright (c) 1992-1999 Matra Datavision
// Copyright (c) 1999-2014 OPEN CASCADE SAS
//
// This file is part of Open CASCADE Technology software library.
//
// This library is free software; you can redistribute it and/or modify it under
// the terms of the GNU Lesser General Public License version 2.1 as published
// by the Free Software Foundation, with special exception defined in the file
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
// distribution for complete text of the license and disclaimer of any warranty.
//
// Alternatively, this file may be used under the terms of Open CASCADE
// commercial license or contractual agreement.
#include <GccAna_Lin2dTanObl.hxx>
#include <GccEnt_BadQualifier.hxx>
#include <GccEnt_QualifiedCirc.hxx>
#include <Geom2d_Circle.hxx>
#include <Geom2dGcc_CurveTool.hxx>
#include <Geom2dGcc_Lin2dTanObl.hxx>
#include <Geom2dGcc_Lin2dTanOblIter.hxx>
#include <Geom2dGcc_QCurve.hxx>
#include <Geom2dGcc_QualifiedCurve.hxx>
#include <gp_Lin2d.hxx>
#include <gp_Pnt2d.hxx>
#include <Standard_OutOfRange.hxx>
#include <StdFail_NotDone.hxx>
Geom2dGcc_Lin2dTanObl::
Geom2dGcc_Lin2dTanObl (const Geom2dGcc_QualifiedCurve& Qualified1 ,
const gp_Lin2d& TheLine ,
const Standard_Real TolAng ,
const Standard_Real Angle ):
Paral2(Standard_False),
linsol(1,2) ,
qualifier1(1,2),
pnttg1sol(1,2) ,
pntint2sol(1,2),
par1sol(1,2) ,
par2sol(1,2) ,
pararg1(1,2) ,
pararg2(1,2)
{
Geom2dAdaptor_Curve C1 = Qualified1.Qualified();
const Handle(Geom2d_Curve)& CC1 = C1.Curve();
GeomAbs_CurveType Type1 = C1.GetType();
//=============================================================================
// Appel a GccAna. +
//=============================================================================
WellDone = Standard_False;
NbrSol = 0;
if (Type1 == GeomAbs_Circle ) {
Handle(Geom2d_Circle) CCC1 = Handle(Geom2d_Circle)::DownCast(CC1);
gp_Circ2d c1(CCC1->Circ2d());
GccEnt_QualifiedCirc Qc1=GccEnt_QualifiedCirc(c1,Qualified1.Qualifier());
GccAna_Lin2dTanObl Lin(Qc1,TheLine,Angle);
WellDone = Lin.IsDone();
if(WellDone) {
NbrSol = Lin.NbSolutions();
for (Standard_Integer i = 1 ; i <= NbrSol ; i++) {
linsol(i) = Lin.ThisSolution(i);
Lin.Tangency1(i,par1sol(i),pararg1(i),pnttg1sol(i));
Lin.Intersection2(i,par2sol(i),pararg2(i),pntint2sol(i));
Lin.WhichQualifier(i,qualifier1(i));
}
}
}
else {
Geom2dGcc_QCurve Qc1(C1,Qualified1.Qualifier());
Standard_Real aFirstPar = Geom2dGcc_CurveTool::FirstParameter(C1);
Standard_Real aLastPar = Geom2dGcc_CurveTool::LastParameter(C1);
Standard_Integer aNbSamples = Geom2dGcc_CurveTool::NbSamples(C1);
Standard_Real aStep = (aLastPar - aFirstPar)/aNbSamples;
Standard_Real Param1 = aFirstPar;
Standard_Integer i;
for (i = 0; i <= aNbSamples && NbrSol < 2; i++) {
Geom2dGcc_Lin2dTanOblIter Lin(Qc1,TheLine,Param1,TolAng,Angle);
if (Lin.IsDone()) {
if (Add(NbrSol + 1, Lin, TolAng, C1))
NbrSol++;
}
Param1 += aStep;
}
WellDone = (NbrSol > 0);
}
}
Geom2dGcc_Lin2dTanObl::
Geom2dGcc_Lin2dTanObl (const Geom2dGcc_QualifiedCurve& Qualified1 ,
const gp_Lin2d& TheLine ,
const Standard_Real TolAng ,
const Standard_Real Param1 ,
const Standard_Real Angle ):
Paral2(Standard_False),
linsol(1,2) ,
qualifier1(1,2),
pnttg1sol(1,2) ,
pntint2sol(1,2),
par1sol(1,2) ,
par2sol(1,2) ,
pararg1(1,2) ,
pararg2(1,2)
{
Geom2dAdaptor_Curve C1 = Qualified1.Qualified();
const Handle(Geom2d_Curve)& CC1 = C1.Curve();
GeomAbs_CurveType Type1 = C1.GetType();
//=============================================================================
// Appel a GccAna. +
//=============================================================================
WellDone = Standard_False;
NbrSol = 0;
if (Type1 == GeomAbs_Circle ) {
Handle(Geom2d_Circle) CCC1 = Handle(Geom2d_Circle)::DownCast(CC1);
gp_Circ2d c1(CCC1->Circ2d());
GccEnt_QualifiedCirc Qc1=GccEnt_QualifiedCirc(c1,Qualified1.Qualifier());
GccAna_Lin2dTanObl Lin(Qc1,TheLine,Angle);
WellDone = Lin.IsDone();
if(WellDone) {
NbrSol = Lin.NbSolutions();
for (Standard_Integer i = 1 ; i <= NbrSol ; i++) {
linsol(i) = Lin.ThisSolution(i);
Lin.Tangency1(i,par1sol(i),pararg1(i),pnttg1sol(i));
Lin.Intersection2(i,par2sol(i),pararg2(i),pntint2sol(i));
Lin.WhichQualifier(i,qualifier1(i));
}
}
}
else {
Geom2dGcc_QCurve Qc1(C1,Qualified1.Qualifier());
Geom2dGcc_Lin2dTanOblIter Lin(Qc1,TheLine,TolAng,Param1,Angle);
WellDone = Lin.IsDone();
if(WellDone) {
linsol(1) = Lin.ThisSolution();
Lin.Tangency1(par1sol(1),pararg1(1),pnttg1sol(1));
Lin.Intersection2(par2sol(1),pararg2(1),pntint2sol(1));
Lin.WhichQualifier(qualifier1(1));
}
}
}
Standard_Boolean Geom2dGcc_Lin2dTanObl::
IsDone () const { return WellDone; }
Standard_Integer Geom2dGcc_Lin2dTanObl::
NbSolutions () const { return NbrSol; }
gp_Lin2d Geom2dGcc_Lin2dTanObl::
ThisSolution (const Standard_Integer Index) const {
if (Index > NbrSol || Index <= 0) { throw Standard_OutOfRange(); }
return linsol(Index);
}
void Geom2dGcc_Lin2dTanObl::
WhichQualifier (const Standard_Integer Index,
GccEnt_Position& Qualif1) const
{
if (!WellDone) { throw StdFail_NotDone(); }
else if (Index <= 0 ||Index > NbrSol) { throw Standard_OutOfRange(); }
else { Qualif1 = qualifier1(Index); }
}
void Geom2dGcc_Lin2dTanObl::
Tangency1 (const Standard_Integer Index,
Standard_Real& ParSol,
Standard_Real& ParArg,
gp_Pnt2d& PntSol) const {
if (!WellDone) { throw StdFail_NotDone(); }
else if (Index <= 0 ||Index > NbrSol) { throw Standard_OutOfRange(); }
else {
ParSol = par1sol(Index);
ParArg = pararg1(Index);
PntSol = pnttg1sol(Index);
}
}
void Geom2dGcc_Lin2dTanObl::
Intersection2 (const Standard_Integer Index ,
Standard_Real& ParSol ,
Standard_Real& ParArg ,
gp_Pnt2d& PntSol ) const {
if (!WellDone) { throw StdFail_NotDone(); }
else if (Index <= 0 ||Index > NbrSol) { throw Standard_OutOfRange(); }
else {
ParSol = par2sol(Index);
ParArg = pararg2(Index);
PntSol = pntint2sol(Index);
}
}
Standard_Boolean Geom2dGcc_Lin2dTanObl::Add
(const Standard_Integer theIndex,
const Geom2dGcc_Lin2dTanOblIter &theLin,
const Standard_Real theTol,
const Geom2dAdaptor_Curve &theC1)
{
Standard_Integer i;
Standard_Real aPar1sol;
Standard_Real aPar2sol;
Standard_Real aPar1arg;
Standard_Real aPar2arg;
gp_Pnt2d aPnt1Sol;
gp_Pnt2d aPnt2Sol;
gp_Lin2d aLin = theLin.ThisSolution();
theLin.Tangency1(aPar1sol, aPar1arg, aPnt1Sol);
theLin.Intersection2(aPar2sol, aPar2arg, aPnt2Sol);
for(i = 1; i < theIndex; i++) {
if (Abs(aPar1arg - pararg1(i)) <= theTol &&
Abs(aPar2arg - pararg2(i)) <= theTol)
return Standard_False;
}
gp_Dir2d aLinDir = aLin.Direction();
gp_Vec2d aVTan;
gp_Pnt2d aPoint;
Geom2dGcc_CurveTool::D1(theC1, aPar1arg, aPoint, aVTan);
if (Abs(aLinDir.Crossed(gp_Dir2d(aVTan))) > theTol)
return Standard_False;
linsol(theIndex) = aLin;
par1sol(theIndex) = aPar1sol;
pararg1(theIndex) = aPar1arg;
pnttg1sol(theIndex) = aPnt1Sol;
par2sol(theIndex) = aPar2sol;
pararg2(theIndex) = aPar2arg;
pntint2sol(theIndex) = aPnt2Sol;
theLin.WhichQualifier(qualifier1(theIndex));
return Standard_True;
}