1
0
mirror of https://git.dev.opencascade.org/repos/occt.git synced 2025-04-03 17:56:21 +03:00
occt/src/IntSurf/IntSurf_Quadric.cxx
dpasukhi a5a7b3185b Coding - Apply .clang-format formatting #286
Update empty method guards to new style with regex (see PR).
Used clang-format 18.1.8.
New actions to validate code formatting is added.
Update .clang-format with disabling of include sorting.
  It is temporary changes, then include will be sorted.
Apply formatting for /src and /tools folder.
The files with .hxx,.cxx,.lxx,.h,.pxx,.hpp,*.cpp extensions.
2025-01-26 00:43:57 +00:00

593 lines
15 KiB
C++

// Copyright (c) 1995-1999 Matra Datavision
// Copyright (c) 1999-2014 OPEN CASCADE SAS
//
// This file is part of Open CASCADE Technology software library.
//
// This library is free software; you can redistribute it and/or modify it under
// the terms of the GNU Lesser General Public License version 2.1 as published
// by the Free Software Foundation, with special exception defined in the file
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
// distribution for complete text of the license and disclaimer of any warranty.
//
// Alternatively, this file may be used under the terms of Open CASCADE
// commercial license or contractual agreement.
#include <ElCLib.hxx>
#include <ElSLib.hxx>
#include <gp_Cone.hxx>
#include <gp_Cylinder.hxx>
#include <gp_Pln.hxx>
#include <gp_Pnt.hxx>
#include <gp_Sphere.hxx>
#include <gp_Torus.hxx>
#include <gp_Vec.hxx>
#include <IntSurf_Quadric.hxx>
#include <StdFail_NotDone.hxx>
// ============================================================
IntSurf_Quadric::IntSurf_Quadric()
: typ(GeomAbs_OtherSurface),
prm1(0.),
prm2(0.),
prm3(0.),
prm4(0.),
ax3direc(Standard_False)
{
}
// ============================================================
IntSurf_Quadric::IntSurf_Quadric(const gp_Pln& P)
: ax3(P.Position()),
typ(GeomAbs_Plane)
{
ax3direc = ax3.Direct();
P.Coefficients(prm1, prm2, prm3, prm4);
}
// ============================================================
IntSurf_Quadric::IntSurf_Quadric(const gp_Cylinder& C)
:
ax3(C.Position()),
lin(ax3.Axis()),
typ(GeomAbs_Cylinder)
{
prm2 = prm3 = prm4 = 0.0;
ax3direc = ax3.Direct();
prm1 = C.Radius();
}
// ============================================================
IntSurf_Quadric::IntSurf_Quadric(const gp_Sphere& S)
:
ax3(S.Position()),
lin(ax3.Axis()),
typ(GeomAbs_Sphere)
{
prm2 = prm3 = prm4 = 0.0;
ax3direc = ax3.Direct();
prm1 = S.Radius();
}
// ============================================================
IntSurf_Quadric::IntSurf_Quadric(const gp_Cone& C)
:
ax3(C.Position()),
typ(GeomAbs_Cone)
{
ax3direc = ax3.Direct();
lin.SetPosition(ax3.Axis());
prm1 = C.RefRadius();
prm2 = C.SemiAngle();
prm3 = Cos(prm2);
prm4 = 0.0;
}
// ============================================================
IntSurf_Quadric::IntSurf_Quadric(const gp_Torus& T)
:
ax3(T.Position()),
typ(GeomAbs_Torus)
{
ax3direc = ax3.Direct();
lin.SetPosition(ax3.Axis());
prm1 = T.MajorRadius();
prm2 = T.MinorRadius();
prm3 = 0.0;
prm4 = 0.0;
}
// ============================================================
void IntSurf_Quadric::SetValue(const gp_Pln& P)
{
typ = GeomAbs_Plane;
ax3 = P.Position();
ax3direc = ax3.Direct();
P.Coefficients(prm1, prm2, prm3, prm4);
}
// ============================================================
void IntSurf_Quadric::SetValue(const gp_Cylinder& C)
{
typ = GeomAbs_Cylinder;
ax3 = C.Position();
ax3direc = ax3.Direct();
lin.SetPosition(ax3.Axis());
prm1 = C.Radius();
prm2 = prm3 = prm4 = 0.0;
}
// ============================================================
void IntSurf_Quadric::SetValue(const gp_Sphere& S)
{
typ = GeomAbs_Sphere;
ax3 = S.Position();
ax3direc = ax3.Direct();
lin.SetPosition(ax3.Axis());
prm1 = S.Radius();
prm2 = prm3 = prm4 = 0.0;
}
// ============================================================
void IntSurf_Quadric::SetValue(const gp_Cone& C)
{
typ = GeomAbs_Cone;
ax3 = C.Position();
ax3direc = ax3.Direct();
lin.SetPosition(ax3.Axis());
prm1 = C.RefRadius();
prm2 = C.SemiAngle();
prm3 = Cos(prm2);
prm4 = 0.0;
}
// ============================================================
void IntSurf_Quadric::SetValue(const gp_Torus& T)
{
typ = GeomAbs_Torus;
ax3 = T.Position();
ax3direc = ax3.Direct();
lin.SetPosition(ax3.Axis());
prm1 = T.MajorRadius();
prm2 = T.MinorRadius();
prm3 = 0.0;
prm4 = 0.0;
}
// ============================================================
Standard_Real IntSurf_Quadric::Distance(const gp_Pnt& P) const
{
switch (typ)
{
case GeomAbs_Plane: // plan
return prm1 * P.X() + prm2 * P.Y() + prm3 * P.Z() + prm4;
case GeomAbs_Cylinder: // cylindre
return (lin.Distance(P) - prm1);
case GeomAbs_Sphere: // sphere
return (lin.Location().Distance(P) - prm1);
case GeomAbs_Cone: // cone
{
Standard_Real dist = lin.Distance(P);
Standard_Real U, V;
ElSLib::ConeParameters(ax3, prm1, prm2, P, U, V);
gp_Pnt Pp = ElSLib::ConeValue(U, V, ax3, prm1, prm2);
Standard_Real distp = lin.Distance(Pp);
dist = (dist - distp) / prm3;
return (dist);
}
case GeomAbs_Torus: // torus
{
gp_Pnt O, Pp, PT;
//
O = ax3.Location();
gp_Vec OZ(ax3.Direction());
Pp = P.Translated(OZ.Multiplied(-(gp_Vec(O, P).Dot(ax3.Direction()))));
//
gp_Dir DOPp = (O.SquareDistance(Pp) < 1e-14) ? ax3.XDirection() : gp_Dir(gp_Vec(O, Pp));
PT.SetXYZ(O.XYZ() + DOPp.XYZ() * prm1);
//
Standard_Real dist = P.Distance(PT) - prm2;
return dist;
}
default: {
}
break;
}
return (0.0);
}
// ============================================================
gp_Vec IntSurf_Quadric::Gradient(const gp_Pnt& P) const
{
gp_Vec grad;
switch (typ)
{
case GeomAbs_Plane: // plan
grad.SetCoord(prm1, prm2, prm3);
break;
case GeomAbs_Cylinder: // cylindre
{
gp_XYZ PP(lin.Location().XYZ());
PP.Add(ElCLib::Parameter(lin, P) * lin.Direction().XYZ());
grad.SetXYZ(P.XYZ() - PP);
Standard_Real N = grad.Magnitude();
if (N > 1e-14)
{
grad.Divide(N);
}
else
{
grad.SetCoord(0.0, 0.0, 0.0);
}
}
break;
case GeomAbs_Sphere: // sphere
{
gp_XYZ PP(P.XYZ());
grad.SetXYZ((PP - lin.Location().XYZ()));
Standard_Real N = grad.Magnitude();
if (N > 1e-14)
{
grad.Divide(N);
}
else
{
grad.SetCoord(0.0, 0.0, 0.0);
}
}
break;
case GeomAbs_Cone: // cone
{
Standard_Real U, V;
ElSLib::ConeParameters(ax3, prm1, prm2, P, U, V);
gp_Pnt Pp = ElSLib::ConeValue(U, V, ax3, prm1, prm2);
gp_Vec D1u, D1v;
ElSLib::ConeD1(U, V, ax3, prm1, prm2, Pp, D1u, D1v);
grad = D1u.Crossed(D1v);
if (ax3direc == Standard_False)
{
grad.Reverse();
}
grad.Normalize();
}
break;
case GeomAbs_Torus: // torus
{
gp_Pnt O, Pp, PT;
//
O = ax3.Location();
gp_Vec OZ(ax3.Direction());
Pp = P.Translated(OZ.Multiplied(-(gp_Vec(O, P).Dot(ax3.Direction()))));
//
gp_Dir DOPp = (O.SquareDistance(Pp) < 1e-14) ? ax3.XDirection() : gp_Dir(gp_Vec(O, Pp));
PT.SetXYZ(O.XYZ() + DOPp.XYZ() * prm1);
//
grad.SetXYZ(P.XYZ() - PT.XYZ());
Standard_Real N = grad.Magnitude();
if (N > 1e-14)
{
grad.Divide(N);
}
else
{
grad.SetCoord(0., 0., 0.);
}
}
break;
default: {
}
break;
}
return grad;
}
// ============================================================
void IntSurf_Quadric::ValAndGrad(const gp_Pnt& P, Standard_Real& Dist, gp_Vec& Grad) const
{
switch (typ)
{
case GeomAbs_Plane: {
Dist = prm1 * P.X() + prm2 * P.Y() + prm3 * P.Z() + prm4;
Grad.SetCoord(prm1, prm2, prm3);
}
break;
case GeomAbs_Cylinder: {
Dist = lin.Distance(P) - prm1;
gp_XYZ PP(lin.Location().XYZ());
PP.Add(ElCLib::Parameter(lin, P) * lin.Direction().XYZ());
Grad.SetXYZ((P.XYZ() - PP));
Standard_Real N = Grad.Magnitude();
if (N > 1e-14)
{
Grad.Divide(N);
}
else
{
Grad.SetCoord(0.0, 0.0, 0.0);
}
}
break;
case GeomAbs_Sphere: {
Dist = lin.Location().Distance(P) - prm1;
gp_XYZ PP(P.XYZ());
Grad.SetXYZ((PP - lin.Location().XYZ()));
Standard_Real N = Grad.Magnitude();
if (N > 1e-14)
{
Grad.Divide(N);
}
else
{
Grad.SetCoord(0.0, 0.0, 0.0);
}
}
break;
case GeomAbs_Cone: {
Standard_Real dist = lin.Distance(P);
Standard_Real U, V;
gp_Vec D1u, D1v;
gp_Pnt Pp;
ElSLib::ConeParameters(ax3, prm1, prm2, P, U, V);
ElSLib::ConeD1(U, V, ax3, prm1, prm2, Pp, D1u, D1v);
Standard_Real distp = lin.Distance(Pp);
dist = (dist - distp) / prm3;
Dist = dist;
Grad = D1u.Crossed(D1v);
if (ax3direc == Standard_False)
{
Grad.Reverse();
}
//-- lbr le 7 mars 96
//-- Si le gardient est nul, on est sur l axe
//-- et dans ce cas dist vaut 0
//-- On peut donc renvoyer une valeur quelconque.
if (Grad.X() > 1e-13 || Grad.Y() > 1e-13 || Grad.Z() > 1e-13)
{
Grad.Normalize();
}
}
break;
case GeomAbs_Torus: {
gp_Pnt O, Pp, PT;
//
O = ax3.Location();
gp_Vec OZ(ax3.Direction());
Pp = P.Translated(OZ.Multiplied(-(gp_Vec(O, P).Dot(ax3.Direction()))));
//
gp_Dir DOPp = (O.SquareDistance(Pp) < 1e-14) ? ax3.XDirection() : gp_Dir(gp_Vec(O, Pp));
PT.SetXYZ(O.XYZ() + DOPp.XYZ() * prm1);
//
Dist = P.Distance(PT) - prm2;
//
Grad.SetXYZ(P.XYZ() - PT.XYZ());
Standard_Real N = Grad.Magnitude();
if (N > 1e-14)
{
Grad.Divide(N);
}
else
{
Grad.SetCoord(0., 0., 0.);
}
}
break;
default: {
}
break;
}
}
// ============================================================
gp_Pnt IntSurf_Quadric::Value(const Standard_Real U, const Standard_Real V) const
{
switch (typ)
{
case GeomAbs_Plane:
return ElSLib::PlaneValue(U, V, ax3);
case GeomAbs_Cylinder:
return ElSLib::CylinderValue(U, V, ax3, prm1);
case GeomAbs_Sphere:
return ElSLib::SphereValue(U, V, ax3, prm1);
case GeomAbs_Cone:
return ElSLib::ConeValue(U, V, ax3, prm1, prm2);
case GeomAbs_Torus:
return ElSLib::TorusValue(U, V, ax3, prm1, prm2);
default: {
gp_Pnt p(0, 0, 0);
return (p);
}
// break;
}
// pop : pour NT
// return gp_Pnt(0,0,0);
}
// ============================================================
void IntSurf_Quadric::D1(const Standard_Real U,
const Standard_Real V,
gp_Pnt& P,
gp_Vec& D1U,
gp_Vec& D1V) const
{
switch (typ)
{
case GeomAbs_Plane:
ElSLib::PlaneD1(U, V, ax3, P, D1U, D1V);
break;
case GeomAbs_Cylinder:
ElSLib::CylinderD1(U, V, ax3, prm1, P, D1U, D1V);
break;
case GeomAbs_Sphere:
ElSLib::SphereD1(U, V, ax3, prm1, P, D1U, D1V);
break;
case GeomAbs_Cone:
ElSLib::ConeD1(U, V, ax3, prm1, prm2, P, D1U, D1V);
break;
case GeomAbs_Torus:
ElSLib::TorusD1(U, V, ax3, prm1, prm2, P, D1U, D1V);
break;
default: {
}
break;
}
}
// ============================================================
gp_Vec IntSurf_Quadric::DN(const Standard_Real U,
const Standard_Real V,
const Standard_Integer Nu,
const Standard_Integer Nv) const
{
switch (typ)
{
case GeomAbs_Plane:
return ElSLib::PlaneDN(U, V, ax3, Nu, Nv);
case GeomAbs_Cylinder:
return ElSLib::CylinderDN(U, V, ax3, prm1, Nu, Nv);
case GeomAbs_Sphere:
return ElSLib::SphereDN(U, V, ax3, prm1, Nu, Nv);
case GeomAbs_Cone:
return ElSLib::ConeDN(U, V, ax3, prm1, prm2, Nu, Nv);
case GeomAbs_Torus:
return ElSLib::TorusDN(U, V, ax3, prm1, prm2, Nu, Nv);
default: {
gp_Vec v(0, 0, 0);
return (v);
}
// break;
}
// pop : pour NT
// return gp_Vec(0,0,0);
}
// ============================================================
gp_Vec IntSurf_Quadric::Normale(const Standard_Real U, const Standard_Real V) const
{
switch (typ)
{
case GeomAbs_Plane:
if (ax3direc)
return ax3.Direction();
else
return ax3.Direction().Reversed();
case GeomAbs_Cylinder:
return Normale(Value(U, V));
case GeomAbs_Sphere:
return Normale(Value(U, V));
case GeomAbs_Cone: {
gp_Pnt P;
gp_Vec D1u, D1v;
ElSLib::ConeD1(U, V, ax3, prm1, prm2, P, D1u, D1v);
if (D1u.Magnitude() < 0.0000001)
{
gp_Vec Vn(0.0, 0.0, 0.0);
return (Vn);
}
return (D1u.Crossed(D1v));
}
case GeomAbs_Torus:
return Normale(Value(U, V));
default: {
gp_Vec v(0, 0, 0);
return (v);
}
// break;
}
// pop : pour NT
// return gp_Vec(0,0,0);
}
// ============================================================
gp_Vec IntSurf_Quadric::Normale(const gp_Pnt& P) const
{
switch (typ)
{
case GeomAbs_Plane:
if (ax3direc)
return ax3.Direction();
else
return ax3.Direction().Reversed();
case GeomAbs_Cylinder: {
if (ax3direc)
{
return lin.Normal(P).Direction();
}
else
{
gp_Dir D(lin.Normal(P).Direction());
D.Reverse();
return (D);
}
}
case GeomAbs_Sphere: {
if (ax3direc)
{
gp_Vec ax3P(ax3.Location(), P);
return gp_Dir(ax3P);
}
else
{
gp_Vec Pax3(P, ax3.Location());
return gp_Dir(Pax3);
}
}
case GeomAbs_Cone: {
Standard_Real U, V;
ElSLib::ConeParameters(ax3, prm1, prm2, P, U, V);
return Normale(U, V);
}
case GeomAbs_Torus: {
gp_Pnt O, Pp, PT;
//
O = ax3.Location();
gp_Vec OZ(ax3.Direction());
Pp = P.Translated(OZ.Multiplied(-(gp_Vec(O, P).Dot(ax3.Direction()))));
//
gp_Dir DOPp = (O.SquareDistance(Pp) < 1e-14) ? ax3.XDirection() : gp_Dir(gp_Vec(O, Pp));
PT.SetXYZ(O.XYZ() + DOPp.XYZ() * prm1);
if (PT.SquareDistance(P) < 1e-14)
{
return gp_Dir(OZ);
}
gp_Dir aD(ax3direc ? gp_Vec(PT, P) : gp_Vec(P, PT));
return aD;
}
default: {
gp_Vec v(0, 0, 0);
return (v);
} // break;
}
}
// ============================================================
void IntSurf_Quadric::Parameters(const gp_Pnt& P, Standard_Real& U, Standard_Real& V) const
{
switch (typ)
{
case GeomAbs_Plane:
ElSLib::PlaneParameters(ax3, P, U, V);
break;
case GeomAbs_Cylinder:
ElSLib::CylinderParameters(ax3, prm1, P, U, V);
break;
case GeomAbs_Sphere:
ElSLib::SphereParameters(ax3, prm1, P, U, V);
break;
case GeomAbs_Cone:
ElSLib::ConeParameters(ax3, prm1, prm2, P, U, V);
break;
case GeomAbs_Torus:
ElSLib::TorusParameters(ax3, prm1, prm2, P, U, V);
break;
default:
break;
}
}
// ============================================================