1
0
mirror of https://git.dev.opencascade.org/repos/occt.git synced 2025-09-08 14:17:06 +03:00
Files
occt/src/GccAna/GccAna_CircPnt2dBisec.cxx

182 lines
6.2 KiB
C++

// Created on: 1991-10-11
// Created by: Remi GILET
// Copyright (c) 1991-1999 Matra Datavision
// Copyright (c) 1999-2014 OPEN CASCADE SAS
//
// This file is part of Open CASCADE Technology software library.
//
// This library is free software; you can redistribute it and/or modify it under
// the terms of the GNU Lesser General Public License version 2.1 as published
// by the Free Software Foundation, with special exception defined in the file
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
// distribution for complete text of the license and disclaimer of any warranty.
//
// Alternatively, this file may be used under the terms of Open CASCADE
// commercial license or contractual agreement.
//=========================================================================
// CREATION of the BISSECTICE between a CIRCLE and a POINT. +
//=========================================================================
#include <GccAna_CircPnt2dBisec.hxx>
#include <GccInt_BCirc.hxx>
#include <GccInt_BElips.hxx>
#include <GccInt_BHyper.hxx>
#include <GccInt_Bisec.hxx>
#include <GccInt_BLine.hxx>
#include <gp_Ax2d.hxx>
#include <gp_Circ2d.hxx>
#include <gp_Dir2d.hxx>
#include <gp_Pnt2d.hxx>
#include <Standard_OutOfRange.hxx>
#include <StdFail_NotDone.hxx>
//=========================================================================
GccAna_CircPnt2dBisec::
GccAna_CircPnt2dBisec (const gp_Circ2d& Circle ,
const gp_Pnt2d& Point )
{
circle = Circle;
point = Point;
myTolerance = 1.e-10;
DefineSolutions();
}
GccAna_CircPnt2dBisec::
GccAna_CircPnt2dBisec (const gp_Circ2d& Circle ,
const gp_Pnt2d& Point,
const Standard_Real Tolerance)
{
circle = Circle;
point = Point;
myTolerance = 1.e-10;
if (myTolerance < Tolerance)
myTolerance = Tolerance;
DefineSolutions();
}
void GccAna_CircPnt2dBisec::DefineSolutions()
{
Standard_Real dist = circle.Radius() - point.Distance(circle.Location());
if (Abs(dist) < myTolerance)
{
theposition = 0;
NbrSol = 1;
}
else if (dist > 0.0)
{
theposition = -1;
NbrSol = 1;
}
else {
theposition = 1;
NbrSol = 2;
}
WellDone = Standard_True;
}
//=========================================================================
// Processing. +
// Return the coordinates of origins of the straight line (xloc,yloc) and+
// of the circle (xcencirc, ycencirc). +
// Also return the coordinates of the direction of the straight line (xdir, +
// ydir) and the radius of circle R1. +
// Check at which side of the straight line is found the center of circle +
// to orientate the parabola (sign). +
// Create axis of each parabola (axeparab1, axeparb2), then +
// two parabolas (biscirPnt1, biscirPnt1). +
//=========================================================================
Handle(GccInt_Bisec) GccAna_CircPnt2dBisec::
ThisSolution (const Standard_Integer Index) const
{
if (!WellDone)
throw StdFail_NotDone();
if ((Index <=0) || (Index > NbrSol))
throw Standard_OutOfRange();
Handle(GccInt_Bisec) bissol;
Standard_Real xpoint = point.X();
Standard_Real ypoint = point.Y();
Standard_Real xcencir = circle.Location().X();
Standard_Real ycencir = circle.Location().Y();
Standard_Real R1 = circle.Radius();
Standard_Real dist = point.Distance(circle.Location());
if (dist < myTolerance)
{
gp_Circ2d biscirpnt1(gp_Ax2d(point,gp_Dir2d(1.0,0.0)),R1/2.);
bissol = new GccInt_BCirc(biscirpnt1);
// ==========================================================
}
else {
gp_Pnt2d center((xpoint+xcencir)/2.,(ypoint+ycencir)/2.);
gp_Ax2d majax(center,gp_Dir2d(xpoint-xcencir,ypoint-ycencir));
//=========================================================================
// The point is inside the circle. +
//=========================================================================
if (theposition == -1) {
gp_Elips2d biscirpnt(majax,R1/2.,Sqrt(R1*R1-dist*dist)/2.);
bissol = new GccInt_BElips(biscirpnt);
// ===========================================================
}
//=========================================================================
// The point is on the circle. +
// There is only one solution : straight line passing through point and the center +
// of the circle. +
//=========================================================================
else if (theposition == 0) {
gp_Dir2d dirsol;
if (circle.IsDirect())
dirsol=gp_Dir2d(xcencir-xpoint,ycencir-ypoint);
else dirsol = gp_Dir2d(xpoint-xcencir,ypoint-ycencir);
gp_Lin2d biscirpnt(point,dirsol);
bissol = new GccInt_BLine(biscirpnt);
// =========================================================
}
//=========================================================================
// The point is outside of the circle. +
// There are two solutions : two main branches of the hyperbola.+
//=========================================================================
else {
// Standard_Real d1 = sqrt(dist*R1-R1*R1);
Standard_Real d1 = sqrt(dist*dist-R1*R1)/2.0;
Standard_Real d2 = R1/2.;
if (Index == 1) {
gp_Hypr2d biscirpnt1(majax,d2,d1);
bissol = new GccInt_BHyper(biscirpnt1);
// =========================================
}
else {
gp_Hypr2d biscirpnt1(majax,d2,d1);
gp_Hypr2d biscirpnt2 = biscirpnt1.OtherBranch();
bissol = new GccInt_BHyper(biscirpnt2);
// =========================================
}
}
}
return bissol;
}
//=========================================================================
Standard_Boolean GccAna_CircPnt2dBisec::
IsDone () const { return WellDone; }
Standard_Integer GccAna_CircPnt2dBisec::
NbSolutions () const { return NbrSol; }