mirror of
https://git.dev.opencascade.org/repos/occt.git
synced 2025-04-09 18:50:54 +03:00
Update empty method guards to new style with regex (see PR). Used clang-format 18.1.8. New actions to validate code formatting is added. Update .clang-format with disabling of include sorting. It is temporary changes, then include will be sorted. Apply formatting for /src and /tools folder. The files with .hxx,.cxx,.lxx,.h,.pxx,.hpp,*.cpp extensions.
1168 lines
37 KiB
C++
1168 lines
37 KiB
C++
// Created: 1998-06-03
|
|
//
|
|
// Copyright (c) 1999-2013 OPEN CASCADE SAS
|
|
//
|
|
// This file is part of commercial software by OPEN CASCADE SAS,
|
|
// furnished in accordance with the terms and conditions of the contract
|
|
// and with the inclusion of this copyright notice.
|
|
// This file or any part thereof may not be provided or otherwise
|
|
// made available to any third party.
|
|
//
|
|
// No ownership title to the software is transferred hereby.
|
|
//
|
|
// OPEN CASCADE SAS makes no representation or warranties with respect to the
|
|
// performance of this software, and specifically disclaims any responsibility
|
|
// for any damages, special or consequential, connected with its use.
|
|
|
|
// abv 06.01.99 fix of misprint
|
|
//: p6 abv 26.02.99: make ConvertToPeriodic() return Null if nothing done
|
|
|
|
#include <ElSLib.hxx>
|
|
#include <Geom_RectangularTrimmedSurface.hxx>
|
|
#include <Geom_BezierSurface.hxx>
|
|
#include <Geom_BSplineSurface.hxx>
|
|
#include <Geom_Circle.hxx>
|
|
#include <Geom_ConicalSurface.hxx>
|
|
#include <Geom_Curve.hxx>
|
|
#include <Geom_CylindricalSurface.hxx>
|
|
#include <Geom_Line.hxx>
|
|
#include <Geom_Plane.hxx>
|
|
#include <Geom_SphericalSurface.hxx>
|
|
#include <Geom_Surface.hxx>
|
|
#include <Geom_SurfaceOfRevolution.hxx>
|
|
#include <Geom_ToroidalSurface.hxx>
|
|
#include <Geom_TrimmedCurve.hxx>
|
|
#include <GeomAdaptor_Surface.hxx>
|
|
#include <GeomAdaptor_Surface.hxx>
|
|
#include <GeomLib_IsPlanarSurface.hxx>
|
|
#include <gp_Ax3.hxx>
|
|
#include <gp_Circ.hxx>
|
|
#include <gp_Dir.hxx>
|
|
#include <gp_Pln.hxx>
|
|
#include <gp_Vec.hxx>
|
|
#include <IntAna_QuadQuadGeo.hxx>
|
|
#include <GeomConvert_CurveToAnaCurve.hxx>
|
|
#include <GeomConvert_SurfToAnaSurf.hxx>
|
|
#include <TColgp_Array1OfPnt.hxx>
|
|
#include <TColStd_Array1OfReal.hxx>
|
|
#include <Extrema_ExtElC.hxx>
|
|
#include <GeomLProp_SLProps.hxx>
|
|
#include <TColgp_HArray1OfXYZ.hxx>
|
|
#include <math_Vector.hxx>
|
|
#include <math_PSO.hxx>
|
|
#include <math_Powell.hxx>
|
|
#include <GeomConvert_FuncCylinderLSDist.hxx>
|
|
|
|
//=======================================================================
|
|
// function : CheckVTrimForRevSurf
|
|
// purpose :
|
|
// static method for checking surface of revolution
|
|
// To avoid two-parts cone-like surface
|
|
//=======================================================================
|
|
void GeomConvert_SurfToAnaSurf::CheckVTrimForRevSurf(
|
|
const Handle(Geom_SurfaceOfRevolution)& aRevSurf,
|
|
Standard_Real& V1,
|
|
Standard_Real& V2)
|
|
{
|
|
const Handle(Geom_Curve)& aBC = aRevSurf->BasisCurve();
|
|
Handle(Geom_Line) aLine = Handle(Geom_Line)::DownCast(aBC);
|
|
if (aLine.IsNull())
|
|
return;
|
|
const gp_Ax1& anAxis = aRevSurf->Axis();
|
|
|
|
gp_Lin anALin(anAxis);
|
|
Extrema_ExtElC anExtLL(aLine->Lin(), anALin, Precision::Angular());
|
|
if (!anExtLL.IsDone() || anExtLL.IsParallel())
|
|
return;
|
|
Standard_Integer aNbExt = anExtLL.NbExt();
|
|
if (aNbExt == 0)
|
|
return;
|
|
|
|
Standard_Integer i;
|
|
Standard_Integer imin = 0;
|
|
for (i = 1; i <= aNbExt; ++i)
|
|
{
|
|
if (anExtLL.SquareDistance(i) < Precision::SquareConfusion())
|
|
{
|
|
imin = i;
|
|
break;
|
|
}
|
|
}
|
|
if (imin == 0)
|
|
return;
|
|
|
|
Extrema_POnCurv aP1, aP2;
|
|
anExtLL.Points(imin, aP1, aP2);
|
|
Standard_Real aVExt = aP1.Parameter();
|
|
if (aVExt <= V1 || aVExt >= V2)
|
|
return;
|
|
|
|
if (aVExt - V1 > V2 - aVExt)
|
|
{
|
|
V2 = aVExt;
|
|
}
|
|
else
|
|
{
|
|
V1 = aVExt;
|
|
}
|
|
}
|
|
|
|
//=======================================================================
|
|
// function : TryCylinderCone
|
|
// purpose :
|
|
// static method to try create cylindrical or conical surface
|
|
//=======================================================================
|
|
Handle(Geom_Surface) GeomConvert_SurfToAnaSurf::TryCylinerCone(const Handle(Geom_Surface)& theSurf,
|
|
const Standard_Boolean theVCase,
|
|
const Handle(Geom_Curve)& theUmidiso,
|
|
const Handle(Geom_Curve)& theVmidiso,
|
|
const Standard_Real theU1,
|
|
const Standard_Real theU2,
|
|
const Standard_Real theV1,
|
|
const Standard_Real theV2,
|
|
const Standard_Real theToler)
|
|
{
|
|
Handle(Geom_Surface) aNewSurf;
|
|
Standard_Real param1, param2, cf1, cf2, cl1, cl2, aGap1, aGap2;
|
|
Handle(Geom_Curve) firstiso, lastiso;
|
|
Handle(Geom_Circle) firstisocirc, lastisocirc, midisocirc;
|
|
gp_Dir isoline;
|
|
if (theVCase)
|
|
{
|
|
param1 = theU1;
|
|
param2 = theU2;
|
|
firstiso = theSurf->VIso(theV1);
|
|
lastiso = theSurf->VIso(theV2);
|
|
midisocirc = Handle(Geom_Circle)::DownCast(theVmidiso);
|
|
isoline = Handle(Geom_Line)::DownCast(theUmidiso)->Lin().Direction();
|
|
}
|
|
else
|
|
{
|
|
param1 = theV1;
|
|
param2 = theV2;
|
|
firstiso = theSurf->UIso(theU1);
|
|
lastiso = theSurf->UIso(theU2);
|
|
midisocirc = Handle(Geom_Circle)::DownCast(theUmidiso);
|
|
isoline = Handle(Geom_Line)::DownCast(theVmidiso)->Lin().Direction();
|
|
}
|
|
firstisocirc =
|
|
Handle(Geom_Circle)::DownCast(GeomConvert_CurveToAnaCurve::ComputeCurve(firstiso,
|
|
theToler,
|
|
param1,
|
|
param2,
|
|
cf1,
|
|
cl1,
|
|
aGap1,
|
|
GeomConvert_Target,
|
|
GeomAbs_Circle));
|
|
lastisocirc =
|
|
Handle(Geom_Circle)::DownCast(GeomConvert_CurveToAnaCurve::ComputeCurve(lastiso,
|
|
theToler,
|
|
param1,
|
|
param2,
|
|
cf2,
|
|
cl2,
|
|
aGap2,
|
|
GeomConvert_Target,
|
|
GeomAbs_Circle));
|
|
if (!firstisocirc.IsNull() || !lastisocirc.IsNull())
|
|
{
|
|
Standard_Real R1, R2, R3;
|
|
gp_Pnt P1, P2, P3;
|
|
if (!firstisocirc.IsNull())
|
|
{
|
|
R1 = firstisocirc->Circ().Radius();
|
|
P1 = firstisocirc->Circ().Location();
|
|
}
|
|
else
|
|
{
|
|
R1 = 0;
|
|
P1 = firstiso->Value((firstiso->LastParameter() - firstiso->FirstParameter()) / 2);
|
|
}
|
|
R2 = midisocirc->Circ().Radius();
|
|
P2 = midisocirc->Circ().Location();
|
|
if (!lastisocirc.IsNull())
|
|
{
|
|
R3 = lastisocirc->Circ().Radius();
|
|
P3 = lastisocirc->Circ().Location();
|
|
}
|
|
else
|
|
{
|
|
R3 = 0;
|
|
P3 = lastiso->Value((lastiso->LastParameter() - lastiso->FirstParameter()) / 2);
|
|
}
|
|
// cylinder
|
|
if (((Abs(R2 - R1)) < theToler) && ((Abs(R3 - R1)) < theToler) && ((Abs(R3 - R2)) < theToler))
|
|
{
|
|
gp_Ax3 Axes(P1, gp_Dir(gp_Vec(P1, P3)));
|
|
aNewSurf = new Geom_CylindricalSurface(Axes, R1);
|
|
}
|
|
// cone
|
|
else if ((((Abs(R1)) > (Abs(R2))) && ((Abs(R2)) > (Abs(R3))))
|
|
|| (((Abs(R3)) > (Abs(R2))) && ((Abs(R2)) > (Abs(R1)))))
|
|
{
|
|
Standard_Real radius;
|
|
gp_Ax3 Axes;
|
|
Standard_Real semiangle = gp_Vec(isoline).Angle(gp_Vec(P3, P1));
|
|
if (semiangle > M_PI / 2)
|
|
semiangle = M_PI - semiangle;
|
|
if (R1 > R3)
|
|
{
|
|
radius = R3;
|
|
Axes = gp_Ax3(P3, gp_Dir(gp_Vec(P3, P1)));
|
|
}
|
|
else
|
|
{
|
|
radius = R1;
|
|
Axes = gp_Ax3(P1, gp_Dir(gp_Vec(P1, P3)));
|
|
}
|
|
aNewSurf = new Geom_ConicalSurface(Axes, semiangle, radius);
|
|
}
|
|
}
|
|
return aNewSurf;
|
|
}
|
|
|
|
//=======================================================================
|
|
// function : GetCylByLS
|
|
// purpose :
|
|
// static method to create cylinrical surface using least square method
|
|
//=======================================================================
|
|
static void GetLSGap(const Handle(TColgp_HArray1OfXYZ)& thePoints,
|
|
const gp_Ax3& thePos,
|
|
const Standard_Real theR,
|
|
Standard_Real& theGap)
|
|
{
|
|
theGap = 0.;
|
|
Standard_Integer i;
|
|
gp_XYZ aLoc = thePos.Location().XYZ();
|
|
gp_Dir aDir = thePos.Direction();
|
|
for (i = thePoints->Lower(); i <= thePoints->Upper(); ++i)
|
|
{
|
|
gp_Vec aD(thePoints->Value(i) - aLoc);
|
|
aD.Cross(aDir);
|
|
theGap = Max(theGap, Abs((aD.Magnitude() - theR)));
|
|
}
|
|
}
|
|
|
|
Standard_Boolean GeomConvert_SurfToAnaSurf::GetCylByLS(const Handle(TColgp_HArray1OfXYZ)& thePoints,
|
|
const Standard_Real theTol,
|
|
gp_Ax3& thePos,
|
|
Standard_Real& theR,
|
|
Standard_Real& theGap)
|
|
{
|
|
|
|
GetLSGap(thePoints, thePos, theR, theGap);
|
|
if (theGap <= Precision::Confusion())
|
|
{
|
|
return Standard_True;
|
|
}
|
|
|
|
Standard_Integer i;
|
|
|
|
Standard_Integer aNbVar = 4;
|
|
|
|
math_Vector aFBnd(1, aNbVar), aLBnd(1, aNbVar), aStartPoint(1, aNbVar);
|
|
|
|
Standard_Real aRelDev = 0.2; // Customer can set parameters of sample surface
|
|
// with relative precision about aRelDev.
|
|
// For example, if radius of sample surface is R,
|
|
// it means, that "exact" value is in interav
|
|
//[R - aRelDev*R, R + aRelDev*R]. This interval is set
|
|
// for R as boundary values for optimization algo.
|
|
|
|
aStartPoint(1) = thePos.Location().X();
|
|
aStartPoint(2) = thePos.Location().Y();
|
|
aStartPoint(3) = thePos.Location().Z();
|
|
aStartPoint(4) = theR;
|
|
Standard_Real aDR = aRelDev * theR;
|
|
Standard_Real aDXYZ = aDR;
|
|
for (i = 1; i <= 3; ++i)
|
|
{
|
|
aFBnd(i) = aStartPoint(i) - aDXYZ;
|
|
aLBnd(i) = aStartPoint(i) + aDXYZ;
|
|
}
|
|
aFBnd(4) = aStartPoint(4) - aDR;
|
|
aLBnd(4) = aStartPoint(4) + aDR;
|
|
|
|
//
|
|
constexpr Standard_Real aTol = Precision::Confusion();
|
|
math_MultipleVarFunction* aPFunc;
|
|
GeomConvert_FuncCylinderLSDist aFuncCyl(thePoints, thePos.Direction());
|
|
aPFunc = (math_MultipleVarFunction*)&aFuncCyl;
|
|
//
|
|
math_Vector aSteps(1, aNbVar);
|
|
Standard_Integer aNbInt = 10;
|
|
for (i = 1; i <= aNbVar; ++i)
|
|
{
|
|
aSteps(i) = (aLBnd(i) - aFBnd(i)) / aNbInt;
|
|
}
|
|
math_PSO aGlobSolver(aPFunc, aFBnd, aLBnd, aSteps);
|
|
Standard_Real aLSDist;
|
|
aGlobSolver.Perform(aSteps, aLSDist, aStartPoint);
|
|
//
|
|
gp_Pnt aLoc(aStartPoint(1), aStartPoint(2), aStartPoint(3));
|
|
thePos.SetLocation(aLoc);
|
|
theR = aStartPoint(4);
|
|
|
|
GetLSGap(thePoints, thePos, theR, theGap);
|
|
if (theGap <= aTol)
|
|
{
|
|
return Standard_True;
|
|
}
|
|
//
|
|
math_Matrix aDirMatrix(1, aNbVar, 1, aNbVar, 0.0);
|
|
for (i = 1; i <= aNbVar; i++)
|
|
aDirMatrix(i, i) = 1.0;
|
|
|
|
// Set search direction for location to be perpendicular to axis to avoid
|
|
// searching along axis
|
|
const gp_Dir aDir = thePos.Direction();
|
|
gp_Pln aPln(thePos.Location(), aDir);
|
|
gp_Dir aUDir = aPln.Position().XDirection();
|
|
gp_Dir aVDir = aPln.Position().YDirection();
|
|
for (i = 1; i <= 3; ++i)
|
|
{
|
|
aDirMatrix(i, 1) = aUDir.Coord(i);
|
|
aDirMatrix(i, 2) = aVDir.Coord(i);
|
|
gp_Dir aUVDir(aUDir.XYZ() + aVDir.XYZ());
|
|
aDirMatrix(i, 3) = aUVDir.Coord(i);
|
|
}
|
|
|
|
math_Powell aSolver(*aPFunc, aTol);
|
|
aSolver.Perform(*aPFunc, aStartPoint, aDirMatrix);
|
|
|
|
if (aSolver.IsDone())
|
|
{
|
|
gp_Ax3 aPos2 = thePos;
|
|
aSolver.Location(aStartPoint);
|
|
aLoc.SetCoord(aStartPoint(1), aStartPoint(2), aStartPoint(3));
|
|
aPos2.SetLocation(aLoc);
|
|
Standard_Real anR2 = aStartPoint(4), aGap2 = 0.;
|
|
//
|
|
GetLSGap(thePoints, aPos2, anR2, aGap2);
|
|
//
|
|
if (aGap2 < theGap)
|
|
{
|
|
theGap = aGap2;
|
|
thePos = aPos2;
|
|
theR = anR2;
|
|
}
|
|
}
|
|
if (theGap <= theTol)
|
|
{
|
|
return Standard_True;
|
|
}
|
|
return Standard_False;
|
|
}
|
|
|
|
//=======================================================================
|
|
// function : TryCylinderByGaussField
|
|
// purpose :
|
|
// static method to try create cylinrical surface based on its Gauss field
|
|
//=======================================================================
|
|
|
|
Handle(Geom_Surface) GeomConvert_SurfToAnaSurf::TryCylinderByGaussField(
|
|
const Handle(Geom_Surface)& theSurf,
|
|
const Standard_Real theU1,
|
|
const Standard_Real theU2,
|
|
const Standard_Real theV1,
|
|
const Standard_Real theV2,
|
|
const Standard_Real theToler,
|
|
const Standard_Integer theNbU,
|
|
const Standard_Integer theNbV,
|
|
const Standard_Boolean theLeastSquare)
|
|
{
|
|
Handle(Geom_Surface) aNewSurf;
|
|
Standard_Real du = (theU2 - theU1) / theNbU, dv = (theV2 - theV1) / theNbV;
|
|
Standard_Real aSigmaR = 0.;
|
|
Standard_Real aTol = 1.e3 * theToler;
|
|
TColStd_Array1OfReal anRs(1, theNbU * theNbV);
|
|
Handle(TColgp_HArray1OfXYZ) aPoints;
|
|
if (theLeastSquare)
|
|
{
|
|
aPoints = new TColgp_HArray1OfXYZ(1, theNbU * theNbU);
|
|
}
|
|
//
|
|
GeomLProp_SLProps aProps(theSurf, 2, Precision::Confusion());
|
|
Standard_Real anAvMaxCurv = 0., anAvMinCurv = 0., anAvR = 0, aSign = 1.;
|
|
gp_XYZ anAvDir;
|
|
gp_Dir aMinD, aMaxD;
|
|
Standard_Integer i, j, n = 0;
|
|
Standard_Real anU, aV;
|
|
for (i = 1, anU = theU1 + du / 2.; i <= theNbU; ++i, anU += du)
|
|
{
|
|
for (j = 1, aV = theV1 + dv / 2.; j <= theNbV; ++j, aV += dv)
|
|
{
|
|
aProps.SetParameters(anU, aV);
|
|
if (!aProps.IsCurvatureDefined())
|
|
{
|
|
return aNewSurf;
|
|
}
|
|
if (aProps.IsUmbilic())
|
|
{
|
|
return aNewSurf;
|
|
}
|
|
++n;
|
|
Standard_Real aMinCurv = aProps.MinCurvature();
|
|
Standard_Real aMaxCurv = aProps.MaxCurvature();
|
|
Standard_Real aGaussCurv = Abs(aProps.GaussianCurvature());
|
|
Standard_Real aK1 = Sqrt(aGaussCurv);
|
|
if (aK1 > theToler)
|
|
{
|
|
return aNewSurf;
|
|
}
|
|
gp_XYZ aD;
|
|
aProps.CurvatureDirections(aMaxD, aMinD);
|
|
aMinCurv = Abs(aMinCurv);
|
|
aMaxCurv = Abs(aMaxCurv);
|
|
if (aMinCurv > aMaxCurv)
|
|
{
|
|
// aMinCurv < 0;
|
|
aSign = -1.;
|
|
std::swap(aMinCurv, aMaxCurv);
|
|
gp_Dir aDummy = aMaxD;
|
|
aMaxD = aMinD;
|
|
aMinD = aDummy;
|
|
}
|
|
Standard_Real anR = 1. / aMaxCurv;
|
|
Standard_Real anR2 = anR * anR;
|
|
anRs(n) = anR;
|
|
//
|
|
if (n > 1)
|
|
{
|
|
if (Abs(aMaxCurv - anAvMaxCurv / (n - 1)) > aTol / anR2)
|
|
{
|
|
return aNewSurf;
|
|
}
|
|
if (Abs(aMinCurv - anAvMinCurv / (n - 1)) > aTol)
|
|
{
|
|
return aNewSurf;
|
|
}
|
|
}
|
|
aD = aMinD.XYZ();
|
|
anAvR += anR;
|
|
anAvDir += aD;
|
|
anAvMaxCurv += aMaxCurv;
|
|
anAvMinCurv += aMinCurv;
|
|
if (theLeastSquare)
|
|
{
|
|
aPoints->SetValue(n, aProps.Value().XYZ());
|
|
}
|
|
}
|
|
}
|
|
anAvMaxCurv /= n;
|
|
anAvMinCurv /= n;
|
|
anAvR /= n;
|
|
anAvDir /= n;
|
|
//
|
|
if (Abs(anAvMinCurv) > theToler)
|
|
{
|
|
return aNewSurf;
|
|
}
|
|
//
|
|
for (i = 1; i <= n; ++i)
|
|
{
|
|
Standard_Real d = (anRs(i) - anAvR);
|
|
aSigmaR += d * d;
|
|
}
|
|
aSigmaR = Sqrt(aSigmaR / n);
|
|
aSigmaR = 3. * aSigmaR / Sqrt(n);
|
|
if (aSigmaR > aTol)
|
|
{
|
|
return aNewSurf;
|
|
}
|
|
aProps.SetParameters(theU1, theV1);
|
|
if (!aProps.IsCurvatureDefined())
|
|
{
|
|
return aNewSurf;
|
|
}
|
|
gp_Dir aNorm = aProps.Normal();
|
|
gp_Pnt aLoc = aProps.Value();
|
|
gp_Dir anAxD(anAvDir);
|
|
gp_Vec aT(aSign * anAvR * aNorm.XYZ());
|
|
aLoc.Translate(aT);
|
|
gp_Ax1 anAx1(aLoc, anAxD);
|
|
gp_Cylinder aCyl;
|
|
aCyl.SetAxis(anAx1);
|
|
aCyl.SetRadius(anAvR);
|
|
|
|
if (theLeastSquare)
|
|
{
|
|
gp_Ax3 aPos = aCyl.Position();
|
|
Standard_Real anR = aCyl.Radius();
|
|
Standard_Real aGap = 0.;
|
|
Standard_Boolean IsDone = GetCylByLS(aPoints, theToler, aPos, anR, aGap);
|
|
if (IsDone)
|
|
{
|
|
aCyl.SetPosition(aPos);
|
|
aCyl.SetRadius(anR);
|
|
}
|
|
}
|
|
|
|
aNewSurf = new Geom_CylindricalSurface(aCyl);
|
|
|
|
return aNewSurf;
|
|
}
|
|
|
|
//=======================================================================
|
|
// function : TryTorusSphere
|
|
// purpose :
|
|
// static method to try create toroidal surface.
|
|
// In case <isTryUMajor> = Standard_True try to use V isoline radius as minor radaius.
|
|
//=======================================================================
|
|
|
|
Handle(Geom_Surface) GeomConvert_SurfToAnaSurf::TryTorusSphere(
|
|
const Handle(Geom_Surface)& theSurf,
|
|
const Handle(Geom_Circle)& circle,
|
|
const Handle(Geom_Circle)& otherCircle,
|
|
const Standard_Real Param1,
|
|
const Standard_Real Param2,
|
|
const Standard_Real aParam1ToCrv,
|
|
const Standard_Real aParam2ToCrv,
|
|
const Standard_Real toler,
|
|
const Standard_Boolean isTryUMajor)
|
|
{
|
|
Handle(Geom_Surface) newSurface;
|
|
Standard_Real cf, cl;
|
|
Handle(Geom_Curve) IsoCrv1;
|
|
Handle(Geom_Curve) IsoCrv2;
|
|
Standard_Real aGap1, aGap2;
|
|
// initial radius
|
|
Standard_Real R = circle->Circ().Radius();
|
|
// iso lines
|
|
|
|
if (isTryUMajor)
|
|
{
|
|
IsoCrv1 = theSurf->VIso(Param1 + ((Param2 - Param1) / 3.));
|
|
IsoCrv2 = theSurf->VIso(Param1 + ((Param2 - Param1) * 2. / 3));
|
|
}
|
|
else
|
|
{
|
|
IsoCrv1 = theSurf->UIso(Param1 + ((Param2 - Param1) / 3.));
|
|
IsoCrv2 = theSurf->UIso(Param1 + ((Param2 - Param1) * 2. / 3));
|
|
}
|
|
|
|
Handle(Geom_Curve) Crv1 = GeomConvert_CurveToAnaCurve::ComputeCurve(IsoCrv1,
|
|
toler,
|
|
aParam1ToCrv,
|
|
aParam2ToCrv,
|
|
cf,
|
|
cl,
|
|
aGap1,
|
|
GeomConvert_Target,
|
|
GeomAbs_Circle);
|
|
Handle(Geom_Curve) Crv2 = GeomConvert_CurveToAnaCurve::ComputeCurve(IsoCrv2,
|
|
toler,
|
|
aParam1ToCrv,
|
|
aParam2ToCrv,
|
|
cf,
|
|
cl,
|
|
aGap2,
|
|
GeomConvert_Target,
|
|
GeomAbs_Circle);
|
|
if (Crv1.IsNull() || Crv2.IsNull() || !Crv1->IsKind(STANDARD_TYPE(Geom_Circle))
|
|
|| !Crv2->IsKind(STANDARD_TYPE(Geom_Circle)))
|
|
return newSurface;
|
|
|
|
Handle(Geom_Circle) aCircle1 = Handle(Geom_Circle)::DownCast(Crv1);
|
|
Handle(Geom_Circle) aCircle2 = Handle(Geom_Circle)::DownCast(Crv2);
|
|
Standard_Real R1 = aCircle1->Circ().Radius();
|
|
Standard_Real R2 = aCircle2->Circ().Radius();
|
|
|
|
// check radiuses
|
|
if ((Abs(R - R1) > toler) || (Abs(R - R2) > toler))
|
|
return newSurface;
|
|
|
|
// get centers of the major radius
|
|
gp_Pnt aPnt1, aPnt2, aPnt3;
|
|
aPnt1 = circle->Circ().Location();
|
|
aPnt2 = aCircle1->Circ().Location();
|
|
aPnt3 = aCircle2->Circ().Location();
|
|
|
|
// Standard_Real eps = 1.e-09; // angular resolution
|
|
Standard_Real d0 = aPnt1.Distance(aPnt2);
|
|
Standard_Real d1 = aPnt1.Distance(aPnt3);
|
|
gp_Circ circ;
|
|
|
|
if (d0 < toler || d1 < toler)
|
|
{
|
|
// compute sphere
|
|
gp_Dir MainDir = otherCircle->Circ().Axis().Direction();
|
|
gp_Ax3 Axes(circle->Circ().Location(), MainDir);
|
|
Handle(Geom_SphericalSurface) anObject = new Geom_SphericalSurface(Axes, R);
|
|
if (!anObject.IsNull())
|
|
newSurface = anObject;
|
|
|
|
return newSurface;
|
|
}
|
|
|
|
if (!GeomConvert_CurveToAnaCurve::GetCircle(circ, aPnt1, aPnt2, aPnt3) /*, d0, d1, eps)*/)
|
|
return newSurface;
|
|
|
|
Standard_Real aMajorR = circ.Radius();
|
|
gp_Pnt aCenter = circ.Location();
|
|
gp_Dir aDir((aPnt1.XYZ() - aCenter.XYZ()) ^ (aPnt3.XYZ() - aCenter.XYZ()));
|
|
gp_Ax3 anAx3(aCenter, aDir);
|
|
newSurface = new Geom_ToroidalSurface(anAx3, aMajorR, R);
|
|
return newSurface;
|
|
}
|
|
|
|
//=================================================================================================
|
|
|
|
Standard_Real GeomConvert_SurfToAnaSurf::ComputeGap(const Handle(Geom_Surface)& theSurf,
|
|
const Standard_Real theU1,
|
|
const Standard_Real theU2,
|
|
const Standard_Real theV1,
|
|
const Standard_Real theV2,
|
|
const Handle(Geom_Surface)& theNewSurf,
|
|
const Standard_Real theTol)
|
|
{
|
|
GeomAdaptor_Surface aGAS(theNewSurf);
|
|
GeomAbs_SurfaceType aSType = aGAS.GetType();
|
|
gp_Pln aPln;
|
|
gp_Cylinder aCyl;
|
|
gp_Cone aCon;
|
|
gp_Sphere aSphere;
|
|
gp_Torus aTor;
|
|
switch (aSType)
|
|
{
|
|
case GeomAbs_Plane:
|
|
aPln = aGAS.Plane();
|
|
break;
|
|
case GeomAbs_Cylinder:
|
|
aCyl = aGAS.Cylinder();
|
|
break;
|
|
case GeomAbs_Cone:
|
|
aCon = aGAS.Cone();
|
|
break;
|
|
case GeomAbs_Sphere:
|
|
aSphere = aGAS.Sphere();
|
|
break;
|
|
case GeomAbs_Torus:
|
|
aTor = aGAS.Torus();
|
|
break;
|
|
default:
|
|
return Precision::Infinite();
|
|
break;
|
|
}
|
|
|
|
Standard_Real aGap = 0.;
|
|
Standard_Boolean onSurface = Standard_True;
|
|
|
|
Standard_Real S, T;
|
|
gp_Pnt P3d, P3d2;
|
|
|
|
const Standard_Integer NP = 21;
|
|
Standard_Real DU, DV;
|
|
Standard_Integer j, i;
|
|
DU = (theU2 - theU1) / (NP - 1);
|
|
DV = (theV2 - theV1) / (NP - 1);
|
|
Standard_Real DU2 = DU / 2., DV2 = DV / 2.;
|
|
for (j = 1; (j < NP) && onSurface; j++)
|
|
{
|
|
Standard_Real V = theV1 + DV * (j - 1) + DV2;
|
|
for (i = 1; i < NP; i++)
|
|
{
|
|
Standard_Real U = theU1 + DU * (i - 1) + DU2;
|
|
theSurf->D0(U, V, P3d);
|
|
|
|
switch (aSType)
|
|
{
|
|
|
|
case GeomAbs_Plane: {
|
|
ElSLib::Parameters(aPln, P3d, S, T);
|
|
P3d2 = ElSLib::Value(S, T, aPln);
|
|
break;
|
|
}
|
|
case GeomAbs_Cylinder: {
|
|
ElSLib::Parameters(aCyl, P3d, S, T);
|
|
P3d2 = ElSLib::Value(S, T, aCyl);
|
|
break;
|
|
}
|
|
case GeomAbs_Cone: {
|
|
ElSLib::Parameters(aCon, P3d, S, T);
|
|
P3d2 = ElSLib::Value(S, T, aCon);
|
|
break;
|
|
}
|
|
case GeomAbs_Sphere: {
|
|
ElSLib::Parameters(aSphere, P3d, S, T);
|
|
P3d2 = ElSLib::Value(S, T, aSphere);
|
|
break;
|
|
}
|
|
case GeomAbs_Torus: {
|
|
ElSLib::Parameters(aTor, P3d, S, T);
|
|
P3d2 = ElSLib::Value(S, T, aTor);
|
|
break;
|
|
}
|
|
default:
|
|
S = 0.;
|
|
T = 0.;
|
|
theNewSurf->D0(S, T, P3d2);
|
|
break;
|
|
}
|
|
|
|
Standard_Real dis = P3d.Distance(P3d2);
|
|
if (dis > aGap)
|
|
aGap = dis;
|
|
|
|
if (aGap > theTol)
|
|
{
|
|
onSurface = Standard_False;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
return aGap;
|
|
}
|
|
|
|
//=================================================================================================
|
|
|
|
GeomConvert_SurfToAnaSurf::GeomConvert_SurfToAnaSurf()
|
|
: myGap(-1.),
|
|
myConvType(GeomConvert_Simplest),
|
|
myTarget(GeomAbs_Plane)
|
|
{
|
|
}
|
|
|
|
//=================================================================================================
|
|
|
|
GeomConvert_SurfToAnaSurf::GeomConvert_SurfToAnaSurf(const Handle(Geom_Surface)& S)
|
|
: myGap(-1.),
|
|
myConvType(GeomConvert_Simplest),
|
|
myTarget(GeomAbs_Plane)
|
|
{
|
|
Init(S);
|
|
}
|
|
|
|
//=================================================================================================
|
|
|
|
void GeomConvert_SurfToAnaSurf::Init(const Handle(Geom_Surface)& S)
|
|
{
|
|
mySurf = S;
|
|
}
|
|
|
|
//=================================================================================================
|
|
|
|
Handle(Geom_Surface) GeomConvert_SurfToAnaSurf::ConvertToAnalytical(
|
|
const Standard_Real InitialToler)
|
|
{
|
|
Standard_Real U1, U2, V1, V2;
|
|
mySurf->Bounds(U1, U2, V1, V2);
|
|
if (Precision::IsInfinite(U1) && Precision::IsInfinite(U2))
|
|
{
|
|
U1 = -1.;
|
|
U2 = 1.;
|
|
}
|
|
if (Precision::IsInfinite(V1) && Precision::IsInfinite(V2))
|
|
{
|
|
V1 = -1.;
|
|
V2 = 1.;
|
|
Handle(Geom_SurfaceOfRevolution) aRevSurf = Handle(Geom_SurfaceOfRevolution)::DownCast(mySurf);
|
|
if (!aRevSurf.IsNull())
|
|
{
|
|
CheckVTrimForRevSurf(aRevSurf, V1, V2);
|
|
}
|
|
}
|
|
return ConvertToAnalytical(InitialToler, U1, U2, V1, V2);
|
|
}
|
|
|
|
//=================================================================================================
|
|
|
|
Handle(Geom_Surface) GeomConvert_SurfToAnaSurf::ConvertToAnalytical(
|
|
const Standard_Real InitialToler,
|
|
const Standard_Real Umin,
|
|
const Standard_Real Umax,
|
|
const Standard_Real Vmin,
|
|
const Standard_Real Vmax)
|
|
{
|
|
//
|
|
GeomAdaptor_Surface aGAS(mySurf);
|
|
GeomAbs_SurfaceType aSType = aGAS.GetType();
|
|
switch (aSType)
|
|
{
|
|
case GeomAbs_Plane: {
|
|
myGap = 0.;
|
|
return new Geom_Plane(aGAS.Plane());
|
|
}
|
|
case GeomAbs_Cylinder: {
|
|
myGap = 0.;
|
|
return new Geom_CylindricalSurface(aGAS.Cylinder());
|
|
}
|
|
case GeomAbs_Cone: {
|
|
myGap = 0.;
|
|
return new Geom_ConicalSurface(aGAS.Cone());
|
|
}
|
|
case GeomAbs_Sphere: {
|
|
myGap = 0.;
|
|
return new Geom_SphericalSurface(aGAS.Sphere());
|
|
}
|
|
case GeomAbs_Torus: {
|
|
myGap = 0.;
|
|
return new Geom_ToroidalSurface(aGAS.Torus());
|
|
}
|
|
default:
|
|
break;
|
|
}
|
|
//
|
|
Standard_Real toler = InitialToler;
|
|
Handle(Geom_Surface) newSurf[5];
|
|
Standard_Real dd[5] = {RealLast(), RealLast(), RealLast(), RealLast(), RealLast()};
|
|
GeomAbs_SurfaceType aSTypes[5] = {GeomAbs_Plane,
|
|
GeomAbs_Cylinder,
|
|
GeomAbs_Cone,
|
|
GeomAbs_Sphere,
|
|
GeomAbs_Torus};
|
|
|
|
// Check boundaries
|
|
Standard_Real U1, U2, V1, V2;
|
|
mySurf->Bounds(U1, U2, V1, V2);
|
|
Standard_Boolean aDoSegment = Standard_False;
|
|
constexpr Standard_Real aTolBnd = Precision::PConfusion();
|
|
Standard_Integer isurf = 0;
|
|
if (Umin < U1 || Umax > U2 || Vmin < V1 || Vmax > V2)
|
|
{
|
|
return newSurf[isurf];
|
|
}
|
|
else
|
|
{
|
|
if (Umin - U1 > aTolBnd)
|
|
{
|
|
U1 = Umin;
|
|
aDoSegment = Standard_True;
|
|
}
|
|
if (U2 - Umax > aTolBnd)
|
|
{
|
|
U2 = Umax;
|
|
aDoSegment = Standard_True;
|
|
}
|
|
if (Vmin - V1 > aTolBnd)
|
|
{
|
|
V1 = Vmin;
|
|
aDoSegment = Standard_True;
|
|
}
|
|
if (V2 - Vmax > aTolBnd)
|
|
{
|
|
V2 = Vmax;
|
|
aDoSegment = Standard_True;
|
|
}
|
|
}
|
|
|
|
Standard_Boolean IsBz = aSType == GeomAbs_BezierSurface;
|
|
Standard_Boolean IsBs = aSType == GeomAbs_BSplineSurface;
|
|
|
|
Handle(Geom_Surface) aTempS = mySurf;
|
|
if (IsBs)
|
|
{
|
|
Handle(Geom_BSplineSurface) aBs = Handle(Geom_BSplineSurface)::DownCast(mySurf->Copy());
|
|
if (aDoSegment)
|
|
{
|
|
aBs->Segment(U1, U2, V1, V2);
|
|
}
|
|
aTempS = aBs;
|
|
}
|
|
else if (IsBz)
|
|
{
|
|
Handle(Geom_BezierSurface) aBz = Handle(Geom_BezierSurface)::DownCast(mySurf->Copy());
|
|
if (aDoSegment)
|
|
{
|
|
aBz->Segment(U1, U2, V1, V2);
|
|
}
|
|
aTempS = aBz;
|
|
}
|
|
// check the planarity first
|
|
if (!IsBs && !IsBz)
|
|
{
|
|
aTempS = new Geom_RectangularTrimmedSurface(aTempS, U1, U2, V1, V2);
|
|
}
|
|
isurf = 0; // set plane
|
|
GeomLib_IsPlanarSurface GeomIsPlanar(aTempS, toler);
|
|
if (GeomIsPlanar.IsPlanar())
|
|
{
|
|
gp_Pln newPln = GeomIsPlanar.Plan();
|
|
newSurf[isurf] = new Geom_Plane(newPln);
|
|
dd[isurf] = ComputeGap(aTempS, U1, U2, V1, V2, newSurf[isurf]);
|
|
if (myConvType == GeomConvert_Simplest
|
|
|| (myConvType == GeomConvert_Target && myTarget == GeomAbs_Plane))
|
|
{
|
|
myGap = dd[isurf];
|
|
return newSurf[isurf];
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if (myConvType == GeomConvert_Target && myTarget == GeomAbs_Plane)
|
|
{
|
|
myGap = dd[isurf];
|
|
return newSurf[isurf];
|
|
}
|
|
}
|
|
|
|
Standard_Real diagonal = mySurf->Value(U1, V1).Distance(mySurf->Value((U1 + U2), (V1 + V2) / 2));
|
|
Standard_Real twist = 1000;
|
|
if (toler > diagonal / twist)
|
|
toler = diagonal / twist;
|
|
|
|
isurf = 1; // set cylinder
|
|
Standard_Boolean aCylinderConus = Standard_False;
|
|
Standard_Boolean aToroidSphere = Standard_False;
|
|
|
|
// convert middle uiso and viso to canonical representation
|
|
Standard_Real VMid = 0.5 * (V1 + V2);
|
|
Standard_Real UMid = 0.5 * (U1 + U2);
|
|
// Handle(Geom_Surface) TrSurf = aTempS;
|
|
|
|
Handle(Geom_Curve) UIso = aTempS->UIso(UMid);
|
|
Handle(Geom_Curve) VIso = aTempS->VIso(VMid);
|
|
|
|
Standard_Real cuf, cul, cvf, cvl, aGap1, aGap2;
|
|
Standard_Boolean aLineIso = Standard_False;
|
|
Handle(Geom_Curve) umidiso = GeomConvert_CurveToAnaCurve::ComputeCurve(UIso,
|
|
toler,
|
|
V1,
|
|
V2,
|
|
cuf,
|
|
cul,
|
|
aGap1,
|
|
GeomConvert_Simplest);
|
|
if (!umidiso.IsNull())
|
|
{
|
|
aLineIso = umidiso->IsKind(STANDARD_TYPE(Geom_Line));
|
|
}
|
|
Handle(Geom_Curve) vmidiso = GeomConvert_CurveToAnaCurve::ComputeCurve(VIso,
|
|
toler,
|
|
U1,
|
|
U2,
|
|
cvf,
|
|
cvl,
|
|
aGap2,
|
|
GeomConvert_Simplest);
|
|
if (!vmidiso.IsNull() && !aLineIso)
|
|
{
|
|
aLineIso = vmidiso->IsKind(STANDARD_TYPE(Geom_Line));
|
|
}
|
|
if (!umidiso.IsNull() && !vmidiso.IsNull())
|
|
{
|
|
//
|
|
Standard_Boolean VCase = Standard_False;
|
|
|
|
if (umidiso->IsKind(STANDARD_TYPE(Geom_Circle)) && vmidiso->IsKind(STANDARD_TYPE(Geom_Circle)))
|
|
{
|
|
aToroidSphere = Standard_True;
|
|
if (myConvType == GeomConvert_Target
|
|
&& (myTarget == GeomAbs_Cylinder || myTarget == GeomAbs_Cone))
|
|
{
|
|
isurf = 1;
|
|
myGap = dd[isurf];
|
|
return newSurf[isurf];
|
|
}
|
|
isurf = 3; // set sphere
|
|
}
|
|
else if (umidiso->IsKind(STANDARD_TYPE(Geom_Line))
|
|
&& vmidiso->IsKind(STANDARD_TYPE(Geom_Circle)))
|
|
{
|
|
aCylinderConus = Standard_True;
|
|
VCase = Standard_True;
|
|
if (myConvType == GeomConvert_Target
|
|
&& (myTarget == GeomAbs_Sphere || myTarget == GeomAbs_Torus))
|
|
{
|
|
isurf = 3;
|
|
myGap = dd[isurf];
|
|
return newSurf[isurf];
|
|
}
|
|
isurf = 1; // set cylinder
|
|
}
|
|
else if (umidiso->IsKind(STANDARD_TYPE(Geom_Circle))
|
|
&& vmidiso->IsKind(STANDARD_TYPE(Geom_Line)))
|
|
{
|
|
aCylinderConus = Standard_True;
|
|
if (myConvType == GeomConvert_Target
|
|
&& (myTarget == GeomAbs_Sphere || myTarget == GeomAbs_Torus))
|
|
{
|
|
isurf = 3;
|
|
myGap = dd[isurf];
|
|
return newSurf[isurf];
|
|
}
|
|
isurf = 1; // set cylinder
|
|
}
|
|
|
|
// case of torus-sphere
|
|
if (aToroidSphere)
|
|
{
|
|
|
|
isurf = 3; // Set spherical surface
|
|
|
|
Handle(Geom_Circle) Ucircle = Handle(Geom_Circle)::DownCast(umidiso);
|
|
Handle(Geom_Circle) Vcircle = Handle(Geom_Circle)::DownCast(vmidiso);
|
|
// torus
|
|
// try when V isolines is with same radius
|
|
Handle(Geom_Surface) anObject =
|
|
TryTorusSphere(mySurf, Vcircle, Ucircle, V1, V2, U1, U2, toler, Standard_True);
|
|
if (anObject.IsNull()) // try when U isolines is with same radius
|
|
anObject = TryTorusSphere(mySurf, Ucircle, Vcircle, U1, U2, V1, V2, toler, Standard_False);
|
|
|
|
if (!anObject.IsNull())
|
|
{
|
|
if (anObject->IsKind(STANDARD_TYPE(Geom_ToroidalSurface)))
|
|
{
|
|
isurf = 4; // set torus
|
|
}
|
|
newSurf[isurf] = anObject;
|
|
if (myConvType == GeomConvert_Target && (myTarget != aSTypes[isurf]))
|
|
{
|
|
myGap = RealLast();
|
|
return NULL;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
myGap = dd[isurf];
|
|
}
|
|
}
|
|
// case of cone - cylinder
|
|
else if (aCylinderConus)
|
|
{
|
|
isurf = 1; // set cylindrical surface
|
|
Handle(Geom_Surface) anObject =
|
|
TryCylinerCone(aTempS, VCase, umidiso, vmidiso, U1, U2, V1, V2, toler);
|
|
if (!anObject.IsNull())
|
|
{
|
|
if (anObject->IsKind(STANDARD_TYPE(Geom_ConicalSurface)))
|
|
{
|
|
isurf = 2; // set conical surface
|
|
}
|
|
if (myConvType == GeomConvert_Target && (myTarget != aSTypes[isurf]))
|
|
{
|
|
myGap = RealLast();
|
|
return NULL;
|
|
}
|
|
newSurf[isurf] = anObject;
|
|
}
|
|
else
|
|
{
|
|
aCylinderConus = Standard_False;
|
|
myGap = dd[isurf];
|
|
}
|
|
}
|
|
}
|
|
// Additional checking for case of cylinder
|
|
if (!aCylinderConus && !aToroidSphere && aLineIso)
|
|
{
|
|
// Try cylinder using Gauss field
|
|
Standard_Integer aNbU = 7, aNbV = 7;
|
|
Standard_Boolean aLeastSquare = Standard_True;
|
|
Handle(Geom_Surface) anObject =
|
|
TryCylinderByGaussField(aTempS, U1, U2, V1, V2, toler, aNbU, aNbV, aLeastSquare);
|
|
if (!anObject.IsNull())
|
|
{
|
|
isurf = 1;
|
|
newSurf[isurf] = anObject;
|
|
}
|
|
}
|
|
|
|
//
|
|
//---------------------------------------------------------------------
|
|
// verification
|
|
//---------------------------------------------------------------------
|
|
Standard_Integer imin = -1;
|
|
Standard_Real aDmin = RealLast();
|
|
for (isurf = 0; isurf < 5; ++isurf)
|
|
{
|
|
if (newSurf[isurf].IsNull())
|
|
continue;
|
|
dd[isurf] = ComputeGap(aTempS, U1, U2, V1, V2, newSurf[isurf], toler);
|
|
if (dd[isurf] <= toler)
|
|
{
|
|
if (myConvType == GeomConvert_Simplest
|
|
|| (myConvType == GeomConvert_Target && myTarget == aSTypes[isurf]))
|
|
{
|
|
myGap = dd[isurf];
|
|
return newSurf[isurf];
|
|
}
|
|
else if (myConvType == GeomConvert_MinGap)
|
|
{
|
|
if (dd[isurf] < aDmin)
|
|
{
|
|
aDmin = dd[isurf];
|
|
imin = isurf;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
//
|
|
if (imin >= 0)
|
|
{
|
|
myGap = dd[imin];
|
|
return newSurf[imin];
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
//=================================================================================================
|
|
|
|
Standard_Boolean GeomConvert_SurfToAnaSurf::IsSame(const Handle(Geom_Surface)& S1,
|
|
const Handle(Geom_Surface)& S2,
|
|
const Standard_Real tol)
|
|
{
|
|
// only elementary surfaces are processed
|
|
if (!S1->IsKind(STANDARD_TYPE(Geom_ElementarySurface))
|
|
|| !S2->IsKind(STANDARD_TYPE(Geom_ElementarySurface)))
|
|
return Standard_False;
|
|
|
|
Handle(GeomAdaptor_Surface) anAdaptor1 = new GeomAdaptor_Surface(S1);
|
|
Handle(GeomAdaptor_Surface) anAdaptor2 = new GeomAdaptor_Surface(S2);
|
|
|
|
GeomAbs_SurfaceType aST1 = anAdaptor1->GetType();
|
|
GeomAbs_SurfaceType aST2 = anAdaptor2->GetType();
|
|
|
|
if (aST1 != aST2)
|
|
{
|
|
return Standard_False;
|
|
}
|
|
|
|
IntAna_QuadQuadGeo interii;
|
|
if (aST1 == GeomAbs_Plane)
|
|
{
|
|
interii.Perform(anAdaptor1->Plane(), anAdaptor2->Plane(), tol, tol);
|
|
}
|
|
else if (aST1 == GeomAbs_Cylinder)
|
|
{
|
|
interii.Perform(anAdaptor1->Cylinder(), anAdaptor2->Cylinder(), tol);
|
|
}
|
|
else if (aST1 == GeomAbs_Cone)
|
|
{
|
|
interii.Perform(anAdaptor1->Cone(), anAdaptor2->Cone(), tol);
|
|
}
|
|
else if (aST1 == GeomAbs_Sphere)
|
|
{
|
|
interii.Perform(anAdaptor1->Sphere(), anAdaptor2->Sphere(), tol);
|
|
}
|
|
else if (aST1 == GeomAbs_Torus)
|
|
{
|
|
interii.Perform(anAdaptor1->Torus(), anAdaptor2->Torus(), tol);
|
|
}
|
|
|
|
if (!interii.IsDone())
|
|
return Standard_False;
|
|
|
|
IntAna_ResultType aTypeRes = interii.TypeInter();
|
|
|
|
return aTypeRes == IntAna_Same;
|
|
}
|
|
|
|
//=================================================================================================
|
|
|
|
Standard_Boolean GeomConvert_SurfToAnaSurf::IsCanonical(const Handle(Geom_Surface)& S)
|
|
{
|
|
if (S.IsNull())
|
|
return Standard_False;
|
|
|
|
if (S->IsKind(STANDARD_TYPE(Geom_Plane)) || S->IsKind(STANDARD_TYPE(Geom_CylindricalSurface))
|
|
|| S->IsKind(STANDARD_TYPE(Geom_ConicalSurface))
|
|
|| S->IsKind(STANDARD_TYPE(Geom_SphericalSurface))
|
|
|| S->IsKind(STANDARD_TYPE(Geom_ToroidalSurface)))
|
|
return Standard_True;
|
|
|
|
return Standard_False;
|
|
}
|