1
0
mirror of https://git.dev.opencascade.org/repos/occt.git synced 2025-05-06 10:36:12 +03:00
occt/src/gp/gp_Circ.hxx
mkrylova d5477f8c82 0032137: Coding Rules - merge redundant .lxx files into header files within Package gp
- merged .lxx files into header files within Package gp
- fixed code style
2021-06-03 18:02:58 +03:00

281 lines
9.9 KiB
C++

// Copyright (c) 1991-1999 Matra Datavision
// Copyright (c) 1999-2014 OPEN CASCADE SAS
//
// This file is part of Open CASCADE Technology software library.
//
// This library is free software; you can redistribute it and/or modify it under
// the terms of the GNU Lesser General Public License version 2.1 as published
// by the Free Software Foundation, with special exception defined in the file
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
// distribution for complete text of the license and disclaimer of any warranty.
//
// Alternatively, this file may be used under the terms of Open CASCADE
// commercial license or contractual agreement.
#ifndef _gp_Circ_HeaderFile
#define _gp_Circ_HeaderFile
#include <gp_Ax1.hxx>
#include <gp_Ax2.hxx>
#include <gp_Pnt.hxx>
#include <gp_Trsf.hxx>
#include <gp_Vec.hxx>
#include <Standard_ConstructionError.hxx>
//! Describes a circle in 3D space.
//! A circle is defined by its radius and positioned in space
//! with a coordinate system (a gp_Ax2 object) as follows:
//! - the origin of the coordinate system is the center of the circle, and
//! - the origin, "X Direction" and "Y Direction" of the
//! coordinate system define the plane of the circle.
//! This positioning coordinate system is the "local
//! coordinate system" of the circle. Its "main Direction"
//! gives the normal vector to the plane of the circle. The
//! "main Axis" of the coordinate system is referred to as
//! the "Axis" of the circle.
//! Note: when a gp_Circ circle is converted into a
//! Geom_Circle circle, some implicit properties of the
//! circle are used explicitly:
//! - the "main Direction" of the local coordinate system
//! gives an implicit orientation to the circle (and defines
//! its trigonometric sense),
//! - this orientation corresponds to the direction in
//! which parameter values increase,
//! - the starting point for parameterization is that of the
//! "X Axis" of the local coordinate system (i.e. the "X Axis" of the circle).
//! See Also
//! gce_MakeCirc which provides functions for more complex circle constructions
//! Geom_Circle which provides additional functions for
//! constructing circles and works, in particular, with the
//! parametric equations of circles
class gp_Circ
{
public:
DEFINE_STANDARD_ALLOC
//! Creates an indefinite circle.
gp_Circ() : radius (RealLast())
{}
//! A2 locates the circle and gives its orientation in 3D space.
//! Warnings :
//! It is not forbidden to create a circle with theRadius = 0.0 Raises ConstructionError if theRadius < 0.0
gp_Circ (const gp_Ax2& theA2, const Standard_Real theRadius)
: pos (theA2),
radius(theRadius)
{
Standard_ConstructionError_Raise_if (theRadius < 0.0, "gp_Circ() - radius should be positive number");
}
//! Changes the main axis of the circle. It is the axis
//! perpendicular to the plane of the circle.
//! Raises ConstructionError if the direction of theA1
//! is parallel to the "XAxis" of the circle.
void SetAxis (const gp_Ax1& theA1) { pos.SetAxis (theA1); }
//! Changes the "Location" point (center) of the circle.
void SetLocation (const gp_Pnt& theP) { pos.SetLocation (theP); }
//! Changes the position of the circle.
void SetPosition (const gp_Ax2& theA2) { pos = theA2; }
//! Modifies the radius of this circle.
//! Warning. This class does not prevent the creation of a circle where theRadius is null.
//! Exceptions
//! Standard_ConstructionError if theRadius is negative.
void SetRadius (const Standard_Real theRadius)
{
Standard_ConstructionError_Raise_if (theRadius < 0.0, "gp_Circ::SetRadius() - radius should be positive number");
radius = theRadius;
}
//! Computes the area of the circle.
Standard_Real Area() const { return M_PI * radius * radius; }
//! Returns the main axis of the circle.
//! It is the axis perpendicular to the plane of the circle,
//! passing through the "Location" point (center) of the circle.
const gp_Ax1& Axis() const { return pos.Axis(); }
//! Computes the circumference of the circle.
Standard_Real Length() const { return 2. * M_PI * radius; }
//! Returns the center of the circle. It is the
//! "Location" point of the local coordinate system
//! of the circle
const gp_Pnt& Location() const { return pos.Location(); }
//! Returns the position of the circle.
//! It is the local coordinate system of the circle.
const gp_Ax2& Position() const { return pos; }
//! Returns the radius of this circle.
Standard_Real Radius() const { return radius; }
//! Returns the "XAxis" of the circle.
//! This axis is perpendicular to the axis of the conic.
//! This axis and the "Yaxis" define the plane of the conic.
gp_Ax1 XAxis() const { return gp_Ax1 (pos.Location(), pos.XDirection()); }
//! Returns the "YAxis" of the circle.
//! This axis and the "Xaxis" define the plane of the conic.
//! The "YAxis" is perpendicular to the "Xaxis".
gp_Ax1 YAxis() const { return gp_Ax1 (pos.Location(), pos.YDirection()); }
//! Computes the minimum of distance between the point theP and
//! any point on the circumference of the circle.
Standard_Real Distance (const gp_Pnt& theP) const { return sqrt (SquareDistance (theP)); }
//! Computes the square distance between <me> and the point theP.
Standard_Real SquareDistance (const gp_Pnt& theP) const
{
gp_Vec aV (Location(), theP);
Standard_Real aX = aV.Dot (pos.XDirection());
Standard_Real anY = aV.Dot (pos.YDirection());
Standard_Real aZ = aV.Dot (pos.Direction());
Standard_Real aT = sqrt (aX * aX + anY * anY) - radius;
return (aT * aT + aZ * aZ);
}
//! Returns True if the point theP is on the circumference.
//! The distance between <me> and <theP> must be lower or
//! equal to theLinearTolerance.
Standard_Boolean Contains (const gp_Pnt& theP, const Standard_Real theLinearTolerance) const { return Distance (theP) <= theLinearTolerance; }
Standard_EXPORT void Mirror (const gp_Pnt& theP);
//! Performs the symmetrical transformation of a circle
//! with respect to the point theP which is the center of the
//! symmetry.
Standard_NODISCARD Standard_EXPORT gp_Circ Mirrored (const gp_Pnt& theP) const;
Standard_EXPORT void Mirror (const gp_Ax1& theA1);
//! Performs the symmetrical transformation of a circle with
//! respect to an axis placement which is the axis of the
//! symmetry.
Standard_NODISCARD Standard_EXPORT gp_Circ Mirrored (const gp_Ax1& theA1) const;
Standard_EXPORT void Mirror (const gp_Ax2& theA2);
//! Performs the symmetrical transformation of a circle with respect
//! to a plane. The axis placement theA2 locates the plane of the
//! of the symmetry : (Location, XDirection, YDirection).
Standard_NODISCARD Standard_EXPORT gp_Circ Mirrored (const gp_Ax2& theA2) const;
void Rotate (const gp_Ax1& theA1, const Standard_Real theAng) { pos.Rotate (theA1, theAng); }
//! Rotates a circle. theA1 is the axis of the rotation.
//! theAng is the angular value of the rotation in radians.
Standard_NODISCARD gp_Circ Rotated (const gp_Ax1& theA1, const Standard_Real theAng) const
{
gp_Circ aC = *this;
aC.pos.Rotate (theA1, theAng);
return aC;
}
void Scale (const gp_Pnt& theP, const Standard_Real theS);
//! Scales a circle. theS is the scaling value.
//! Warnings :
//! If theS is negative the radius stay positive but
//! the "XAxis" and the "YAxis" are reversed as for
//! an ellipse.
Standard_NODISCARD gp_Circ Scaled (const gp_Pnt& theP, const Standard_Real theS) const;
void Transform (const gp_Trsf& theT);
//! Transforms a circle with the transformation theT from class Trsf.
Standard_NODISCARD gp_Circ Transformed (const gp_Trsf& theT) const;
void Translate (const gp_Vec& theV) { pos.Translate (theV); }
//! Translates a circle in the direction of the vector theV.
//! The magnitude of the translation is the vector's magnitude.
Standard_NODISCARD gp_Circ Translated (const gp_Vec& theV) const
{
gp_Circ aC = *this;
aC.pos.Translate (theV);
return aC;
}
void Translate (const gp_Pnt& theP1, const gp_Pnt& theP2) { pos.Translate (theP1, theP2); }
//! Translates a circle from the point theP1 to the point theP2.
Standard_NODISCARD gp_Circ Translated (const gp_Pnt& theP1, const gp_Pnt& theP2) const
{
gp_Circ aC = *this;
aC.pos.Translate (theP1, theP2);
return aC;
}
private:
gp_Ax2 pos;
Standard_Real radius;
};
// =======================================================================
// function : Scale
// purpose :
// =======================================================================
inline void gp_Circ::Scale (const gp_Pnt& theP, const Standard_Real theS)
{
radius *= theS;
if (radius < 0)
{
radius = -radius;
}
pos.Scale (theP, theS);
}
// =======================================================================
// function : Scaled
// purpose :
// =======================================================================
inline gp_Circ gp_Circ::Scaled (const gp_Pnt& theP, const Standard_Real theS) const
{
gp_Circ aC = *this;
aC.radius *= theS;
if (aC.radius < 0)
{
aC.radius = -aC.radius;
}
aC.pos.Scale (theP, theS);
return aC;
}
// =======================================================================
// function : Transform
// purpose :
// =======================================================================
inline void gp_Circ::Transform (const gp_Trsf& theT)
{
radius *= theT.ScaleFactor();
if (radius < 0)
{
radius = -radius;
}
pos.Transform (theT);
}
// =======================================================================
// function : Transformed
// purpose :
// =======================================================================
inline gp_Circ gp_Circ::Transformed (const gp_Trsf& theT) const
{
gp_Circ aC = *this;
aC.radius *= theT.ScaleFactor();
if (aC.radius < 0)
{
aC.radius = -aC.radius;
}
aC.pos.Transform (theT);
return aC;
}
#endif // _gp_Circ_HeaderFile