1
0
mirror of https://git.dev.opencascade.org/repos/occt.git synced 2025-04-03 17:56:21 +03:00
occt/src/Geom2dLProp/Geom2dLProp_FuncCurExt.cxx

131 lines
4.4 KiB
C++

// Created on: 1994-09-06
// Created by: Yves FRICAUD
// Copyright (c) 1994-1999 Matra Datavision
// Copyright (c) 1999-2014 OPEN CASCADE SAS
//
// This file is part of Open CASCADE Technology software library.
//
// This library is free software; you can redistribute it and/or modify it under
// the terms of the GNU Lesser General Public License version 2.1 as published
// by the Free Software Foundation, with special exception defined in the file
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
// distribution for complete text of the license and disclaimer of any warranty.
//
// Alternatively, this file may be used under the terms of Open CASCADE
// commercial license or contractual agreement.
#include <Geom2d_Curve.hxx>
#include <Geom2dLProp_Curve2dTool.hxx>
#include <Geom2dLProp_FuncCurExt.hxx>
#include <gp_Pnt2d.hxx>
//=============================================================================
//function :
// purpose :
//=============================================================================
Geom2dLProp_FuncCurExt::Geom2dLProp_FuncCurExt(const Handle(Geom2d_Curve)& C,
const Standard_Real Tol)
:theCurve(C)
{
epsX = Tol;
}
//=============================================================================
//function : Value
// purpose : KC = (V1^V2.Z) / ||V1||^3 avec V1 tangente etV2 derivee seconde.
// F = d KC/ dU.
//=============================================================================
Standard_Boolean Geom2dLProp_FuncCurExt::Value (const Standard_Real X,
Standard_Real& F)
{
gp_Pnt2d P1;
gp_Vec2d V1,V2,V3;
Geom2dLProp_Curve2dTool::D3(theCurve,X,P1,V1,V2,V3);
Standard_Real CPV1V2 = V1.Crossed(V2);
Standard_Real CPV1V3 = V1.Crossed(V3);
Standard_Real V1V2 = V1.Dot(V2);
Standard_Real V1V1 = V1.SquareMagnitude();
Standard_Real NV1 = Sqrt(V1V1);
Standard_Real V13 = V1V1*NV1;
Standard_Real V15 = V13*V1V1;
if (V15 < gp::Resolution()) {
return Standard_False;
}
F = CPV1V3/V13 - 3*CPV1V2*V1V2/V15;
return Standard_True;
}
//=============================================================================
//function : Derivative
// purpose :
//=============================================================================
Standard_Boolean Geom2dLProp_FuncCurExt::Derivative(const Standard_Real X,
Standard_Real& D)
{
Standard_Real F;
return Values (X,F,D) ;
}
//=============================================================================
//function : Values
// purpose :
//=============================================================================
Standard_Boolean Geom2dLProp_FuncCurExt::Values (const Standard_Real X,
Standard_Real& F,
Standard_Real& D)
{
Standard_Real F2;
Standard_Real Dx= epsX/100.;
if (X+Dx > Geom2dLProp_Curve2dTool::LastParameter(theCurve)) {Dx = - Dx;}
Value (X,F);
Value (X+Dx,F2);
D = (F2 - F)/Dx;
return Standard_True;
}
//=============================================================================
//function : IsMinKC
// purpose : Teste si le parametere coorespond a un minimum du rayon de courbure
// par comparaison avec un point voisin.
//=============================================================================
Standard_Boolean Geom2dLProp_FuncCurExt::IsMinKC (const Standard_Real X) const
{
gp_Pnt2d P1;
gp_Vec2d V1,V2,V3;
Standard_Real Dx= epsX;
Standard_Real KC,KP;
Geom2dLProp_Curve2dTool::D3(theCurve,X,P1,V1,V2,V3);
Standard_Real CPV1V2 = V1.Crossed(V2);
Standard_Real V1V1 = V1.SquareMagnitude();
Standard_Real NV1 = Sqrt(V1V1);
Standard_Real V13 = V1V1*NV1;
if (V13 < gp::Resolution()) {return Standard_False;}
KC = CPV1V2/V13;
if (X+Dx > Geom2dLProp_Curve2dTool::LastParameter(theCurve)) {Dx = - Dx;}
Geom2dLProp_Curve2dTool::D3(theCurve,X+Dx,P1,V1,V2,V3);
CPV1V2 = V1.Crossed(V2);
V1V1 = V1.SquareMagnitude();
NV1 = Sqrt(V1V1);
V13 = V1V1*NV1;
if (V13 < gp::Resolution()) { return Standard_False;}
KP = CPV1V2/V13;
if (Abs(KC) > Abs(KP)) {return Standard_True ;}
else {return Standard_False;}
}