1
0
mirror of https://git.dev.opencascade.org/repos/occt.git synced 2025-04-09 18:50:54 +03:00
occt/src/GeomConvert/GeomConvert_SurfToAnaSurf.cxx
dpasukhi a5a7b3185b Coding - Apply .clang-format formatting #286
Update empty method guards to new style with regex (see PR).
Used clang-format 18.1.8.
New actions to validate code formatting is added.
Update .clang-format with disabling of include sorting.
  It is temporary changes, then include will be sorted.
Apply formatting for /src and /tools folder.
The files with .hxx,.cxx,.lxx,.h,.pxx,.hpp,*.cpp extensions.
2025-01-26 00:43:57 +00:00

1168 lines
37 KiB
C++

// Created: 1998-06-03
//
// Copyright (c) 1999-2013 OPEN CASCADE SAS
//
// This file is part of commercial software by OPEN CASCADE SAS,
// furnished in accordance with the terms and conditions of the contract
// and with the inclusion of this copyright notice.
// This file or any part thereof may not be provided or otherwise
// made available to any third party.
//
// No ownership title to the software is transferred hereby.
//
// OPEN CASCADE SAS makes no representation or warranties with respect to the
// performance of this software, and specifically disclaims any responsibility
// for any damages, special or consequential, connected with its use.
// abv 06.01.99 fix of misprint
//: p6 abv 26.02.99: make ConvertToPeriodic() return Null if nothing done
#include <ElSLib.hxx>
#include <Geom_RectangularTrimmedSurface.hxx>
#include <Geom_BezierSurface.hxx>
#include <Geom_BSplineSurface.hxx>
#include <Geom_Circle.hxx>
#include <Geom_ConicalSurface.hxx>
#include <Geom_Curve.hxx>
#include <Geom_CylindricalSurface.hxx>
#include <Geom_Line.hxx>
#include <Geom_Plane.hxx>
#include <Geom_SphericalSurface.hxx>
#include <Geom_Surface.hxx>
#include <Geom_SurfaceOfRevolution.hxx>
#include <Geom_ToroidalSurface.hxx>
#include <Geom_TrimmedCurve.hxx>
#include <GeomAdaptor_Surface.hxx>
#include <GeomAdaptor_Surface.hxx>
#include <GeomLib_IsPlanarSurface.hxx>
#include <gp_Ax3.hxx>
#include <gp_Circ.hxx>
#include <gp_Dir.hxx>
#include <gp_Pln.hxx>
#include <gp_Vec.hxx>
#include <IntAna_QuadQuadGeo.hxx>
#include <GeomConvert_CurveToAnaCurve.hxx>
#include <GeomConvert_SurfToAnaSurf.hxx>
#include <TColgp_Array1OfPnt.hxx>
#include <TColStd_Array1OfReal.hxx>
#include <Extrema_ExtElC.hxx>
#include <GeomLProp_SLProps.hxx>
#include <TColgp_HArray1OfXYZ.hxx>
#include <math_Vector.hxx>
#include <math_PSO.hxx>
#include <math_Powell.hxx>
#include <GeomConvert_FuncCylinderLSDist.hxx>
//=======================================================================
// function : CheckVTrimForRevSurf
// purpose :
// static method for checking surface of revolution
// To avoid two-parts cone-like surface
//=======================================================================
void GeomConvert_SurfToAnaSurf::CheckVTrimForRevSurf(
const Handle(Geom_SurfaceOfRevolution)& aRevSurf,
Standard_Real& V1,
Standard_Real& V2)
{
const Handle(Geom_Curve)& aBC = aRevSurf->BasisCurve();
Handle(Geom_Line) aLine = Handle(Geom_Line)::DownCast(aBC);
if (aLine.IsNull())
return;
const gp_Ax1& anAxis = aRevSurf->Axis();
gp_Lin anALin(anAxis);
Extrema_ExtElC anExtLL(aLine->Lin(), anALin, Precision::Angular());
if (!anExtLL.IsDone() || anExtLL.IsParallel())
return;
Standard_Integer aNbExt = anExtLL.NbExt();
if (aNbExt == 0)
return;
Standard_Integer i;
Standard_Integer imin = 0;
for (i = 1; i <= aNbExt; ++i)
{
if (anExtLL.SquareDistance(i) < Precision::SquareConfusion())
{
imin = i;
break;
}
}
if (imin == 0)
return;
Extrema_POnCurv aP1, aP2;
anExtLL.Points(imin, aP1, aP2);
Standard_Real aVExt = aP1.Parameter();
if (aVExt <= V1 || aVExt >= V2)
return;
if (aVExt - V1 > V2 - aVExt)
{
V2 = aVExt;
}
else
{
V1 = aVExt;
}
}
//=======================================================================
// function : TryCylinderCone
// purpose :
// static method to try create cylindrical or conical surface
//=======================================================================
Handle(Geom_Surface) GeomConvert_SurfToAnaSurf::TryCylinerCone(const Handle(Geom_Surface)& theSurf,
const Standard_Boolean theVCase,
const Handle(Geom_Curve)& theUmidiso,
const Handle(Geom_Curve)& theVmidiso,
const Standard_Real theU1,
const Standard_Real theU2,
const Standard_Real theV1,
const Standard_Real theV2,
const Standard_Real theToler)
{
Handle(Geom_Surface) aNewSurf;
Standard_Real param1, param2, cf1, cf2, cl1, cl2, aGap1, aGap2;
Handle(Geom_Curve) firstiso, lastiso;
Handle(Geom_Circle) firstisocirc, lastisocirc, midisocirc;
gp_Dir isoline;
if (theVCase)
{
param1 = theU1;
param2 = theU2;
firstiso = theSurf->VIso(theV1);
lastiso = theSurf->VIso(theV2);
midisocirc = Handle(Geom_Circle)::DownCast(theVmidiso);
isoline = Handle(Geom_Line)::DownCast(theUmidiso)->Lin().Direction();
}
else
{
param1 = theV1;
param2 = theV2;
firstiso = theSurf->UIso(theU1);
lastiso = theSurf->UIso(theU2);
midisocirc = Handle(Geom_Circle)::DownCast(theUmidiso);
isoline = Handle(Geom_Line)::DownCast(theVmidiso)->Lin().Direction();
}
firstisocirc =
Handle(Geom_Circle)::DownCast(GeomConvert_CurveToAnaCurve::ComputeCurve(firstiso,
theToler,
param1,
param2,
cf1,
cl1,
aGap1,
GeomConvert_Target,
GeomAbs_Circle));
lastisocirc =
Handle(Geom_Circle)::DownCast(GeomConvert_CurveToAnaCurve::ComputeCurve(lastiso,
theToler,
param1,
param2,
cf2,
cl2,
aGap2,
GeomConvert_Target,
GeomAbs_Circle));
if (!firstisocirc.IsNull() || !lastisocirc.IsNull())
{
Standard_Real R1, R2, R3;
gp_Pnt P1, P2, P3;
if (!firstisocirc.IsNull())
{
R1 = firstisocirc->Circ().Radius();
P1 = firstisocirc->Circ().Location();
}
else
{
R1 = 0;
P1 = firstiso->Value((firstiso->LastParameter() - firstiso->FirstParameter()) / 2);
}
R2 = midisocirc->Circ().Radius();
P2 = midisocirc->Circ().Location();
if (!lastisocirc.IsNull())
{
R3 = lastisocirc->Circ().Radius();
P3 = lastisocirc->Circ().Location();
}
else
{
R3 = 0;
P3 = lastiso->Value((lastiso->LastParameter() - lastiso->FirstParameter()) / 2);
}
// cylinder
if (((Abs(R2 - R1)) < theToler) && ((Abs(R3 - R1)) < theToler) && ((Abs(R3 - R2)) < theToler))
{
gp_Ax3 Axes(P1, gp_Dir(gp_Vec(P1, P3)));
aNewSurf = new Geom_CylindricalSurface(Axes, R1);
}
// cone
else if ((((Abs(R1)) > (Abs(R2))) && ((Abs(R2)) > (Abs(R3))))
|| (((Abs(R3)) > (Abs(R2))) && ((Abs(R2)) > (Abs(R1)))))
{
Standard_Real radius;
gp_Ax3 Axes;
Standard_Real semiangle = gp_Vec(isoline).Angle(gp_Vec(P3, P1));
if (semiangle > M_PI / 2)
semiangle = M_PI - semiangle;
if (R1 > R3)
{
radius = R3;
Axes = gp_Ax3(P3, gp_Dir(gp_Vec(P3, P1)));
}
else
{
radius = R1;
Axes = gp_Ax3(P1, gp_Dir(gp_Vec(P1, P3)));
}
aNewSurf = new Geom_ConicalSurface(Axes, semiangle, radius);
}
}
return aNewSurf;
}
//=======================================================================
// function : GetCylByLS
// purpose :
// static method to create cylinrical surface using least square method
//=======================================================================
static void GetLSGap(const Handle(TColgp_HArray1OfXYZ)& thePoints,
const gp_Ax3& thePos,
const Standard_Real theR,
Standard_Real& theGap)
{
theGap = 0.;
Standard_Integer i;
gp_XYZ aLoc = thePos.Location().XYZ();
gp_Dir aDir = thePos.Direction();
for (i = thePoints->Lower(); i <= thePoints->Upper(); ++i)
{
gp_Vec aD(thePoints->Value(i) - aLoc);
aD.Cross(aDir);
theGap = Max(theGap, Abs((aD.Magnitude() - theR)));
}
}
Standard_Boolean GeomConvert_SurfToAnaSurf::GetCylByLS(const Handle(TColgp_HArray1OfXYZ)& thePoints,
const Standard_Real theTol,
gp_Ax3& thePos,
Standard_Real& theR,
Standard_Real& theGap)
{
GetLSGap(thePoints, thePos, theR, theGap);
if (theGap <= Precision::Confusion())
{
return Standard_True;
}
Standard_Integer i;
Standard_Integer aNbVar = 4;
math_Vector aFBnd(1, aNbVar), aLBnd(1, aNbVar), aStartPoint(1, aNbVar);
Standard_Real aRelDev = 0.2; // Customer can set parameters of sample surface
// with relative precision about aRelDev.
// For example, if radius of sample surface is R,
// it means, that "exact" value is in interav
//[R - aRelDev*R, R + aRelDev*R]. This interval is set
// for R as boundary values for optimization algo.
aStartPoint(1) = thePos.Location().X();
aStartPoint(2) = thePos.Location().Y();
aStartPoint(3) = thePos.Location().Z();
aStartPoint(4) = theR;
Standard_Real aDR = aRelDev * theR;
Standard_Real aDXYZ = aDR;
for (i = 1; i <= 3; ++i)
{
aFBnd(i) = aStartPoint(i) - aDXYZ;
aLBnd(i) = aStartPoint(i) + aDXYZ;
}
aFBnd(4) = aStartPoint(4) - aDR;
aLBnd(4) = aStartPoint(4) + aDR;
//
constexpr Standard_Real aTol = Precision::Confusion();
math_MultipleVarFunction* aPFunc;
GeomConvert_FuncCylinderLSDist aFuncCyl(thePoints, thePos.Direction());
aPFunc = (math_MultipleVarFunction*)&aFuncCyl;
//
math_Vector aSteps(1, aNbVar);
Standard_Integer aNbInt = 10;
for (i = 1; i <= aNbVar; ++i)
{
aSteps(i) = (aLBnd(i) - aFBnd(i)) / aNbInt;
}
math_PSO aGlobSolver(aPFunc, aFBnd, aLBnd, aSteps);
Standard_Real aLSDist;
aGlobSolver.Perform(aSteps, aLSDist, aStartPoint);
//
gp_Pnt aLoc(aStartPoint(1), aStartPoint(2), aStartPoint(3));
thePos.SetLocation(aLoc);
theR = aStartPoint(4);
GetLSGap(thePoints, thePos, theR, theGap);
if (theGap <= aTol)
{
return Standard_True;
}
//
math_Matrix aDirMatrix(1, aNbVar, 1, aNbVar, 0.0);
for (i = 1; i <= aNbVar; i++)
aDirMatrix(i, i) = 1.0;
// Set search direction for location to be perpendicular to axis to avoid
// searching along axis
const gp_Dir aDir = thePos.Direction();
gp_Pln aPln(thePos.Location(), aDir);
gp_Dir aUDir = aPln.Position().XDirection();
gp_Dir aVDir = aPln.Position().YDirection();
for (i = 1; i <= 3; ++i)
{
aDirMatrix(i, 1) = aUDir.Coord(i);
aDirMatrix(i, 2) = aVDir.Coord(i);
gp_Dir aUVDir(aUDir.XYZ() + aVDir.XYZ());
aDirMatrix(i, 3) = aUVDir.Coord(i);
}
math_Powell aSolver(*aPFunc, aTol);
aSolver.Perform(*aPFunc, aStartPoint, aDirMatrix);
if (aSolver.IsDone())
{
gp_Ax3 aPos2 = thePos;
aSolver.Location(aStartPoint);
aLoc.SetCoord(aStartPoint(1), aStartPoint(2), aStartPoint(3));
aPos2.SetLocation(aLoc);
Standard_Real anR2 = aStartPoint(4), aGap2 = 0.;
//
GetLSGap(thePoints, aPos2, anR2, aGap2);
//
if (aGap2 < theGap)
{
theGap = aGap2;
thePos = aPos2;
theR = anR2;
}
}
if (theGap <= theTol)
{
return Standard_True;
}
return Standard_False;
}
//=======================================================================
// function : TryCylinderByGaussField
// purpose :
// static method to try create cylinrical surface based on its Gauss field
//=======================================================================
Handle(Geom_Surface) GeomConvert_SurfToAnaSurf::TryCylinderByGaussField(
const Handle(Geom_Surface)& theSurf,
const Standard_Real theU1,
const Standard_Real theU2,
const Standard_Real theV1,
const Standard_Real theV2,
const Standard_Real theToler,
const Standard_Integer theNbU,
const Standard_Integer theNbV,
const Standard_Boolean theLeastSquare)
{
Handle(Geom_Surface) aNewSurf;
Standard_Real du = (theU2 - theU1) / theNbU, dv = (theV2 - theV1) / theNbV;
Standard_Real aSigmaR = 0.;
Standard_Real aTol = 1.e3 * theToler;
TColStd_Array1OfReal anRs(1, theNbU * theNbV);
Handle(TColgp_HArray1OfXYZ) aPoints;
if (theLeastSquare)
{
aPoints = new TColgp_HArray1OfXYZ(1, theNbU * theNbU);
}
//
GeomLProp_SLProps aProps(theSurf, 2, Precision::Confusion());
Standard_Real anAvMaxCurv = 0., anAvMinCurv = 0., anAvR = 0, aSign = 1.;
gp_XYZ anAvDir;
gp_Dir aMinD, aMaxD;
Standard_Integer i, j, n = 0;
Standard_Real anU, aV;
for (i = 1, anU = theU1 + du / 2.; i <= theNbU; ++i, anU += du)
{
for (j = 1, aV = theV1 + dv / 2.; j <= theNbV; ++j, aV += dv)
{
aProps.SetParameters(anU, aV);
if (!aProps.IsCurvatureDefined())
{
return aNewSurf;
}
if (aProps.IsUmbilic())
{
return aNewSurf;
}
++n;
Standard_Real aMinCurv = aProps.MinCurvature();
Standard_Real aMaxCurv = aProps.MaxCurvature();
Standard_Real aGaussCurv = Abs(aProps.GaussianCurvature());
Standard_Real aK1 = Sqrt(aGaussCurv);
if (aK1 > theToler)
{
return aNewSurf;
}
gp_XYZ aD;
aProps.CurvatureDirections(aMaxD, aMinD);
aMinCurv = Abs(aMinCurv);
aMaxCurv = Abs(aMaxCurv);
if (aMinCurv > aMaxCurv)
{
// aMinCurv < 0;
aSign = -1.;
std::swap(aMinCurv, aMaxCurv);
gp_Dir aDummy = aMaxD;
aMaxD = aMinD;
aMinD = aDummy;
}
Standard_Real anR = 1. / aMaxCurv;
Standard_Real anR2 = anR * anR;
anRs(n) = anR;
//
if (n > 1)
{
if (Abs(aMaxCurv - anAvMaxCurv / (n - 1)) > aTol / anR2)
{
return aNewSurf;
}
if (Abs(aMinCurv - anAvMinCurv / (n - 1)) > aTol)
{
return aNewSurf;
}
}
aD = aMinD.XYZ();
anAvR += anR;
anAvDir += aD;
anAvMaxCurv += aMaxCurv;
anAvMinCurv += aMinCurv;
if (theLeastSquare)
{
aPoints->SetValue(n, aProps.Value().XYZ());
}
}
}
anAvMaxCurv /= n;
anAvMinCurv /= n;
anAvR /= n;
anAvDir /= n;
//
if (Abs(anAvMinCurv) > theToler)
{
return aNewSurf;
}
//
for (i = 1; i <= n; ++i)
{
Standard_Real d = (anRs(i) - anAvR);
aSigmaR += d * d;
}
aSigmaR = Sqrt(aSigmaR / n);
aSigmaR = 3. * aSigmaR / Sqrt(n);
if (aSigmaR > aTol)
{
return aNewSurf;
}
aProps.SetParameters(theU1, theV1);
if (!aProps.IsCurvatureDefined())
{
return aNewSurf;
}
gp_Dir aNorm = aProps.Normal();
gp_Pnt aLoc = aProps.Value();
gp_Dir anAxD(anAvDir);
gp_Vec aT(aSign * anAvR * aNorm.XYZ());
aLoc.Translate(aT);
gp_Ax1 anAx1(aLoc, anAxD);
gp_Cylinder aCyl;
aCyl.SetAxis(anAx1);
aCyl.SetRadius(anAvR);
if (theLeastSquare)
{
gp_Ax3 aPos = aCyl.Position();
Standard_Real anR = aCyl.Radius();
Standard_Real aGap = 0.;
Standard_Boolean IsDone = GetCylByLS(aPoints, theToler, aPos, anR, aGap);
if (IsDone)
{
aCyl.SetPosition(aPos);
aCyl.SetRadius(anR);
}
}
aNewSurf = new Geom_CylindricalSurface(aCyl);
return aNewSurf;
}
//=======================================================================
// function : TryTorusSphere
// purpose :
// static method to try create toroidal surface.
// In case <isTryUMajor> = Standard_True try to use V isoline radius as minor radaius.
//=======================================================================
Handle(Geom_Surface) GeomConvert_SurfToAnaSurf::TryTorusSphere(
const Handle(Geom_Surface)& theSurf,
const Handle(Geom_Circle)& circle,
const Handle(Geom_Circle)& otherCircle,
const Standard_Real Param1,
const Standard_Real Param2,
const Standard_Real aParam1ToCrv,
const Standard_Real aParam2ToCrv,
const Standard_Real toler,
const Standard_Boolean isTryUMajor)
{
Handle(Geom_Surface) newSurface;
Standard_Real cf, cl;
Handle(Geom_Curve) IsoCrv1;
Handle(Geom_Curve) IsoCrv2;
Standard_Real aGap1, aGap2;
// initial radius
Standard_Real R = circle->Circ().Radius();
// iso lines
if (isTryUMajor)
{
IsoCrv1 = theSurf->VIso(Param1 + ((Param2 - Param1) / 3.));
IsoCrv2 = theSurf->VIso(Param1 + ((Param2 - Param1) * 2. / 3));
}
else
{
IsoCrv1 = theSurf->UIso(Param1 + ((Param2 - Param1) / 3.));
IsoCrv2 = theSurf->UIso(Param1 + ((Param2 - Param1) * 2. / 3));
}
Handle(Geom_Curve) Crv1 = GeomConvert_CurveToAnaCurve::ComputeCurve(IsoCrv1,
toler,
aParam1ToCrv,
aParam2ToCrv,
cf,
cl,
aGap1,
GeomConvert_Target,
GeomAbs_Circle);
Handle(Geom_Curve) Crv2 = GeomConvert_CurveToAnaCurve::ComputeCurve(IsoCrv2,
toler,
aParam1ToCrv,
aParam2ToCrv,
cf,
cl,
aGap2,
GeomConvert_Target,
GeomAbs_Circle);
if (Crv1.IsNull() || Crv2.IsNull() || !Crv1->IsKind(STANDARD_TYPE(Geom_Circle))
|| !Crv2->IsKind(STANDARD_TYPE(Geom_Circle)))
return newSurface;
Handle(Geom_Circle) aCircle1 = Handle(Geom_Circle)::DownCast(Crv1);
Handle(Geom_Circle) aCircle2 = Handle(Geom_Circle)::DownCast(Crv2);
Standard_Real R1 = aCircle1->Circ().Radius();
Standard_Real R2 = aCircle2->Circ().Radius();
// check radiuses
if ((Abs(R - R1) > toler) || (Abs(R - R2) > toler))
return newSurface;
// get centers of the major radius
gp_Pnt aPnt1, aPnt2, aPnt3;
aPnt1 = circle->Circ().Location();
aPnt2 = aCircle1->Circ().Location();
aPnt3 = aCircle2->Circ().Location();
// Standard_Real eps = 1.e-09; // angular resolution
Standard_Real d0 = aPnt1.Distance(aPnt2);
Standard_Real d1 = aPnt1.Distance(aPnt3);
gp_Circ circ;
if (d0 < toler || d1 < toler)
{
// compute sphere
gp_Dir MainDir = otherCircle->Circ().Axis().Direction();
gp_Ax3 Axes(circle->Circ().Location(), MainDir);
Handle(Geom_SphericalSurface) anObject = new Geom_SphericalSurface(Axes, R);
if (!anObject.IsNull())
newSurface = anObject;
return newSurface;
}
if (!GeomConvert_CurveToAnaCurve::GetCircle(circ, aPnt1, aPnt2, aPnt3) /*, d0, d1, eps)*/)
return newSurface;
Standard_Real aMajorR = circ.Radius();
gp_Pnt aCenter = circ.Location();
gp_Dir aDir((aPnt1.XYZ() - aCenter.XYZ()) ^ (aPnt3.XYZ() - aCenter.XYZ()));
gp_Ax3 anAx3(aCenter, aDir);
newSurface = new Geom_ToroidalSurface(anAx3, aMajorR, R);
return newSurface;
}
//=================================================================================================
Standard_Real GeomConvert_SurfToAnaSurf::ComputeGap(const Handle(Geom_Surface)& theSurf,
const Standard_Real theU1,
const Standard_Real theU2,
const Standard_Real theV1,
const Standard_Real theV2,
const Handle(Geom_Surface)& theNewSurf,
const Standard_Real theTol)
{
GeomAdaptor_Surface aGAS(theNewSurf);
GeomAbs_SurfaceType aSType = aGAS.GetType();
gp_Pln aPln;
gp_Cylinder aCyl;
gp_Cone aCon;
gp_Sphere aSphere;
gp_Torus aTor;
switch (aSType)
{
case GeomAbs_Plane:
aPln = aGAS.Plane();
break;
case GeomAbs_Cylinder:
aCyl = aGAS.Cylinder();
break;
case GeomAbs_Cone:
aCon = aGAS.Cone();
break;
case GeomAbs_Sphere:
aSphere = aGAS.Sphere();
break;
case GeomAbs_Torus:
aTor = aGAS.Torus();
break;
default:
return Precision::Infinite();
break;
}
Standard_Real aGap = 0.;
Standard_Boolean onSurface = Standard_True;
Standard_Real S, T;
gp_Pnt P3d, P3d2;
const Standard_Integer NP = 21;
Standard_Real DU, DV;
Standard_Integer j, i;
DU = (theU2 - theU1) / (NP - 1);
DV = (theV2 - theV1) / (NP - 1);
Standard_Real DU2 = DU / 2., DV2 = DV / 2.;
for (j = 1; (j < NP) && onSurface; j++)
{
Standard_Real V = theV1 + DV * (j - 1) + DV2;
for (i = 1; i < NP; i++)
{
Standard_Real U = theU1 + DU * (i - 1) + DU2;
theSurf->D0(U, V, P3d);
switch (aSType)
{
case GeomAbs_Plane: {
ElSLib::Parameters(aPln, P3d, S, T);
P3d2 = ElSLib::Value(S, T, aPln);
break;
}
case GeomAbs_Cylinder: {
ElSLib::Parameters(aCyl, P3d, S, T);
P3d2 = ElSLib::Value(S, T, aCyl);
break;
}
case GeomAbs_Cone: {
ElSLib::Parameters(aCon, P3d, S, T);
P3d2 = ElSLib::Value(S, T, aCon);
break;
}
case GeomAbs_Sphere: {
ElSLib::Parameters(aSphere, P3d, S, T);
P3d2 = ElSLib::Value(S, T, aSphere);
break;
}
case GeomAbs_Torus: {
ElSLib::Parameters(aTor, P3d, S, T);
P3d2 = ElSLib::Value(S, T, aTor);
break;
}
default:
S = 0.;
T = 0.;
theNewSurf->D0(S, T, P3d2);
break;
}
Standard_Real dis = P3d.Distance(P3d2);
if (dis > aGap)
aGap = dis;
if (aGap > theTol)
{
onSurface = Standard_False;
break;
}
}
}
return aGap;
}
//=================================================================================================
GeomConvert_SurfToAnaSurf::GeomConvert_SurfToAnaSurf()
: myGap(-1.),
myConvType(GeomConvert_Simplest),
myTarget(GeomAbs_Plane)
{
}
//=================================================================================================
GeomConvert_SurfToAnaSurf::GeomConvert_SurfToAnaSurf(const Handle(Geom_Surface)& S)
: myGap(-1.),
myConvType(GeomConvert_Simplest),
myTarget(GeomAbs_Plane)
{
Init(S);
}
//=================================================================================================
void GeomConvert_SurfToAnaSurf::Init(const Handle(Geom_Surface)& S)
{
mySurf = S;
}
//=================================================================================================
Handle(Geom_Surface) GeomConvert_SurfToAnaSurf::ConvertToAnalytical(
const Standard_Real InitialToler)
{
Standard_Real U1, U2, V1, V2;
mySurf->Bounds(U1, U2, V1, V2);
if (Precision::IsInfinite(U1) && Precision::IsInfinite(U2))
{
U1 = -1.;
U2 = 1.;
}
if (Precision::IsInfinite(V1) && Precision::IsInfinite(V2))
{
V1 = -1.;
V2 = 1.;
Handle(Geom_SurfaceOfRevolution) aRevSurf = Handle(Geom_SurfaceOfRevolution)::DownCast(mySurf);
if (!aRevSurf.IsNull())
{
CheckVTrimForRevSurf(aRevSurf, V1, V2);
}
}
return ConvertToAnalytical(InitialToler, U1, U2, V1, V2);
}
//=================================================================================================
Handle(Geom_Surface) GeomConvert_SurfToAnaSurf::ConvertToAnalytical(
const Standard_Real InitialToler,
const Standard_Real Umin,
const Standard_Real Umax,
const Standard_Real Vmin,
const Standard_Real Vmax)
{
//
GeomAdaptor_Surface aGAS(mySurf);
GeomAbs_SurfaceType aSType = aGAS.GetType();
switch (aSType)
{
case GeomAbs_Plane: {
myGap = 0.;
return new Geom_Plane(aGAS.Plane());
}
case GeomAbs_Cylinder: {
myGap = 0.;
return new Geom_CylindricalSurface(aGAS.Cylinder());
}
case GeomAbs_Cone: {
myGap = 0.;
return new Geom_ConicalSurface(aGAS.Cone());
}
case GeomAbs_Sphere: {
myGap = 0.;
return new Geom_SphericalSurface(aGAS.Sphere());
}
case GeomAbs_Torus: {
myGap = 0.;
return new Geom_ToroidalSurface(aGAS.Torus());
}
default:
break;
}
//
Standard_Real toler = InitialToler;
Handle(Geom_Surface) newSurf[5];
Standard_Real dd[5] = {RealLast(), RealLast(), RealLast(), RealLast(), RealLast()};
GeomAbs_SurfaceType aSTypes[5] = {GeomAbs_Plane,
GeomAbs_Cylinder,
GeomAbs_Cone,
GeomAbs_Sphere,
GeomAbs_Torus};
// Check boundaries
Standard_Real U1, U2, V1, V2;
mySurf->Bounds(U1, U2, V1, V2);
Standard_Boolean aDoSegment = Standard_False;
constexpr Standard_Real aTolBnd = Precision::PConfusion();
Standard_Integer isurf = 0;
if (Umin < U1 || Umax > U2 || Vmin < V1 || Vmax > V2)
{
return newSurf[isurf];
}
else
{
if (Umin - U1 > aTolBnd)
{
U1 = Umin;
aDoSegment = Standard_True;
}
if (U2 - Umax > aTolBnd)
{
U2 = Umax;
aDoSegment = Standard_True;
}
if (Vmin - V1 > aTolBnd)
{
V1 = Vmin;
aDoSegment = Standard_True;
}
if (V2 - Vmax > aTolBnd)
{
V2 = Vmax;
aDoSegment = Standard_True;
}
}
Standard_Boolean IsBz = aSType == GeomAbs_BezierSurface;
Standard_Boolean IsBs = aSType == GeomAbs_BSplineSurface;
Handle(Geom_Surface) aTempS = mySurf;
if (IsBs)
{
Handle(Geom_BSplineSurface) aBs = Handle(Geom_BSplineSurface)::DownCast(mySurf->Copy());
if (aDoSegment)
{
aBs->Segment(U1, U2, V1, V2);
}
aTempS = aBs;
}
else if (IsBz)
{
Handle(Geom_BezierSurface) aBz = Handle(Geom_BezierSurface)::DownCast(mySurf->Copy());
if (aDoSegment)
{
aBz->Segment(U1, U2, V1, V2);
}
aTempS = aBz;
}
// check the planarity first
if (!IsBs && !IsBz)
{
aTempS = new Geom_RectangularTrimmedSurface(aTempS, U1, U2, V1, V2);
}
isurf = 0; // set plane
GeomLib_IsPlanarSurface GeomIsPlanar(aTempS, toler);
if (GeomIsPlanar.IsPlanar())
{
gp_Pln newPln = GeomIsPlanar.Plan();
newSurf[isurf] = new Geom_Plane(newPln);
dd[isurf] = ComputeGap(aTempS, U1, U2, V1, V2, newSurf[isurf]);
if (myConvType == GeomConvert_Simplest
|| (myConvType == GeomConvert_Target && myTarget == GeomAbs_Plane))
{
myGap = dd[isurf];
return newSurf[isurf];
}
}
else
{
if (myConvType == GeomConvert_Target && myTarget == GeomAbs_Plane)
{
myGap = dd[isurf];
return newSurf[isurf];
}
}
Standard_Real diagonal = mySurf->Value(U1, V1).Distance(mySurf->Value((U1 + U2), (V1 + V2) / 2));
Standard_Real twist = 1000;
if (toler > diagonal / twist)
toler = diagonal / twist;
isurf = 1; // set cylinder
Standard_Boolean aCylinderConus = Standard_False;
Standard_Boolean aToroidSphere = Standard_False;
// convert middle uiso and viso to canonical representation
Standard_Real VMid = 0.5 * (V1 + V2);
Standard_Real UMid = 0.5 * (U1 + U2);
// Handle(Geom_Surface) TrSurf = aTempS;
Handle(Geom_Curve) UIso = aTempS->UIso(UMid);
Handle(Geom_Curve) VIso = aTempS->VIso(VMid);
Standard_Real cuf, cul, cvf, cvl, aGap1, aGap2;
Standard_Boolean aLineIso = Standard_False;
Handle(Geom_Curve) umidiso = GeomConvert_CurveToAnaCurve::ComputeCurve(UIso,
toler,
V1,
V2,
cuf,
cul,
aGap1,
GeomConvert_Simplest);
if (!umidiso.IsNull())
{
aLineIso = umidiso->IsKind(STANDARD_TYPE(Geom_Line));
}
Handle(Geom_Curve) vmidiso = GeomConvert_CurveToAnaCurve::ComputeCurve(VIso,
toler,
U1,
U2,
cvf,
cvl,
aGap2,
GeomConvert_Simplest);
if (!vmidiso.IsNull() && !aLineIso)
{
aLineIso = vmidiso->IsKind(STANDARD_TYPE(Geom_Line));
}
if (!umidiso.IsNull() && !vmidiso.IsNull())
{
//
Standard_Boolean VCase = Standard_False;
if (umidiso->IsKind(STANDARD_TYPE(Geom_Circle)) && vmidiso->IsKind(STANDARD_TYPE(Geom_Circle)))
{
aToroidSphere = Standard_True;
if (myConvType == GeomConvert_Target
&& (myTarget == GeomAbs_Cylinder || myTarget == GeomAbs_Cone))
{
isurf = 1;
myGap = dd[isurf];
return newSurf[isurf];
}
isurf = 3; // set sphere
}
else if (umidiso->IsKind(STANDARD_TYPE(Geom_Line))
&& vmidiso->IsKind(STANDARD_TYPE(Geom_Circle)))
{
aCylinderConus = Standard_True;
VCase = Standard_True;
if (myConvType == GeomConvert_Target
&& (myTarget == GeomAbs_Sphere || myTarget == GeomAbs_Torus))
{
isurf = 3;
myGap = dd[isurf];
return newSurf[isurf];
}
isurf = 1; // set cylinder
}
else if (umidiso->IsKind(STANDARD_TYPE(Geom_Circle))
&& vmidiso->IsKind(STANDARD_TYPE(Geom_Line)))
{
aCylinderConus = Standard_True;
if (myConvType == GeomConvert_Target
&& (myTarget == GeomAbs_Sphere || myTarget == GeomAbs_Torus))
{
isurf = 3;
myGap = dd[isurf];
return newSurf[isurf];
}
isurf = 1; // set cylinder
}
// case of torus-sphere
if (aToroidSphere)
{
isurf = 3; // Set spherical surface
Handle(Geom_Circle) Ucircle = Handle(Geom_Circle)::DownCast(umidiso);
Handle(Geom_Circle) Vcircle = Handle(Geom_Circle)::DownCast(vmidiso);
// torus
// try when V isolines is with same radius
Handle(Geom_Surface) anObject =
TryTorusSphere(mySurf, Vcircle, Ucircle, V1, V2, U1, U2, toler, Standard_True);
if (anObject.IsNull()) // try when U isolines is with same radius
anObject = TryTorusSphere(mySurf, Ucircle, Vcircle, U1, U2, V1, V2, toler, Standard_False);
if (!anObject.IsNull())
{
if (anObject->IsKind(STANDARD_TYPE(Geom_ToroidalSurface)))
{
isurf = 4; // set torus
}
newSurf[isurf] = anObject;
if (myConvType == GeomConvert_Target && (myTarget != aSTypes[isurf]))
{
myGap = RealLast();
return NULL;
}
}
else
{
myGap = dd[isurf];
}
}
// case of cone - cylinder
else if (aCylinderConus)
{
isurf = 1; // set cylindrical surface
Handle(Geom_Surface) anObject =
TryCylinerCone(aTempS, VCase, umidiso, vmidiso, U1, U2, V1, V2, toler);
if (!anObject.IsNull())
{
if (anObject->IsKind(STANDARD_TYPE(Geom_ConicalSurface)))
{
isurf = 2; // set conical surface
}
if (myConvType == GeomConvert_Target && (myTarget != aSTypes[isurf]))
{
myGap = RealLast();
return NULL;
}
newSurf[isurf] = anObject;
}
else
{
aCylinderConus = Standard_False;
myGap = dd[isurf];
}
}
}
// Additional checking for case of cylinder
if (!aCylinderConus && !aToroidSphere && aLineIso)
{
// Try cylinder using Gauss field
Standard_Integer aNbU = 7, aNbV = 7;
Standard_Boolean aLeastSquare = Standard_True;
Handle(Geom_Surface) anObject =
TryCylinderByGaussField(aTempS, U1, U2, V1, V2, toler, aNbU, aNbV, aLeastSquare);
if (!anObject.IsNull())
{
isurf = 1;
newSurf[isurf] = anObject;
}
}
//
//---------------------------------------------------------------------
// verification
//---------------------------------------------------------------------
Standard_Integer imin = -1;
Standard_Real aDmin = RealLast();
for (isurf = 0; isurf < 5; ++isurf)
{
if (newSurf[isurf].IsNull())
continue;
dd[isurf] = ComputeGap(aTempS, U1, U2, V1, V2, newSurf[isurf], toler);
if (dd[isurf] <= toler)
{
if (myConvType == GeomConvert_Simplest
|| (myConvType == GeomConvert_Target && myTarget == aSTypes[isurf]))
{
myGap = dd[isurf];
return newSurf[isurf];
}
else if (myConvType == GeomConvert_MinGap)
{
if (dd[isurf] < aDmin)
{
aDmin = dd[isurf];
imin = isurf;
}
}
}
}
//
if (imin >= 0)
{
myGap = dd[imin];
return newSurf[imin];
}
return NULL;
}
//=================================================================================================
Standard_Boolean GeomConvert_SurfToAnaSurf::IsSame(const Handle(Geom_Surface)& S1,
const Handle(Geom_Surface)& S2,
const Standard_Real tol)
{
// only elementary surfaces are processed
if (!S1->IsKind(STANDARD_TYPE(Geom_ElementarySurface))
|| !S2->IsKind(STANDARD_TYPE(Geom_ElementarySurface)))
return Standard_False;
Handle(GeomAdaptor_Surface) anAdaptor1 = new GeomAdaptor_Surface(S1);
Handle(GeomAdaptor_Surface) anAdaptor2 = new GeomAdaptor_Surface(S2);
GeomAbs_SurfaceType aST1 = anAdaptor1->GetType();
GeomAbs_SurfaceType aST2 = anAdaptor2->GetType();
if (aST1 != aST2)
{
return Standard_False;
}
IntAna_QuadQuadGeo interii;
if (aST1 == GeomAbs_Plane)
{
interii.Perform(anAdaptor1->Plane(), anAdaptor2->Plane(), tol, tol);
}
else if (aST1 == GeomAbs_Cylinder)
{
interii.Perform(anAdaptor1->Cylinder(), anAdaptor2->Cylinder(), tol);
}
else if (aST1 == GeomAbs_Cone)
{
interii.Perform(anAdaptor1->Cone(), anAdaptor2->Cone(), tol);
}
else if (aST1 == GeomAbs_Sphere)
{
interii.Perform(anAdaptor1->Sphere(), anAdaptor2->Sphere(), tol);
}
else if (aST1 == GeomAbs_Torus)
{
interii.Perform(anAdaptor1->Torus(), anAdaptor2->Torus(), tol);
}
if (!interii.IsDone())
return Standard_False;
IntAna_ResultType aTypeRes = interii.TypeInter();
return aTypeRes == IntAna_Same;
}
//=================================================================================================
Standard_Boolean GeomConvert_SurfToAnaSurf::IsCanonical(const Handle(Geom_Surface)& S)
{
if (S.IsNull())
return Standard_False;
if (S->IsKind(STANDARD_TYPE(Geom_Plane)) || S->IsKind(STANDARD_TYPE(Geom_CylindricalSurface))
|| S->IsKind(STANDARD_TYPE(Geom_ConicalSurface))
|| S->IsKind(STANDARD_TYPE(Geom_SphericalSurface))
|| S->IsKind(STANDARD_TYPE(Geom_ToroidalSurface)))
return Standard_True;
return Standard_False;
}