mirror of
https://git.dev.opencascade.org/repos/occt.git
synced 2025-09-08 14:17:06 +03:00
182 lines
6.2 KiB
C++
182 lines
6.2 KiB
C++
// Created on: 1991-10-11
|
|
// Created by: Remi GILET
|
|
// Copyright (c) 1991-1999 Matra Datavision
|
|
// Copyright (c) 1999-2014 OPEN CASCADE SAS
|
|
//
|
|
// This file is part of Open CASCADE Technology software library.
|
|
//
|
|
// This library is free software; you can redistribute it and/or modify it under
|
|
// the terms of the GNU Lesser General Public License version 2.1 as published
|
|
// by the Free Software Foundation, with special exception defined in the file
|
|
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
|
|
// distribution for complete text of the license and disclaimer of any warranty.
|
|
//
|
|
// Alternatively, this file may be used under the terms of Open CASCADE
|
|
// commercial license or contractual agreement.
|
|
|
|
//=========================================================================
|
|
// CREATION of the BISSECTICE between a CIRCLE and a POINT. +
|
|
//=========================================================================
|
|
|
|
#include <GccAna_CircPnt2dBisec.hxx>
|
|
#include <GccInt_BCirc.hxx>
|
|
#include <GccInt_BElips.hxx>
|
|
#include <GccInt_BHyper.hxx>
|
|
#include <GccInt_Bisec.hxx>
|
|
#include <GccInt_BLine.hxx>
|
|
#include <gp_Ax2d.hxx>
|
|
#include <gp_Circ2d.hxx>
|
|
#include <gp_Dir2d.hxx>
|
|
#include <gp_Pnt2d.hxx>
|
|
#include <Standard_OutOfRange.hxx>
|
|
#include <StdFail_NotDone.hxx>
|
|
|
|
//=========================================================================
|
|
GccAna_CircPnt2dBisec::
|
|
GccAna_CircPnt2dBisec (const gp_Circ2d& Circle ,
|
|
const gp_Pnt2d& Point )
|
|
{
|
|
circle = Circle;
|
|
point = Point;
|
|
myTolerance = 1.e-10;
|
|
DefineSolutions();
|
|
}
|
|
|
|
GccAna_CircPnt2dBisec::
|
|
GccAna_CircPnt2dBisec (const gp_Circ2d& Circle ,
|
|
const gp_Pnt2d& Point,
|
|
const Standard_Real Tolerance)
|
|
{
|
|
circle = Circle;
|
|
point = Point;
|
|
myTolerance = 1.e-10;
|
|
if (myTolerance < Tolerance)
|
|
myTolerance = Tolerance;
|
|
|
|
DefineSolutions();
|
|
}
|
|
|
|
void GccAna_CircPnt2dBisec::DefineSolutions()
|
|
{
|
|
Standard_Real dist = circle.Radius() - point.Distance(circle.Location());
|
|
|
|
if (Abs(dist) < myTolerance)
|
|
{
|
|
theposition = 0;
|
|
NbrSol = 1;
|
|
}
|
|
else if (dist > 0.0)
|
|
{
|
|
theposition = -1;
|
|
NbrSol = 1;
|
|
}
|
|
else {
|
|
theposition = 1;
|
|
NbrSol = 2;
|
|
}
|
|
|
|
WellDone = Standard_True;
|
|
}
|
|
|
|
//=========================================================================
|
|
// Processing. +
|
|
// Return the coordinates of origins of the straight line (xloc,yloc) and+
|
|
// of the circle (xcencirc, ycencirc). +
|
|
// Also return the coordinates of the direction of the straight line (xdir, +
|
|
// ydir) and the radius of circle R1. +
|
|
// Check at which side of the straight line is found the center of circle +
|
|
// to orientate the parabola (sign). +
|
|
// Create axis of each parabola (axeparab1, axeparb2), then +
|
|
// two parabolas (biscirPnt1, biscirPnt1). +
|
|
//=========================================================================
|
|
|
|
Handle(GccInt_Bisec) GccAna_CircPnt2dBisec::
|
|
ThisSolution (const Standard_Integer Index) const
|
|
{
|
|
|
|
if (!WellDone)
|
|
throw StdFail_NotDone();
|
|
|
|
if ((Index <=0) || (Index > NbrSol))
|
|
throw Standard_OutOfRange();
|
|
|
|
Handle(GccInt_Bisec) bissol;
|
|
Standard_Real xpoint = point.X();
|
|
Standard_Real ypoint = point.Y();
|
|
Standard_Real xcencir = circle.Location().X();
|
|
Standard_Real ycencir = circle.Location().Y();
|
|
Standard_Real R1 = circle.Radius();
|
|
Standard_Real dist = point.Distance(circle.Location());
|
|
|
|
if (dist < myTolerance)
|
|
{
|
|
gp_Circ2d biscirpnt1(gp_Ax2d(point,gp_Dir2d(1.0,0.0)),R1/2.);
|
|
bissol = new GccInt_BCirc(biscirpnt1);
|
|
// ==========================================================
|
|
}
|
|
else {
|
|
gp_Pnt2d center((xpoint+xcencir)/2.,(ypoint+ycencir)/2.);
|
|
gp_Ax2d majax(center,gp_Dir2d(xpoint-xcencir,ypoint-ycencir));
|
|
|
|
//=========================================================================
|
|
// The point is inside the circle. +
|
|
//=========================================================================
|
|
|
|
if (theposition == -1) {
|
|
gp_Elips2d biscirpnt(majax,R1/2.,Sqrt(R1*R1-dist*dist)/2.);
|
|
bissol = new GccInt_BElips(biscirpnt);
|
|
// ===========================================================
|
|
}
|
|
|
|
//=========================================================================
|
|
// The point is on the circle. +
|
|
// There is only one solution : straight line passing through point and the center +
|
|
// of the circle. +
|
|
//=========================================================================
|
|
|
|
else if (theposition == 0) {
|
|
gp_Dir2d dirsol;
|
|
if (circle.IsDirect())
|
|
dirsol=gp_Dir2d(xcencir-xpoint,ycencir-ypoint);
|
|
else dirsol = gp_Dir2d(xpoint-xcencir,ypoint-ycencir);
|
|
gp_Lin2d biscirpnt(point,dirsol);
|
|
bissol = new GccInt_BLine(biscirpnt);
|
|
// =========================================================
|
|
}
|
|
|
|
//=========================================================================
|
|
// The point is outside of the circle. +
|
|
// There are two solutions : two main branches of the hyperbola.+
|
|
//=========================================================================
|
|
|
|
else {
|
|
// Standard_Real d1 = sqrt(dist*R1-R1*R1);
|
|
Standard_Real d1 = sqrt(dist*dist-R1*R1)/2.0;
|
|
Standard_Real d2 = R1/2.;
|
|
if (Index == 1) {
|
|
gp_Hypr2d biscirpnt1(majax,d2,d1);
|
|
bissol = new GccInt_BHyper(biscirpnt1);
|
|
// =========================================
|
|
}
|
|
else {
|
|
gp_Hypr2d biscirpnt1(majax,d2,d1);
|
|
gp_Hypr2d biscirpnt2 = biscirpnt1.OtherBranch();
|
|
bissol = new GccInt_BHyper(biscirpnt2);
|
|
// =========================================
|
|
}
|
|
}
|
|
}
|
|
return bissol;
|
|
}
|
|
|
|
|
|
//=========================================================================
|
|
|
|
Standard_Boolean GccAna_CircPnt2dBisec::
|
|
IsDone () const { return WellDone; }
|
|
|
|
Standard_Integer GccAna_CircPnt2dBisec::
|
|
NbSolutions () const { return NbrSol; }
|
|
|
|
|