1
0
mirror of https://git.dev.opencascade.org/repos/occt.git synced 2025-04-10 18:51:21 +03:00
occt/src/Bnd/Bnd_OBB.cxx
akondrat fb30026cf1 0033009: Foundation Classes - Bnd_OBB::ReBuild() expects point array starting from 0
Add test. Update OBBTool constructor for any bounds of array of points.
2022-06-14 21:50:31 +03:00

1044 lines
34 KiB
C++

// Created by: Eugeny MALTCHIKOV
// Copyright (c) 2017 OPEN CASCADE SAS
//
// This file is part of Open CASCADE Technology software library.
//
// This library is free software; you can redistribute it and/or modify it under
// the terms of the GNU Lesser General Public License version 2.1 as published
// by the Free Software Foundation, with special exception defined in the file
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
// distribution for complete text of the license and disclaimer of any warranty.
//
// Alternatively, this file may be used under the terms of Open CASCADE
// commercial license or contractual agreement.
#include <Bnd_OBB.hxx>
#include <Bnd_Tools.hxx>
#include <Bnd_Range.hxx>
#include <BVH_BoxSet.hxx>
#include <BVH_LinearBuilder.hxx>
#include <BVH_Traverse.hxx>
#include <NCollection_Array1.hxx>
#include <Precision.hxx>
#include <Standard_Dump.hxx>
#include <TColStd_Array1OfReal.hxx>
//! Auxiliary class to select from the points stored in
//! BVH tree the two points giving the extreme projection
//! parameters on the axis
class OBB_ExtremePointsSelector :
public BVH_Traverse <Standard_Real, 3, BVH_BoxSet <Standard_Real, 3, gp_XYZ>, Bnd_Range>
{
public:
//! Constructor
OBB_ExtremePointsSelector() :
BVH_Traverse <Standard_Real, 3, BVH_BoxSet <Standard_Real, 3, gp_XYZ>, Bnd_Range>(),
myPrmMin (RealLast()),
myPrmMax (RealFirst())
{}
public: //! @name Set axis for projection
//! Sets the axis
void SetAxis (const gp_XYZ& theAxis) { myAxis = theAxis; }
public: //! @name Clears the points from previous runs
//! Clear
void Clear()
{
myPrmMin = RealLast();
myPrmMax = RealFirst();
}
public: //! @name Getting the results
//! Returns the minimal projection parameter
Standard_Real MinPrm() const { return myPrmMin; }
//! Returns the maximal projection parameter
Standard_Real MaxPrm() const { return myPrmMax; }
//! Returns the minimal projection point
const gp_XYZ& MinPnt() const { return myPntMin; }
//! Returns the maximal projection point
const gp_XYZ& MaxPnt() const { return myPntMax; }
public: //! @name Definition of rejection/acceptance rules
//! Defines the rules for node rejection
virtual Standard_Boolean RejectNode (const BVH_Vec3d& theCMin,
const BVH_Vec3d& theCMax,
Bnd_Range& theMetric) const Standard_OVERRIDE
{
if (myPrmMin > myPrmMax)
// No parameters computed yet
return Standard_False;
Standard_Real aPrmMin = myPrmMin, aPrmMax = myPrmMax;
Standard_Boolean isToReject = Standard_True;
// Check if the current node is between already found parameters
for (Standard_Integer i = 0; i < 2; ++i)
{
Standard_Real x = !i ? theCMin.x() : theCMax.x();
for (Standard_Integer j = 0; j < 2; ++j)
{
Standard_Real y = !j ? theCMin.y() : theCMax.y();
for (Standard_Integer k = 0; k < 2; ++k)
{
Standard_Real z = !k ? theCMin.z() : theCMax.z();
Standard_Real aPrm = myAxis.Dot (gp_XYZ (x, y, z));
if (aPrm < aPrmMin)
{
aPrmMin = aPrm;
isToReject = Standard_False;
}
else if (aPrm > aPrmMax)
{
aPrmMax = aPrm;
isToReject = Standard_False;
}
}
}
}
theMetric = Bnd_Range (aPrmMin, aPrmMax);
return isToReject;
}
//! Rules for node rejection by the metric
virtual Standard_Boolean RejectMetric (const Bnd_Range& theMetric) const Standard_OVERRIDE
{
if (myPrmMin > myPrmMax)
// no parameters computed
return Standard_False;
Standard_Real aMin, aMax;
if (!theMetric.GetBounds (aMin, aMax))
// void metric
return Standard_False;
// Check if the box of the branch is inside of the already computed parameters
return aMin > myPrmMin && aMax < myPrmMax;
}
//! Defines the rules for leaf acceptance
virtual Standard_Boolean Accept (const Standard_Integer theIndex,
const Bnd_Range&) Standard_OVERRIDE
{
const gp_XYZ& theLeaf = myBVHSet->Element (theIndex);
Standard_Real aPrm = myAxis.Dot (theLeaf);
if (aPrm < myPrmMin)
{
myPrmMin = aPrm;
myPntMin = theLeaf;
}
if (aPrm > myPrmMax)
{
myPrmMax = aPrm;
myPntMax = theLeaf;
}
return Standard_True;
}
public: //! @name Choosing the best branch
//! Returns true if the metric of the left branch is better than the metric of the right
virtual Standard_Boolean IsMetricBetter (const Bnd_Range& theLeft,
const Bnd_Range& theRight) const Standard_OVERRIDE
{
if (myPrmMin > myPrmMax)
// no parameters computed
return Standard_True;
Standard_Real aMin[2], aMax[2];
if (!theLeft.GetBounds (aMin[0], aMax[0]) ||
!theRight.GetBounds (aMin[1], aMax[1]))
// void metrics
return Standard_True;
// Choose branch with larger extension over computed parameters
Standard_Real anExt[2] = {0.0, 0.0};
for (int i = 0; i < 2; ++i)
{
if (aMin[i] < myPrmMin) anExt[i] += myPrmMin - aMin[i];
if (aMax[i] > myPrmMax) anExt[i] += aMax[i] - myPrmMax;
}
return anExt[0] > anExt[1];
}
protected: //! @name Fields
gp_XYZ myAxis; //!< Axis to project the points to
Standard_Real myPrmMin; //!< Minimal projection parameter
Standard_Real myPrmMax; //!< Maximal projection parameter
gp_XYZ myPntMin; //!< Minimal projection point
gp_XYZ myPntMax; //!< Maximal projection point
};
//! Tool for OBB construction
class OBBTool
{
public:
//! Constructor. theL - list of points.
//! theLT is a pointer to the list of tolerances
//! (i-th element of this array is a tolerance
//! of i-th point in theL). If theLT is empty
//! then the tolerance of every point is equal to 0.
//! Attention! The objects, which theL and theLT links on,
//! must be available during all time of OBB creation
//! (i.e. while the object of OBBTool exists).
OBBTool(const TColgp_Array1OfPnt& theL,
const TColStd_Array1OfReal *theLT = 0,
Standard_Boolean theIsOptimal = Standard_False);
//! DiTO algorithm for OBB construction
//! (http://www.idt.mdh.se/~tla/publ/FastOBBs.pdf)
void ProcessDiTetrahedron();
//! Creates OBB with already computed parameters
void BuildBox(Bnd_OBB& theBox);
protected:
// Computes the extreme points on the set of Initial axes
void ComputeExtremePoints ();
//! Works with the triangle set by the points in myTriIdx.
//! If theIsBuiltTrg == TRUE, new set of triangles will be
//! recomputed.
void ProcessTriangle(const Standard_Integer theIdx1,
const Standard_Integer theIdx2,
const Standard_Integer theIdx3,
const Standard_Boolean theIsBuiltTrg);
//! Computes myTriIdx[2]
void FillToTriangle3();
//! Computes myTriIdx[3] and myTriIdx[4]
void FillToTriangle5(const gp_XYZ& theNormal,
const gp_XYZ& theBarryCenter);
//! Returns half of the Surface area of the box
static Standard_Real ComputeQuality(const Standard_Real* const thePrmArr)
{
const Standard_Real aDX = thePrmArr[1] - thePrmArr[0],
aDY = thePrmArr[3] - thePrmArr[2],
aDZ = thePrmArr[5] - thePrmArr[4];
return (aDX*aDY + aDY*aDZ + aDX*aDZ);
}
protected:
//! Assignment operator is forbidden
OBBTool& operator=(const OBBTool&);
private:
//! Params structure stores the two values meaning
//! min and max parameters on the axis
struct Params
{
Params() :
_ParamMin(RealLast()), _ParamMax(RealFirst())
{}
Params(Standard_Real theMin, Standard_Real theMax)
: _ParamMin(theMin), _ParamMax(theMax)
{}
Standard_Real _ParamMin;
Standard_Real _ParamMax;
};
//! Computes the Minimal and maximal parameters on the vector
//! connecting the points myLExtremalPoints[theId1] and myLExtremalPoints[theId2]
void ComputeParams (const Standard_Integer theId1,
const Standard_Integer theId2,
Standard_Real &theMin,
Standard_Real &theMax)
{
theMin = myParams[theId1][theId2]._ParamMin;
theMax = myParams[theId1][theId2]._ParamMax;
if (theMin > theMax)
{
FindMinMax ((myLExtremalPoints[theId1] - myLExtremalPoints[theId2]).Normalized(), theMin, theMax);
myParams[theId1][theId2]._ParamMin = myParams[theId2][theId1]._ParamMin = theMin;
myParams[theId1][theId2]._ParamMax = myParams[theId2][theId1]._ParamMax = theMax;
}
}
//! Looks for the min-max parameters on the axis.
//! For optimal case projects all the points on the axis,
//! for not optimal - only the set of extreme points.
void FindMinMax (const gp_XYZ& theAxis,
Standard_Real &theMin,
Standard_Real &theMax)
{
theMin = RealLast(), theMax = RealFirst();
if (myOptimal)
Project (theAxis, theMin, theMax);
else
{
for (Standard_Integer i = 0; i < myNbExtremalPoints; ++i)
{
Standard_Real aPrm = theAxis.Dot (myLExtremalPoints[i]);
if (aPrm < theMin) theMin = aPrm;
if (aPrm > theMax) theMax = aPrm;
}
}
}
//! Projects the set of points on the axis
void Project (const gp_XYZ& theAxis,
Standard_Real& theMin, Standard_Real& theMax,
gp_XYZ* thePntMin = 0, gp_XYZ* thePntMax = 0)
{
theMin = RealLast(), theMax = RealFirst();
if (myOptimal)
{
// Project BVH
OBB_ExtremePointsSelector anExtremePointsSelector;
anExtremePointsSelector.SetBVHSet (myPointBoxSet.get());
anExtremePointsSelector.SetAxis (theAxis);
anExtremePointsSelector.Select();
theMin = anExtremePointsSelector.MinPrm();
theMax = anExtremePointsSelector.MaxPrm();
if (thePntMin) *thePntMin = anExtremePointsSelector.MinPnt();
if (thePntMax) *thePntMax = anExtremePointsSelector.MaxPnt();
}
else
{
// Project all points
for (Standard_Integer iP = myPntsList.Lower(); iP <= myPntsList.Upper(); ++iP)
{
const gp_XYZ& aPoint = myPntsList(iP).XYZ();
const Standard_Real aPrm = theAxis.Dot (aPoint);
if (aPrm < theMin)
{
theMin = aPrm;
if (thePntMin)
*thePntMin = aPoint;
}
if (aPrm > theMax)
{
theMax = aPrm;
if (thePntMax)
*thePntMax = aPoint;
}
}
}
}
private:
//! Number of the initial axes.
static const Standard_Integer myNbInitAxes = 7;
//! Number of extremal points
static const Standard_Integer myNbExtremalPoints = 2 * myNbInitAxes;
//! The source list of points
const TColgp_Array1OfPnt& myPntsList;
//! Pointer to the array of tolerances
const TColStd_Array1OfReal *myListOfTolers;
//! Points of ditetrahedron
//! given by their indices in myLExtremalPoints.
Standard_Integer myTriIdx[5];
//! List of extremal points
gp_XYZ myLExtremalPoints[myNbExtremalPoints];
//! The axes of the box (always normalized or
//! can be null-vector)
gp_XYZ myAxes[3];
//! The surface area of the OBB
Standard_Real myQualityCriterion;
//! Defines if the OBB should be computed more tight.
//! Takes more time, but the volume is less.
Standard_Boolean myOptimal;
//! Point box set organized with BVH
opencascade::handle<BVH_BoxSet <Standard_Real, 3, gp_XYZ>> myPointBoxSet;
//! Stored min/max parameters for the axes between extremal points
Params myParams[myNbExtremalPoints][myNbExtremalPoints];
};
//=======================================================================
// Function : SetMinMax
// purpose :
// ATTENTION!!! thePrmArr must be initialized before this method calling.
//=======================================================================
static inline void SetMinMax(Standard_Real* const thePrmArr,
const Standard_Real theNewParam)
{
if(theNewParam < thePrmArr[0])
{
thePrmArr[0] = theNewParam;
}
if(theNewParam > thePrmArr[1])
{
thePrmArr[1] = theNewParam;
}
}
//=======================================================================
// Function : Constructor
// purpose :
//=======================================================================
OBBTool::
OBBTool(const TColgp_Array1OfPnt& theL,
const TColStd_Array1OfReal *theLT,
const Standard_Boolean theIsOptimal) : myPntsList(theL),
myListOfTolers(theLT),
myQualityCriterion(RealLast()),
myOptimal (theIsOptimal)
{
if (myOptimal)
{
// Use linear builder for BVH construction with 30 elements in the leaf
opencascade::handle<BVH_LinearBuilder<Standard_Real, 3> > aLBuilder =
new BVH_LinearBuilder<Standard_Real, 3> (30);
myPointBoxSet = new BVH_BoxSet <Standard_Real, 3, gp_XYZ> (aLBuilder);
myPointBoxSet->SetSize(myPntsList.Length());
// Add the points into Set
for (Standard_Integer iP = theL.Lower(); iP <= theL.Upper(); ++iP)
{
const gp_Pnt& aP = theL (iP);
Standard_Real aTol = theLT ? theLT->Value(iP) : Precision::Confusion();
BVH_Box <Standard_Real, 3> aBox (BVH_Vec3d (aP.X() - aTol, aP.Y() - aTol, aP.Z() - aTol),
BVH_Vec3d (aP.X() + aTol, aP.Y() + aTol, aP.Z() + aTol));
myPointBoxSet->Add (aP.XYZ(), aBox);
}
myPointBoxSet->Build();
}
ComputeExtremePoints();
}
//=======================================================================
// Function : ComputeExtremePoints
// purpose :
//=======================================================================
void OBBTool::ComputeExtremePoints()
{
// Six initial axes show great quality on the Optimal OBB, plus
// the performance is better (due to the less number of operations).
// But they show worse quality for the not optimal approach.
//const Standard_Real a = (sqrt(5) - 1) / 2.;
//const gp_XYZ anInitialAxes6[myNbInitAxes] = { gp_XYZ (0, 1, a),
// gp_XYZ (0, 1, -a),
// gp_XYZ (1, a, 0),
// gp_XYZ (1, -a, 0),
// gp_XYZ (a, 0, 1),
// gp_XYZ (a, 0, -1) };
const Standard_Real aSqrt3 = Sqrt(3);
const gp_XYZ anInitialAxes7[myNbInitAxes] = { gp_XYZ (1.0, 0.0, 0.0),
gp_XYZ (0.0, 1.0, 0.0),
gp_XYZ (0.0, 0.0, 1.0),
gp_XYZ (1.0, 1.0, 1.0) / aSqrt3,
gp_XYZ (1.0, 1.0, -1.0) / aSqrt3,
gp_XYZ (1.0, -1.0, 1.0) / aSqrt3,
gp_XYZ (1.0, -1.0, -1.0) / aSqrt3 };
// Set of initial axes
const gp_XYZ *anInitialAxesArray = anInitialAxes7;
// Min and Max parameter
Standard_Real aParams[myNbExtremalPoints];
// Look for the extremal points (myLExtremalPoints)
for (Standard_Integer anAxeInd = 0, aPrmInd = -1; anAxeInd < myNbInitAxes; ++anAxeInd)
{
Standard_Integer aMinInd = ++aPrmInd, aMaxInd = ++aPrmInd;
aParams[aMinInd] = RealLast();
aParams[aMaxInd] = -RealLast();
Project (anInitialAxesArray[anAxeInd],
aParams[aMinInd], aParams[aMaxInd],
&myLExtremalPoints[aMinInd], &myLExtremalPoints[aMaxInd]);
}
// For not optimal box it is necessary to compute the max axis
// created by the maximally distant extreme points
if (!myOptimal)
{
for(Standard_Integer i = 0; i < 5; i++)
myTriIdx[i] = INT_MAX;
// Compute myTriIdx[0] and myTriIdx[1].
Standard_Real aMaxSqDist = -1.0;
for (Standard_Integer aPrmInd = 0; aPrmInd < myNbExtremalPoints; aPrmInd += 2)
{
const gp_Pnt &aP1 = myLExtremalPoints[aPrmInd],
&aP2 = myLExtremalPoints[aPrmInd + 1];
const Standard_Real aSqDist = aP1.SquareDistance(aP2);
if (aSqDist > aMaxSqDist)
{
aMaxSqDist = aSqDist;
myTriIdx[0] = aPrmInd;
myTriIdx[1] = aPrmInd + 1;
}
}
// Compute the maximal axis orthogonal to the found one
FillToTriangle3();
}
}
//=======================================================================
// Function : FillToTriangle3
// purpose : Two value of myTriIdx array is known. Let us find myTriIdx[2].
// It must be in maximal distance from the infinite axis going
// through the points with indexes myTriIdx[0] and myTriIdx[1].
//=======================================================================
void OBBTool::FillToTriangle3()
{
const gp_XYZ &aP0 = myLExtremalPoints[myTriIdx[0]];
const gp_XYZ anAxis = myLExtremalPoints[myTriIdx[1]] - aP0;
Standard_Real aMaxSqDist = -1.0;
for(Standard_Integer i = 0; i < myNbExtremalPoints; i++)
{
if((i == myTriIdx[0]) || (i == myTriIdx[1]))
continue;
const gp_XYZ &aP = myLExtremalPoints[i];
const Standard_Real aDistToAxe = anAxis.CrossSquareMagnitude(aP - aP0);
if(aDistToAxe > aMaxSqDist)
{
myTriIdx[2] = i;
aMaxSqDist = aDistToAxe;
}
}
}
//=======================================================================
// Function : FillToTriangle5
// purpose : Three value of myTriIdx array is known.
// Let us find myTriIdx[3] and myTriIdx[4].
// They must be in the different sides of the plane of
// triangle set by points myTriIdx[0], myTriIdx[1] and
// myTriIdx[2]. Moreover, the distance from these points
// to the triangle plane must be maximal.
//=======================================================================
void OBBTool::FillToTriangle5(const gp_XYZ& theNormal,
const gp_XYZ& theBarryCenter)
{
Standard_Real aParams[2] = {0.0, 0.0};
Standard_Integer id3 = -1, id4 = -1;
for(Standard_Integer aPtIdx = 0; aPtIdx < myNbExtremalPoints; aPtIdx++)
{
if((aPtIdx == myTriIdx[0]) || (aPtIdx == myTriIdx[1]) || (aPtIdx == myTriIdx[2]))
continue;
const gp_XYZ &aCurrPoint = myLExtremalPoints[aPtIdx];
const Standard_Real aParam = theNormal.Dot(aCurrPoint - theBarryCenter);
if (aParam < aParams[0])
{
id3 = aPtIdx;
aParams[0] = aParam;
}
else if (aParam > aParams[1])
{
id4 = aPtIdx;
aParams[1] = aParam;
}
}
// The points must be in the different sides of the triangle plane.
if (id3 >= 0 && aParams[0] < -Precision::Confusion())
myTriIdx[3] = id3;
if (id4 >= 0 && aParams[1] > Precision::Confusion())
myTriIdx[4] = id4;
}
//=======================================================================
// Function : ProcessTriangle
// purpose : Choose the optimal box with triple axes containing normal
// to the triangle and some edge of the triangle (3rd axis is
// computed from these two ones).
//=======================================================================
void OBBTool::ProcessTriangle(const Standard_Integer theIdx1,
const Standard_Integer theIdx2,
const Standard_Integer theIdx3,
const Standard_Boolean theIsBuiltTrg)
{
const Standard_Integer aNbAxes = 3;
// All axes must be normalized in order to provide correct area computation
// (see ComputeQuality(...) method).
int ID1[3] = { theIdx2, theIdx3, theIdx1 },
ID2[3] = { theIdx1, theIdx2, theIdx3 };
gp_XYZ aYAxis[aNbAxes] = {(myLExtremalPoints[ID1[0]] - myLExtremalPoints[ID2[0]]),
(myLExtremalPoints[ID1[1]] - myLExtremalPoints[ID2[1]]),
(myLExtremalPoints[ID1[2]] - myLExtremalPoints[ID2[2]])};
// Normal to the triangle plane
gp_XYZ aZAxis = aYAxis[0].Crossed(aYAxis[1]);
Standard_Real aSqMod = aZAxis.SquareModulus();
if (aSqMod < Precision::SquareConfusion())
return;
aZAxis /= Sqrt(aSqMod);
gp_XYZ aXAxis[aNbAxes];
for (Standard_Integer i = 0; i < aNbAxes; i++)
aXAxis[i] = aYAxis[i].Crossed(aZAxis).Normalized();
if (theIsBuiltTrg)
FillToTriangle5 (aZAxis, myLExtremalPoints[theIdx1]);
// Min and Max parameter
const Standard_Integer aNbPoints = 2 * aNbAxes;
// Compute Min/Max params for ZAxis
Standard_Real aParams[aNbPoints];
FindMinMax (aZAxis, aParams[4], aParams[5]); // Compute params on ZAxis once
Standard_Integer aMinIdx = -1;
for(Standard_Integer anAxeInd = 0; anAxeInd < aNbAxes; anAxeInd++)
{
const gp_XYZ &aAX = aXAxis[anAxeInd];
// Compute params on XAxis
FindMinMax (aAX, aParams[0], aParams[1]);
// Compute params on YAxis checking for stored values
ComputeParams (ID1[anAxeInd], ID2[anAxeInd], aParams[2], aParams[3]);
const Standard_Real anArea = ComputeQuality(aParams);
if (anArea < myQualityCriterion)
{
myQualityCriterion = anArea;
aMinIdx = anAxeInd;
}
}
if (aMinIdx < 0)
return;
myAxes[0] = aXAxis[aMinIdx];
myAxes[1] = aYAxis[aMinIdx].Normalized();
myAxes[2] = aZAxis;
}
//=======================================================================
// Function : ProcessDiTetrahedron
// purpose : DiTo-algorithm (http://www.idt.mdh.se/~tla/publ/FastOBBs.pdf)
//=======================================================================
void OBBTool::ProcessDiTetrahedron()
{
// To compute the optimal OBB it is necessary to check all possible
// axes created by the extremal points. It is also necessary to project
// all the points on the axis, as for each different axis there will be
// different extremal points.
if (myOptimal)
{
for (Standard_Integer i = 0; i < myNbExtremalPoints - 2; i++)
{
for (Standard_Integer j = i + 1; j < myNbExtremalPoints - 1; j++)
{
for (Standard_Integer k = j + 1; k < myNbExtremalPoints; k++)
{
ProcessTriangle (i, j, k, Standard_False);
}
}
}
}
else
{
// Use the standard DiTo approach
ProcessTriangle(myTriIdx[0], myTriIdx[1], myTriIdx[2], Standard_True);
if (myTriIdx[3] <= myNbExtremalPoints)
{
ProcessTriangle(myTriIdx[0], myTriIdx[1], myTriIdx[3], Standard_False);
ProcessTriangle(myTriIdx[1], myTriIdx[2], myTriIdx[3], Standard_False);
ProcessTriangle(myTriIdx[0], myTriIdx[2], myTriIdx[3], Standard_False);
}
if (myTriIdx[4] <= myNbExtremalPoints)
{
ProcessTriangle(myTriIdx[0], myTriIdx[1], myTriIdx[4], Standard_False);
ProcessTriangle(myTriIdx[1], myTriIdx[2], myTriIdx[4], Standard_False);
ProcessTriangle(myTriIdx[0], myTriIdx[2], myTriIdx[4], Standard_False);
}
}
}
//=======================================================================
// Function : BuildBox
// purpose :
//=======================================================================
void OBBTool::BuildBox(Bnd_OBB& theBox)
{
theBox.SetVoid();
// In fact, use Precision::SquareConfusion().
const Standard_Boolean isOBB = myAxes[0].SquareModulus()*
myAxes[1].SquareModulus()*
myAxes[2].SquareModulus() > 1.0e-14;
const gp_Dir aXDir = isOBB ? myAxes[0] : gp_Dir(1, 0, 0);
const gp_Dir aYDir = isOBB ? myAxes[1] : gp_Dir(0, 1, 0);
const gp_Dir aZDir = isOBB ? myAxes[2] : gp_Dir(0, 0, 1);
const Standard_Integer aNbPoints = 6;
Standard_Real aParams[aNbPoints];
gp_XYZ aFCurrPoint = myPntsList.First().XYZ();
aParams[0] = aParams[1] = aFCurrPoint.Dot(aXDir.XYZ());
aParams[2] = aParams[3] = aFCurrPoint.Dot(aYDir.XYZ());
aParams[4] = aParams[5] = aFCurrPoint.Dot(aZDir.XYZ());
if(myListOfTolers != 0)
{
const Standard_Real aTol = myListOfTolers->First();
aParams[0] -= aTol;
aParams[1] += aTol;
aParams[2] -= aTol;
aParams[3] += aTol;
aParams[4] -= aTol;
aParams[5] += aTol;
}
for(Standard_Integer i = myPntsList.Lower() + 1; i <= myPntsList.Upper(); i++)
{
const gp_XYZ &aCurrPoint = myPntsList(i).XYZ();
const Standard_Real aDx = aCurrPoint.Dot(aXDir.XYZ()),
aDy = aCurrPoint.Dot(aYDir.XYZ()),
aDz = aCurrPoint.Dot(aZDir.XYZ());
if(myListOfTolers == 0)
{
SetMinMax(&aParams[0], aDx);
SetMinMax(&aParams[2], aDy);
SetMinMax(&aParams[4], aDz);
}
else
{
const Standard_Real aTol = myListOfTolers->Value(i);
aParams[0] = Min(aParams[0], aDx - aTol);
aParams[1] = Max(aParams[1], aDx + aTol);
aParams[2] = Min(aParams[2], aDy - aTol);
aParams[3] = Max(aParams[3], aDy + aTol);
aParams[4] = Min(aParams[4], aDz - aTol);
aParams[5] = Max(aParams[5], aDz + aTol);
}
}
//Half-sizes
const Standard_Real aHX = 0.5*(aParams[1] - aParams[0]);
const Standard_Real aHY = 0.5*(aParams[3] - aParams[2]);
const Standard_Real aHZ = 0.5*(aParams[5] - aParams[4]);
const gp_XYZ aCenter = 0.5*((aParams[1] + aParams[0])*aXDir.XYZ() +
(aParams[3] + aParams[2])*aYDir.XYZ() +
(aParams[5] + aParams[4])*aZDir.XYZ());
theBox.SetCenter(aCenter);
theBox.SetXComponent(aXDir, aHX);
theBox.SetYComponent(aYDir, aHY);
theBox.SetZComponent(aZDir, aHZ);
theBox.SetAABox(!isOBB);
}
// =======================================================================
// function : ReBuild
// purpose : http://www.idt.mdh.se/~tla/publ/
// =======================================================================
void Bnd_OBB::ReBuild(const TColgp_Array1OfPnt& theListOfPoints,
const TColStd_Array1OfReal *theListOfTolerances,
const Standard_Boolean theIsOptimal)
{
switch(theListOfPoints.Length())
{
case 1:
ProcessOnePoint(theListOfPoints.First());
if(theListOfTolerances)
Enlarge(theListOfTolerances->First());
return;
case 2:
{
const Standard_Real aTol1 = (theListOfTolerances == 0) ? 0.0 :
theListOfTolerances->First();
const Standard_Real aTol2 = (theListOfTolerances == 0) ? 0.0 :
theListOfTolerances->Last();
const gp_XYZ &aP1 = theListOfPoints.First().XYZ(),
&aP2 = theListOfPoints.Last().XYZ();
const gp_XYZ aDP = aP2 - aP1;
const Standard_Real aDPm = aDP.Modulus();
myIsAABox = Standard_False;
myHDims[1] = myHDims[2] = Max(aTol1, aTol2);
if(aDPm < Precision::Confusion())
{
ProcessOnePoint(aP1);
Enlarge(myHDims[1] + Precision::Confusion());
return;
}
myHDims[0] = 0.5*(aDPm+aTol1+aTol2);
myAxes[0] = aDP/aDPm;
if(Abs(myAxes[0].X()) > Abs(myAxes[0].Y()))
{
// Z-coord. is maximal or X-coord. is maximal
myAxes[1].SetCoord(-myAxes[0].Z(), 0.0, myAxes[0].X());
}
else
{
// Z-coord. is maximal or Y-coord. is maximal
myAxes[1].SetCoord(0.0, -myAxes[0].Z(), myAxes[0].Y());
}
myAxes[2] = myAxes[0].Crossed(myAxes[1]).Normalized();
myCenter = aP1 + 0.5*(aDPm - aTol1 + aTol2)*myAxes[0];
}
return;
default:
break;
}
OBBTool aTool(theListOfPoints, theListOfTolerances, theIsOptimal);
aTool.ProcessDiTetrahedron();
aTool.BuildBox(*this);
}
// =======================================================================
// function : IsOut
// purpose :
// =======================================================================
Standard_Boolean Bnd_OBB::IsOut(const Bnd_OBB& theOther) const
{
if (IsVoid() || theOther.IsVoid())
return Standard_True;
if (myIsAABox && theOther.myIsAABox)
{
return ((Abs(theOther.myCenter.X() - myCenter.X()) > theOther.myHDims[0] + myHDims[0]) ||
(Abs(theOther.myCenter.Y() - myCenter.Y()) > theOther.myHDims[1] + myHDims[1]) ||
(Abs(theOther.myCenter.Z() - myCenter.Z()) > theOther.myHDims[2] + myHDims[2]));
}
// According to the Separating Axis Theorem for Oriented Bounding Boxes
// it is necessary to check the 15 separating axes (Ls):
// - 6 axes of the boxes;
// - 9 cross products of the axes of the boxes.
// If any of these axes is valid, the boxes do not interfere.
// The algorithm is following:
// 1. Compute the "length" for j-th BndBox (j=1...2) according to the formula:
// L(j)=Sum(myHDims[i]*Abs(myAxes[i].Dot(Ls)))
// 2. If (theCenter2 - theCenter1).Dot(Ls) > (L(1) + L(2))
// then the considered OBBs are not interfered in terms of the axis Ls.
//
// If OBBs are not interfered in terms of at least one axis (of 15) then
// they are not interfered at all.
// Precomputed difference between centers
gp_XYZ D = theOther.myCenter - myCenter;
// Check the axes of the this box, i.e. L is one of myAxes
// Since the Dot product of two of these directions is null, it could be skipped:
// myXDirection.Dot(myYDirection) = 0
for(Standard_Integer i = 0; i < 3; ++i)
{
// Length of the second segment
Standard_Real aLSegm2 = 0;
for(Standard_Integer j = 0; j < 3; ++j)
aLSegm2 += theOther.myHDims[j] * Abs(theOther.myAxes[j].Dot(myAxes[i]));
// Distance between projected centers
Standard_Real aDistCC = Abs(D.Dot(myAxes[i]));
if(aDistCC > myHDims[i] + aLSegm2)
return Standard_True;
}
// Check the axes of the Other box, i.e. L is one of theOther.myAxes
for(Standard_Integer i = 0; i < 3; ++i)
{
// Length of the first segment
Standard_Real aLSegm1 = 0.;
for(Standard_Integer j = 0; j < 3; ++j)
aLSegm1 += myHDims[j] * Abs(myAxes[j].Dot(theOther.myAxes[i]));
// Distance between projected centers
Standard_Real aDistCC = Abs(D.Dot(theOther.myAxes[i]));
if(aDistCC > aLSegm1 + theOther.myHDims[i])
return Standard_True;
}
const Standard_Real aTolNull = Epsilon(1.0);
// Check the axes produced by the cross products
for(Standard_Integer i = 0; i < 3; ++i)
{
for(Standard_Integer j = 0; j < 3; ++j)
{
// Separating axis
gp_XYZ aLAxe = myAxes[i].Crossed(theOther.myAxes[j]);
const Standard_Real aNorm = aLAxe.Modulus();
if(aNorm < aTolNull)
continue;
aLAxe /= aNorm;
// Length of the first segment
Standard_Real aLSegm1 = 0.;
for(Standard_Integer k = 0; k < 3; ++k)
aLSegm1 += myHDims[k] * Abs(myAxes[k].Dot(aLAxe));
// Length of the second segment
Standard_Real aLSegm2 = 0.;
for(Standard_Integer k = 0; k < 3; ++k)
aLSegm2 += theOther.myHDims[k] * Abs(theOther.myAxes[k].Dot(aLAxe));
// Distance between projected centers
Standard_Real aDistCC = Abs(D.Dot(aLAxe));
if(aDistCC > aLSegm1 + aLSegm2)
return Standard_True;
}
}
return Standard_False;
}
// =======================================================================
// function : IsOut
// purpose :
// =======================================================================
Standard_Boolean Bnd_OBB::IsOut(const gp_Pnt& theP) const
{
// 1. Project the point to myAxes[i] (i=0...2).
// 2. Check, whether the absolute value of the correspond
// projection parameter is greater than myHDims[i].
// In this case, IsOut method will return TRUE.
const gp_XYZ aRV = theP.XYZ() - myCenter;
return ((Abs(myAxes[0].Dot(aRV)) > myHDims[0]) ||
(Abs(myAxes[1].Dot(aRV)) > myHDims[1]) ||
(Abs(myAxes[2].Dot(aRV)) > myHDims[2]));
}
// =======================================================================
// function : IsCompletelyInside
// purpose : Checks if every vertex of theOther is completely inside *this
// =======================================================================
Standard_Boolean Bnd_OBB::IsCompletelyInside(const Bnd_OBB& theOther) const
{
if(IsVoid() || theOther.IsVoid())
return Standard_False;
gp_Pnt aVert[8];
theOther.GetVertex(aVert);
for(Standard_Integer i = 0; i < 8; i++)
{
if(IsOut(aVert[i]))
return Standard_False;
}
return Standard_True;
}
// =======================================================================
// function : Add
// purpose :
// =======================================================================
void Bnd_OBB::Add(const gp_Pnt& theP)
{
if (IsVoid())
{
myCenter = theP.XYZ();
myAxes[0] = gp::DX().XYZ();
myAxes[1] = gp::DY().XYZ();
myAxes[2] = gp::DZ().XYZ();
myHDims[0] = 0.0;
myHDims[1] = 0.0;
myHDims[2] = 0.0;
myIsAABox = Standard_True;
}
else
{
gp_Pnt aList[9];
GetVertex(aList);
aList[8] = theP;
ReBuild(TColgp_Array1OfPnt(aList[0], 0, 8));
}
}
// =======================================================================
// function : Add
// purpose :
// =======================================================================
void Bnd_OBB::Add(const Bnd_OBB& theOther)
{
if (!theOther.IsVoid())
{
if (IsVoid())
{
myCenter = theOther.myCenter;
myAxes[0] = theOther.myAxes[0];
myAxes[1] = theOther.myAxes[1];
myAxes[2] = theOther.myAxes[2];
myHDims[0] = theOther.myHDims[0];
myHDims[1] = theOther.myHDims[1];
myHDims[2] = theOther.myHDims[2];
myIsAABox = theOther.myIsAABox;
}
else
{
gp_Pnt aList[16];
GetVertex(&aList[0]);
theOther.GetVertex(&aList[8]);
ReBuild(TColgp_Array1OfPnt(aList[0], 0, 15));
}
}
}
//=======================================================================
//function : DumpJson
//purpose :
//=======================================================================
void Bnd_OBB::DumpJson (Standard_OStream& theOStream, Standard_Integer theDepth) const
{
OCCT_DUMP_CLASS_BEGIN (theOStream, Bnd_OBB)
OCCT_DUMP_FIELD_VALUES_DUMPED (theOStream, theDepth, &myCenter)
OCCT_DUMP_FIELD_VALUES_DUMPED (theOStream, theDepth, &myAxes[0])
OCCT_DUMP_FIELD_VALUES_DUMPED (theOStream, theDepth, &myAxes[1])
OCCT_DUMP_FIELD_VALUES_DUMPED (theOStream, theDepth, &myAxes[2])
OCCT_DUMP_FIELD_VALUE_NUMERICAL (theOStream, myHDims[0])
OCCT_DUMP_FIELD_VALUE_NUMERICAL (theOStream, myHDims[1])
OCCT_DUMP_FIELD_VALUE_NUMERICAL (theOStream, myHDims[2])
OCCT_DUMP_FIELD_VALUE_NUMERICAL (theOStream, myIsAABox)
}