mirror of
https://git.dev.opencascade.org/repos/occt.git
synced 2025-04-03 17:56:21 +03:00
379 lines
12 KiB
C++
379 lines
12 KiB
C++
// Created on: 1995-05-30
|
|
// Created by: Xavier BENVENISTE
|
|
// Copyright (c) 1995-1999 Matra Datavision
|
|
// Copyright (c) 1999-2014 OPEN CASCADE SAS
|
|
//
|
|
// This file is part of Open CASCADE Technology software library.
|
|
//
|
|
// This library is free software; you can redistribute it and/or modify it under
|
|
// the terms of the GNU Lesser General Public License version 2.1 as published
|
|
// by the Free Software Foundation, with special exception defined in the file
|
|
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
|
|
// distribution for complete text of the license and disclaimer of any warranty.
|
|
//
|
|
// Alternatively, this file may be used under the terms of Open CASCADE
|
|
// commercial license or contractual agreement.
|
|
|
|
// 19-06-96 : JPI : NbPoles doit utiliser ColLength() au lieu de RowLength()
|
|
// 16-09-96 : PMN : On ne doit pas se soucier de la continuite lorsqu'il n'y
|
|
// qu'un seul segment(PRO5474).
|
|
// 11-12-96 : PMN : Respect de l'indicage des tableaux passer en arguments
|
|
// TrueIntervals et PolynomialIntervals (BUC40077)
|
|
// 15-04-97 : PMN : Constructeurs avec un seul segement ou differentes
|
|
// continuitees.
|
|
|
|
#define No_Standard_OutOfRange
|
|
|
|
|
|
#include <BSplCLib.hxx>
|
|
#include <Convert_CompPolynomialToPoles.hxx>
|
|
#include <PLib.hxx>
|
|
#include <Standard_ConstructionError.hxx>
|
|
#include <TColStd_Array1OfInteger.hxx>
|
|
#include <TColStd_Array1OfReal.hxx>
|
|
#include <TColStd_HArray1OfInteger.hxx>
|
|
#include <TColStd_HArray1OfReal.hxx>
|
|
|
|
//=======================================================================
|
|
//function : Constructor
|
|
//purpose :
|
|
//=======================================================================
|
|
Convert_CompPolynomialToPoles::Convert_CompPolynomialToPoles(
|
|
const Standard_Integer NumCurves,
|
|
const Standard_Integer Continuity,
|
|
const Standard_Integer Dimension,
|
|
const Standard_Integer MaxDegree,
|
|
const Handle(TColStd_HArray1OfInteger)& NumCoeffPerCurve,
|
|
const Handle(TColStd_HArray1OfReal)& Coefficients,
|
|
const Handle(TColStd_HArray2OfReal)& PolynomialIntervals,
|
|
const Handle(TColStd_HArray1OfReal)& TrueIntervals)
|
|
: myDone(Standard_False)
|
|
{
|
|
Standard_Integer ii, delta;
|
|
if (NumCurves <= 0 ||
|
|
NumCoeffPerCurve.IsNull() ||
|
|
Coefficients.IsNull() ||
|
|
PolynomialIntervals.IsNull() ||
|
|
TrueIntervals.IsNull() ||
|
|
Continuity < 0 ||
|
|
MaxDegree <= 0 ||
|
|
Dimension <= 0 ||
|
|
PolynomialIntervals->RowLength() != 2) {
|
|
throw Standard_ConstructionError
|
|
("Convert_CompPolynomialToPoles:bad arguments");
|
|
}
|
|
myDegree = 0 ;
|
|
|
|
delta = NumCurves - 1 ;
|
|
for (ii = NumCoeffPerCurve->Lower();
|
|
ii <= NumCoeffPerCurve->Lower() + delta ;
|
|
ii++) {
|
|
myDegree = Max(NumCoeffPerCurve->Value(ii)-1,myDegree) ;
|
|
}
|
|
if ((Continuity > myDegree)&& (NumCurves>1)) {
|
|
throw Standard_ConstructionError
|
|
("Convert_CompPolynomialToPoles:Continuity is too great");
|
|
}
|
|
//
|
|
// prepare output
|
|
//
|
|
Standard_Integer Tindex, multiplicities ;
|
|
|
|
myKnots =
|
|
new TColStd_HArray1OfReal(1, NumCurves + 1) ;
|
|
for (ii = 1, Tindex = TrueIntervals->Lower() ;
|
|
ii <= NumCurves + 1 ; ii++,Tindex++ ) {
|
|
myKnots->ChangeArray1().SetValue(ii,TrueIntervals->Value(Tindex)) ;
|
|
}
|
|
|
|
multiplicities = myDegree - Continuity ;
|
|
myMults =
|
|
new TColStd_HArray1OfInteger(1, NumCurves + 1) ;
|
|
for (ii = 2 ; ii < NumCurves + 1 ; ii++) {
|
|
myMults -> SetValue(ii,multiplicities);
|
|
}
|
|
myMults -> SetValue(1, myDegree + 1) ;
|
|
myMults -> SetValue(NumCurves + 1, myDegree + 1) ;
|
|
|
|
Perform(NumCurves, MaxDegree, Dimension,
|
|
NumCoeffPerCurve->Array1(), Coefficients->Array1(),
|
|
PolynomialIntervals->Array2(), TrueIntervals->Array1());
|
|
}
|
|
|
|
Convert_CompPolynomialToPoles::
|
|
Convert_CompPolynomialToPoles(const Standard_Integer NumCurves,
|
|
const Standard_Integer Dimension,
|
|
const Standard_Integer MaxDegree,
|
|
const TColStd_Array1OfInteger& Continuity,
|
|
const TColStd_Array1OfInteger& NumCoeffPerCurve,
|
|
const TColStd_Array1OfReal& Coefficients,
|
|
const TColStd_Array2OfReal& PolynomialIntervals,
|
|
const TColStd_Array1OfReal& TrueIntervals)
|
|
: myDone(Standard_False)
|
|
{
|
|
Standard_Integer ii, delta;
|
|
if (NumCurves <= 0 ||
|
|
MaxDegree <= 0 ||
|
|
Dimension <= 0 ||
|
|
PolynomialIntervals.RowLength() != 2) {
|
|
throw Standard_ConstructionError
|
|
("Convert_CompPolynomialToPoles:bad arguments");
|
|
}
|
|
myDegree = 0 ;
|
|
|
|
delta = NumCurves - 1 ;
|
|
for (ii = NumCoeffPerCurve.Lower();
|
|
ii <= NumCoeffPerCurve.Lower() + delta ;
|
|
ii++) {
|
|
myDegree = Max(NumCoeffPerCurve.Value(ii)-1,myDegree) ;
|
|
}
|
|
//
|
|
// prepare output
|
|
//
|
|
Standard_Integer Tindex ;
|
|
|
|
myKnots =
|
|
new TColStd_HArray1OfReal(1, NumCurves + 1) ;
|
|
for (ii = 1, Tindex = TrueIntervals.Lower() ;
|
|
ii <= NumCurves + 1 ; ii++,Tindex++ ) {
|
|
myKnots->ChangeArray1().SetValue(ii,TrueIntervals.Value(Tindex)) ;
|
|
}
|
|
|
|
myMults =
|
|
new TColStd_HArray1OfInteger(1, NumCurves + 1) ;
|
|
for (ii = 2 ; ii < NumCurves + 1 ; ii++) {
|
|
if ((Continuity(ii) > myDegree)&& (NumCurves>1)) {
|
|
throw Standard_ConstructionError
|
|
("Convert_CompPolynomialToPoles:Continuity is too great");
|
|
}
|
|
|
|
myMults -> SetValue(ii, myDegree-Continuity(ii) );
|
|
}
|
|
myMults -> SetValue(1, myDegree + 1) ;
|
|
myMults -> SetValue(NumCurves + 1, myDegree + 1) ;
|
|
|
|
// Calculs
|
|
Perform(NumCurves, MaxDegree, Dimension,
|
|
NumCoeffPerCurve, Coefficients,
|
|
PolynomialIntervals, TrueIntervals);
|
|
}
|
|
|
|
Convert_CompPolynomialToPoles::
|
|
Convert_CompPolynomialToPoles(const Standard_Integer Dimension,
|
|
const Standard_Integer MaxDegree,
|
|
const Standard_Integer Degree,
|
|
const TColStd_Array1OfReal& Coefficients,
|
|
const TColStd_Array1OfReal& PolynomialIntervals,
|
|
const TColStd_Array1OfReal& TrueIntervals) :
|
|
myDegree(Degree) ,
|
|
myDone(Standard_False)
|
|
|
|
{
|
|
if (MaxDegree <= 0 ||
|
|
Dimension <= 0 ||
|
|
PolynomialIntervals.Length() != 2)
|
|
{
|
|
throw Standard_ConstructionError
|
|
("Convert_CompPolynomialToPoles:bad arguments");
|
|
}
|
|
|
|
TColStd_Array2OfReal ThePolynomialIntervals(1,1,1,2);
|
|
ThePolynomialIntervals.SetValue(1,1,PolynomialIntervals(PolynomialIntervals.Lower()));
|
|
ThePolynomialIntervals.SetValue(1,2,PolynomialIntervals(PolynomialIntervals.Upper()));
|
|
|
|
TColStd_Array1OfInteger NumCoeffPerCurve(1,1);
|
|
NumCoeffPerCurve(1) = Degree+1;
|
|
|
|
myKnots =
|
|
new TColStd_HArray1OfReal(1, 2) ;
|
|
myKnots->ChangeArray1().SetValue(1, TrueIntervals.Value(TrueIntervals.Lower()));
|
|
myKnots->ChangeArray1().SetValue(2, TrueIntervals.Value(TrueIntervals.Lower()+1));
|
|
|
|
myMults =
|
|
new TColStd_HArray1OfInteger(1, 2) ;
|
|
myMults->Init( myDegree + 1);
|
|
|
|
|
|
// Calculs
|
|
Perform(1, MaxDegree, Dimension,
|
|
NumCoeffPerCurve, Coefficients,
|
|
ThePolynomialIntervals, TrueIntervals);
|
|
}
|
|
|
|
void Convert_CompPolynomialToPoles::
|
|
Perform(const Standard_Integer NumCurves,
|
|
const Standard_Integer MaxDegree,
|
|
const Standard_Integer Dimension,
|
|
const TColStd_Array1OfInteger& NumCoeffPerCurve,
|
|
const TColStd_Array1OfReal& Coefficients,
|
|
const TColStd_Array2OfReal& PolynomialIntervals,
|
|
const TColStd_Array1OfReal& TrueIntervals)
|
|
{
|
|
Standard_Integer ii,
|
|
num_flat_knots,
|
|
index, Tindex, Pindex,
|
|
coeff_index,
|
|
inversion_problem,
|
|
poles_index,
|
|
num_poles ;
|
|
Standard_Real normalized_value,
|
|
*coefficient_array,
|
|
*poles_array ;
|
|
|
|
num_flat_knots = 2 * myDegree + 2 ;
|
|
for (ii=2; ii<myMults->Length(); ii++) {
|
|
num_flat_knots += myMults->Value(ii);
|
|
}
|
|
num_poles = num_flat_knots - myDegree - 1 ;
|
|
|
|
myFlatKnots = new TColStd_HArray1OfReal(1,num_flat_knots) ;
|
|
BSplCLib::KnotSequence (myKnots->Array1(),
|
|
myMults->Array1(),
|
|
myDegree,
|
|
Standard_False,
|
|
myFlatKnots->ChangeArray1());
|
|
|
|
TColStd_Array1OfReal parameters(1,num_poles) ;
|
|
BSplCLib::BuildSchoenbergPoints(myDegree,
|
|
myFlatKnots->Array1(),
|
|
parameters) ;
|
|
myPoles = new TColStd_HArray2OfReal(1, num_poles,
|
|
1, Dimension) ;
|
|
index = 2;
|
|
Tindex = TrueIntervals.Lower()+1;
|
|
Pindex = PolynomialIntervals.LowerRow();
|
|
poles_array =
|
|
(Standard_Real *) &(myPoles->ChangeArray2()).Value(1,1) ;
|
|
|
|
TColStd_Array1OfInteger contact_array(1,num_poles) ;
|
|
|
|
poles_index = 0 ;
|
|
for (ii = 1 ; ii <= num_poles ; ii++, poles_index += Dimension) {
|
|
contact_array.SetValue(ii,0) ;
|
|
while (parameters.Value(ii) >= TrueIntervals(Tindex) &&
|
|
index <= NumCurves) {
|
|
index++; Tindex++; Pindex++;
|
|
}
|
|
//
|
|
// normalized value so that it fits the original intervals for
|
|
// the polynomial definition of the curves
|
|
//
|
|
normalized_value = parameters.Value(ii) - TrueIntervals(Tindex-1) ;
|
|
normalized_value /= TrueIntervals(Tindex)
|
|
- TrueIntervals(Tindex-1) ;
|
|
normalized_value = (1.0e0 -normalized_value) *
|
|
PolynomialIntervals(Pindex, PolynomialIntervals.LowerCol())
|
|
+ normalized_value *
|
|
PolynomialIntervals(Pindex, PolynomialIntervals.UpperCol()) ;
|
|
coeff_index = ((index-2) * Dimension * (Max(MaxDegree, myDegree) + 1))
|
|
+ Coefficients.Lower();
|
|
|
|
coefficient_array =
|
|
(Standard_Real *) &(Coefficients(coeff_index)) ;
|
|
Standard_Integer Deg = NumCoeffPerCurve(NumCoeffPerCurve.Lower()+index-2) - 1;
|
|
|
|
PLib::NoDerivativeEvalPolynomial
|
|
(normalized_value,
|
|
Deg,
|
|
Dimension,
|
|
Deg * Dimension,
|
|
coefficient_array[0],
|
|
poles_array[poles_index]) ;
|
|
}
|
|
//
|
|
// interpolation at schoenberg points should yield the desired
|
|
// result
|
|
//
|
|
BSplCLib::Interpolate(myDegree,
|
|
myFlatKnots->Array1(),
|
|
parameters,
|
|
contact_array,
|
|
Dimension,
|
|
poles_array[0],
|
|
inversion_problem) ;
|
|
if (inversion_problem != 0) {
|
|
throw Standard_ConstructionError
|
|
("Convert_CompPolynomialToPoles:inversion_problem");
|
|
}
|
|
myDone = Standard_True ;
|
|
}
|
|
|
|
|
|
|
|
//=======================================================================
|
|
//function : NbPoles
|
|
//purpose :
|
|
//=======================================================================
|
|
|
|
Standard_Integer Convert_CompPolynomialToPoles::NbPoles() const
|
|
{
|
|
if (myDone) {
|
|
return myPoles->ColLength() ;
|
|
}
|
|
else
|
|
return 0 ;
|
|
}
|
|
//=======================================================================
|
|
//function : Poles
|
|
//purpose :
|
|
//=======================================================================
|
|
|
|
void Convert_CompPolynomialToPoles::Poles(
|
|
Handle(TColStd_HArray2OfReal)& P) const
|
|
{ if (myDone) {
|
|
P = myPoles ; }
|
|
}
|
|
//=======================================================================
|
|
//function : NbKnots
|
|
//purpose :
|
|
//=======================================================================
|
|
|
|
Standard_Integer Convert_CompPolynomialToPoles::NbKnots() const
|
|
{
|
|
if (myDone) {
|
|
return myKnots->Length() ;
|
|
}
|
|
else
|
|
return 0 ;
|
|
}
|
|
//=======================================================================
|
|
//function : Knots
|
|
//purpose :
|
|
//=======================================================================
|
|
|
|
void Convert_CompPolynomialToPoles::Knots(
|
|
Handle(TColStd_HArray1OfReal)& K) const
|
|
{ if (myDone) {
|
|
K = myKnots ; }
|
|
}
|
|
|
|
//=======================================================================
|
|
//function : Knots
|
|
//purpose :
|
|
//=======================================================================
|
|
|
|
void Convert_CompPolynomialToPoles::Multiplicities(
|
|
Handle(TColStd_HArray1OfInteger)& M) const
|
|
{ if (myDone) {
|
|
M = myMults ; }
|
|
}
|
|
//=======================================================================
|
|
//function : IsDone
|
|
//purpose :
|
|
//=======================================================================
|
|
|
|
Standard_Boolean Convert_CompPolynomialToPoles::IsDone() const
|
|
{ return myDone ; }
|
|
//=======================================================================
|
|
//function : IsDone
|
|
//purpose :
|
|
//=======================================================================
|
|
|
|
Standard_Integer Convert_CompPolynomialToPoles::Degree() const
|
|
{
|
|
if (myDone) {
|
|
return myDegree ;
|
|
}
|
|
return 0 ;
|
|
}
|