1
0
mirror of https://git.dev.opencascade.org/repos/occt.git synced 2025-04-04 18:06:22 +03:00
occt/src/GeomConvert/GeomConvert_CurveToAnaCurve.cxx
dpasukhi a5a7b3185b Coding - Apply .clang-format formatting #286
Update empty method guards to new style with regex (see PR).
Used clang-format 18.1.8.
New actions to validate code formatting is added.
Update .clang-format with disabling of include sorting.
  It is temporary changes, then include will be sorted.
Apply formatting for /src and /tools folder.
The files with .hxx,.cxx,.lxx,.h,.pxx,.hpp,*.cpp extensions.
2025-01-26 00:43:57 +00:00

812 lines
24 KiB
C++

// Created: 2001-05-21
//
// Copyright (c) 2001-2013 OPEN CASCADE SAS
//
// This file is part of commercial software by OPEN CASCADE SAS,
// furnished in accordance with the terms and conditions of the contract
// and with the inclusion of this copyright notice.
// This file or any part thereof may not be provided or otherwise
// made available to any third party.
//
// No ownership title to the software is transferred hereby.
//
// OPEN CASCADE SAS makes no representation or warranties with respect to the
// performance of this software, and specifically disclaims any responsibility
// for any damages, special or consequential, connected with its use.
#include <ElCLib.hxx>
#include <gce_MakeCirc.hxx>
#include <Geom_BezierCurve.hxx>
#include <Geom_BSplineCurve.hxx>
#include <Geom_Circle.hxx>
#include <Geom_Curve.hxx>
#include <Geom_Ellipse.hxx>
#include <Geom_Line.hxx>
#include <Geom_TrimmedCurve.hxx>
#include <gp_Ax2.hxx>
#include <gp_Ax3.hxx>
#include <gp_Circ.hxx>
#include <gp_Lin.hxx>
#include <gp_Pnt.hxx>
#include <gp_Vec.hxx>
#include <Precision.hxx>
#include <GeomConvert_CurveToAnaCurve.hxx>
#include <TColgp_Array1OfPnt.hxx>
#include <TColgp_HArray1OfPnt.hxx>
#include <TColStd_Array1OfReal.hxx>
#include <TColStd_Array2OfReal.hxx>
#include <GeomAbs_CurveType.hxx>
#include <math_Vector.hxx>
#include <math_Matrix.hxx>
#include <math_Gauss.hxx>
#include <array>
GeomConvert_CurveToAnaCurve::GeomConvert_CurveToAnaCurve()
: myGap(Precision::Infinite()),
myConvType(GeomConvert_MinGap),
myTarget(GeomAbs_Line)
{
}
GeomConvert_CurveToAnaCurve::GeomConvert_CurveToAnaCurve(const Handle(Geom_Curve)& C)
: myGap(Precision::Infinite()),
myConvType(GeomConvert_MinGap),
myTarget(GeomAbs_Line)
{
myCurve = C;
}
void GeomConvert_CurveToAnaCurve::Init(const Handle(Geom_Curve)& C)
{
myCurve = C;
myGap = Precision::Infinite();
}
//=================================================================================================
Standard_Boolean GeomConvert_CurveToAnaCurve::ConvertToAnalytical(
const Standard_Real tol,
Handle(Geom_Curve)& theResultCurve,
const Standard_Real F,
const Standard_Real L,
Standard_Real& NewF,
Standard_Real& NewL)
{
if (myCurve.IsNull())
return Standard_False;
Handle(Geom_Curve) aCurve = myCurve;
while (aCurve->IsKind(STANDARD_TYPE(Geom_TrimmedCurve)))
{
Handle(Geom_TrimmedCurve) aTrimmed = Handle(Geom_TrimmedCurve)::DownCast(aCurve);
aCurve = aTrimmed->BasisCurve();
}
Handle(Geom_Curve) C = ComputeCurve(aCurve, tol, F, L, NewF, NewL, myGap, myConvType, myTarget);
if (C.IsNull())
return Standard_False;
theResultCurve = C;
return Standard_True;
}
//=================================================================================================
Standard_Boolean GeomConvert_CurveToAnaCurve::IsLinear(const TColgp_Array1OfPnt& aPoles,
const Standard_Real tolerance,
Standard_Real& Deviation)
{
Standard_Integer nbPoles = aPoles.Length();
if (nbPoles < 2)
return Standard_False;
Standard_Real dMax = 0;
Standard_Integer iMax1 = 0, iMax2 = 0;
Standard_Integer i;
for (i = 1; i < nbPoles; i++)
for (Standard_Integer j = i + 1; j <= nbPoles; j++)
{
Standard_Real dist = aPoles(i).SquareDistance(aPoles(j));
if (dist > dMax)
{
dMax = dist;
iMax1 = i;
iMax2 = j;
}
}
if (dMax < Precision::SquareConfusion())
return Standard_False;
Standard_Real tol2 = tolerance * tolerance;
gp_Vec avec(aPoles(iMax1), aPoles(iMax2));
gp_Dir adir(avec);
gp_Lin alin(aPoles(iMax1), adir);
Standard_Real aMax = 0.;
for (i = 1; i <= nbPoles; i++)
{
Standard_Real dist = alin.SquareDistance(aPoles(i));
if (dist > tol2)
return Standard_False;
if (dist > aMax)
aMax = dist;
}
Deviation = sqrt(aMax);
return Standard_True;
}
//=================================================================================================
gp_Lin GeomConvert_CurveToAnaCurve::GetLine(const gp_Pnt& P1,
const gp_Pnt& P2,
Standard_Real& cf,
Standard_Real& cl)
{
gp_Vec avec(P1, P2);
gp_Dir adir(avec);
gp_Lin alin(P1, adir);
cf = ElCLib::Parameter(alin, P1);
cl = ElCLib::Parameter(alin, P2);
return alin;
}
//=================================================================================================
Handle(Geom_Line) GeomConvert_CurveToAnaCurve::ComputeLine(const Handle(Geom_Curve)& curve,
const Standard_Real tolerance,
const Standard_Real c1,
const Standard_Real c2,
Standard_Real& cf,
Standard_Real& cl,
Standard_Real& Deviation)
{
Handle(Geom_Line) line;
if (curve.IsNull())
return line;
line = Handle(Geom_Line)::DownCast(curve); // qui sait
if (!line.IsNull())
{
cf = c1;
cl = c2;
Deviation = 0.;
return line;
}
gp_Pnt P1 = curve->Value(c1);
gp_Pnt P2 = curve->Value(c2);
if (P1.SquareDistance(P2) < Precision::SquareConfusion())
return line;
cf = c1;
cl = c2;
Handle(TColgp_HArray1OfPnt) Poles;
Standard_Integer nbPoles;
Handle(Geom_BSplineCurve) bsc = Handle(Geom_BSplineCurve)::DownCast(curve);
if (!bsc.IsNull())
{
nbPoles = bsc->NbPoles();
Poles = new TColgp_HArray1OfPnt(1, nbPoles);
bsc->Poles(Poles->ChangeArray1());
}
else
{
Handle(Geom_BezierCurve) bzc = Handle(Geom_BezierCurve)::DownCast(curve);
if (!bzc.IsNull())
{
nbPoles = bzc->NbPoles();
Poles = new TColgp_HArray1OfPnt(1, nbPoles);
bzc->Poles(Poles->ChangeArray1());
}
else
{
nbPoles = 23;
Poles = new TColgp_HArray1OfPnt(1, nbPoles);
Standard_Real dt = (c2 - c1) / (nbPoles - 1);
Poles->SetValue(1, P1);
Poles->SetValue(nbPoles, P2);
Standard_Integer i;
for (i = 2; i < nbPoles; ++i)
{
Poles->SetValue(i, curve->Value(c1 + (i - 1) * dt));
}
}
}
if (!IsLinear(Poles->Array1(), tolerance, Deviation))
return line; // non
gp_Lin alin = GetLine(P1, P2, cf, cl);
line = new Geom_Line(alin);
return line;
}
//=================================================================================================
Standard_Boolean GeomConvert_CurveToAnaCurve::GetCircle(gp_Circ& crc,
const gp_Pnt& P0,
const gp_Pnt& P1,
const gp_Pnt& P2)
{
// Control if points are not aligned (should be done by MakeCirc
Standard_Real aMaxCoord = Sqrt(Precision::Infinite());
if (Abs(P0.X()) > aMaxCoord || Abs(P0.Y()) > aMaxCoord || Abs(P0.Z()) > aMaxCoord)
return Standard_False;
if (Abs(P1.X()) > aMaxCoord || Abs(P1.Y()) > aMaxCoord || Abs(P1.Z()) > aMaxCoord)
return Standard_False;
if (Abs(P2.X()) > aMaxCoord || Abs(P2.Y()) > aMaxCoord || Abs(P2.Z()) > aMaxCoord)
return Standard_False;
// Building the circle
gce_MakeCirc mkc(P0, P1, P2);
if (!mkc.IsDone())
return Standard_False;
crc = mkc.Value();
if (crc.Radius() < gp::Resolution())
return Standard_False;
// Recalage sur P0
gp_Pnt PC = crc.Location();
gp_Ax2 axe = crc.Position();
gp_Vec VX(PC, P0);
axe.SetXDirection(VX);
crc.SetPosition(axe);
return Standard_True;
}
//=================================================================================================
Handle(Geom_Curve) GeomConvert_CurveToAnaCurve::ComputeCircle(const Handle(Geom_Curve)& c3d,
const Standard_Real tol,
const Standard_Real c1,
const Standard_Real c2,
Standard_Real& cf,
Standard_Real& cl,
Standard_Real& Deviation)
{
if (c3d->IsKind(STANDARD_TYPE(Geom_Circle)))
{
cf = c1;
cl = c2;
Deviation = 0.;
Handle(Geom_Circle) aCirc = Handle(Geom_Circle)::DownCast(c3d);
return aCirc;
}
Handle(Geom_Circle) circ;
gp_Pnt P0, P1, P2;
Standard_Real ca = (c1 + c1 + c2) / 3;
Standard_Real cb = (c1 + c2 + c2) / 3;
P0 = c3d->Value(c1);
P1 = c3d->Value(ca);
P2 = c3d->Value(cb);
gp_Circ crc;
if (!GetCircle(crc, P0, P1, P2))
return circ;
// Reste a controler que c est bien un cercle : prendre 20 points
Standard_Real du = (c2 - c1) / 20;
Standard_Integer i;
Standard_Real aMax = 0.;
for (i = 0; i <= 20; i++)
{
Standard_Real u = c1 + (du * i);
gp_Pnt PP = c3d->Value(u);
Standard_Real dist = crc.Distance(PP);
if (dist > tol)
return circ; // not done
if (dist > aMax)
aMax = dist;
}
Deviation = aMax;
// defining the parameters
Standard_Real PI2 = 2 * M_PI;
cf = ElCLib::Parameter(crc, c3d->Value(c1));
cf = ElCLib::InPeriod(cf, 0., PI2);
// first parameter should be closed to zero
if (Abs(cf) < Precision::PConfusion() || Abs(PI2 - cf) < Precision::PConfusion())
cf = 0.;
Standard_Real cm = ElCLib::Parameter(crc, c3d->Value((c1 + c2) / 2.));
cm = ElCLib::InPeriod(cm, cf, cf + PI2);
cl = ElCLib::Parameter(crc, c3d->Value(c2));
cl = ElCLib::InPeriod(cl, cm, cm + PI2);
circ = new Geom_Circle(crc);
return circ;
}
//=======================================================================
// Compute Ellipse
//=======================================================================
//=================================================================================================
static Standard_Boolean IsArrayPntPlanar(const Handle(TColgp_HArray1OfPnt)& HAP,
gp_Dir& Norm,
const Standard_Real prec)
{
Standard_Integer size = HAP->Length();
if (size < 3)
return Standard_False;
gp_Pnt P1 = HAP->Value(1);
gp_Pnt P2 = HAP->Value(2);
gp_Pnt P3 = HAP->Value(3);
Standard_Real dist1 = P1.Distance(P2);
Standard_Real dist2 = P1.Distance(P3);
if (dist1 < prec || dist2 < prec)
return Standard_False;
gp_Vec V1(P1, P2);
gp_Vec V2(P1, P3);
if (V1.IsParallel(V2, prec))
return Standard_False;
gp_Vec NV = V1.Crossed(V2);
Standard_Integer i;
for (i = 1; i <= 3; ++i)
{
if (Precision::IsInfinite(NV.Coord(i)))
return Standard_False;
}
if (NV.Magnitude() < gp::Resolution())
return Standard_False;
if (size > 3)
{
for (i = 4; i <= size; i++)
{
gp_Pnt PN = HAP->Value(i);
dist1 = P1.Distance(PN);
if (dist1 < prec || Precision::IsInfinite(dist1))
{
return Standard_False;
}
gp_Vec VN(P1, PN);
if (!NV.IsNormal(VN, prec))
return Standard_False;
}
}
Norm = NV;
return Standard_True;
}
//=================================================================================================
static Standard_Boolean ConicDefinition(const Standard_Real a,
const Standard_Real b1,
const Standard_Real c,
const Standard_Real d1,
const Standard_Real e1,
const Standard_Real f,
const Standard_Boolean IsParab,
const Standard_Boolean IsEllip,
gp_Pnt& Center,
gp_Dir& MainAxis,
Standard_Real& Rmin,
Standard_Real& Rmax)
{
Standard_Real Xcen = 0., Ycen = 0., Xax = 0., Yax = 0.;
Standard_Real b, d, e;
// conic : a*x2 + 2*b*x*y + c*y2 + 2*d*x + 2*e*y + f = 0.
// Equation (a,b,c,d,e,f);
b = b1 / 2.;
d = d1 / 2.;
e = e1 / 2.; // chgt de variable
Standard_Real eps = 1.E-08; // ?? comme ComputedForm
if (IsParab)
{
}
else
{
// -> Conique a centre, cas general
// On utilise les Determinants des matrices :
// | a b d |
// gdet (3x3) = | b c e | et pdet (2X2) = | a b |
// | d e f | | b c |
Standard_Real gdet = a * c * f + 2 * b * d * e - c * d * d - a * e * e - b * b * f;
Standard_Real pdet = a * c - b * b;
Xcen = (b * e - c * d) / pdet;
Ycen = (b * d - a * e) / pdet;
Standard_Real term1 = a - c;
Standard_Real term2 = 2 * b;
Standard_Real cos2t;
Standard_Real auxil;
if (Abs(term2) <= eps && Abs(term1) <= eps)
{
cos2t = 1.;
auxil = 0.;
}
else
{
if (Abs(term1) < eps)
{
return Standard_False;
}
Standard_Real t2d = term2 / term1; // skl 21.11.2001
cos2t = 1. / sqrt(1 + t2d * t2d);
auxil = sqrt(term1 * term1 + term2 * term2);
}
Standard_Real cost = sqrt((1 + cos2t) / 2.);
Standard_Real sint = sqrt((1 - cos2t) / 2.);
Standard_Real aprim = (a + c + auxil) / 2.;
Standard_Real cprim = (a + c - auxil) / 2.;
if (Abs(aprim) < gp::Resolution() || Abs(cprim) < gp::Resolution())
return Standard_False;
term1 = -gdet / (aprim * pdet);
term2 = -gdet / (cprim * pdet);
if (IsEllip)
{
if (term1 <= eps || term2 <= eps)
return Standard_False;
Xax = cost;
Yax = sint;
Rmin = sqrt(term1);
Rmax = sqrt(term2);
if (Rmax < Rmin)
{
Rmax = sqrt(term1);
Rmin = sqrt(term2);
}
}
else if (term1 <= eps)
{
if (-term1 <= eps || term2 <= eps)
return Standard_False;
Xax = -sint;
Yax = cost;
Rmin = sqrt(-term1);
Rmax = sqrt(term2);
}
else
{
if (term1 <= eps || -term2 <= eps)
return Standard_False;
Xax = cost;
Yax = sint;
Rmin = sqrt(-term2);
Rmax = sqrt(term1);
}
}
Center.SetCoord(Xcen, Ycen, 0.);
MainAxis.SetCoord(Xax, Yax, 0.);
return Standard_True;
}
//=================================================================================================
Handle(Geom_Curve) GeomConvert_CurveToAnaCurve::ComputeEllipse(const Handle(Geom_Curve)& c3d,
const Standard_Real tol,
const Standard_Real c1,
const Standard_Real c2,
Standard_Real& cf,
Standard_Real& cl,
Standard_Real& Deviation)
{
if (c3d->IsKind(STANDARD_TYPE(Geom_Ellipse)))
{
cf = c1;
cl = c2;
Deviation = 0.;
Handle(Geom_Ellipse) anElips = Handle(Geom_Ellipse)::DownCast(c3d);
return anElips;
}
Handle(Geom_Curve) res;
constexpr Standard_Real prec = Precision::PConfusion();
Standard_Real AF, BF, CF, DF, EF, Q1, Q2, Q3, c2n;
Standard_Integer i;
gp_Pnt PStart = c3d->Value(c1);
gp_Pnt PEnd = c3d->Value(c2);
const Standard_Boolean IsClos = PStart.Distance(PEnd) < prec;
if (IsClos)
{
c2n = c2 - (c2 - c1) / 5;
}
else
c2n = c2;
//
gp_XYZ aBC;
Handle(TColgp_HArray1OfPnt) AP = new TColgp_HArray1OfPnt(1, 5);
AP->SetValue(1, PStart);
aBC += PStart.XYZ();
Standard_Real dc = (c2n - c1) / 4;
for (i = 1; i < 5; i++)
{
gp_Pnt aP = c3d->Value(c1 + dc * i);
AP->SetValue(i + 1, aP);
aBC += aP.XYZ();
}
aBC /= 5;
aBC *= -1;
gp_Vec aTrans(aBC);
for (i = 1; i <= 5; ++i)
{
AP->ChangeValue(i).Translate(aTrans);
}
gp_Dir ndir;
if (!IsArrayPntPlanar(AP, ndir, prec))
return res;
if (Abs(ndir.X()) < gp::Resolution() && Abs(ndir.Y()) < gp::Resolution()
&& Abs(ndir.Z()) < gp::Resolution())
return res;
gp_Ax3 AX(gp_Pnt(0, 0, 0), ndir);
gp_Trsf Tr;
Tr.SetTransformation(AX);
gp_Trsf Tr2 = Tr.Inverted();
math_Matrix Dt(1, 5, 1, 5);
math_Vector F(1, 5), Sl(1, 5);
Standard_Real XN, YN, ZN = 0.;
gp_Pnt PT, PP;
for (i = 1; i <= 5; i++)
{
PT = AP->Value(i).Transformed(Tr);
PT.Coord(XN, YN, ZN);
Dt(i, 1) = XN * XN;
Dt(i, 2) = XN * YN;
Dt(i, 3) = YN * YN;
Dt(i, 4) = XN;
Dt(i, 5) = YN;
F(i) = -1.;
}
math_Gauss aSolver(Dt);
if (!aSolver.IsDone())
return res;
aSolver.Solve(F, Sl);
AF = Sl(1);
BF = Sl(2);
CF = Sl(3);
DF = Sl(4);
EF = Sl(5);
Q1 = AF * CF + BF * EF * DF / 4 - CF * DF * DF / 4 - BF * BF / 4 - AF * EF * EF / 4;
Q2 = AF * CF - BF * BF / 4;
Q3 = AF + CF;
Standard_Real Rmax, Rmin;
gp_Pnt Center;
gp_Dir MainAxis;
Standard_Boolean IsParab = Standard_False, IsEllip = Standard_False;
if (Q2 > 0 && Q1 * Q3 < 0)
{
// ellipse
IsEllip = Standard_True;
if (ConicDefinition(AF, BF, CF, DF, EF, 1., IsParab, IsEllip, Center, MainAxis, Rmin, Rmax))
{
// create ellipse
if (Rmax - Rmin < Precision::Confusion())
{
return res; // really it is circle, which must be recognized in other method
}
aTrans *= -1;
Center.SetZ(ZN);
gp_Pnt NewCenter = Center.Transformed(Tr2);
gp_Pnt Ptmp(Center.X() + MainAxis.X() * 10,
Center.Y() + MainAxis.Y() * 10,
Center.Z() + MainAxis.Z() * 10);
gp_Pnt NewPtmp = Ptmp.Transformed(Tr2);
gp_Dir NewMainAxis(NewPtmp.X() - NewCenter.X(),
NewPtmp.Y() - NewCenter.Y(),
NewPtmp.Z() - NewCenter.Z());
gp_Ax2 ax2(NewCenter, ndir, NewMainAxis);
gp_Elips anEllipse(ax2, Rmax, Rmin);
anEllipse.Translate(aTrans);
Handle(Geom_Ellipse) gell = new Geom_Ellipse(anEllipse);
// test for 20 points
Standard_Real param2 = 0;
dc = (c2 - c1) / 20;
for (i = 1; i <= 20; i++)
{
PP = c3d->Value(c1 + i * dc);
Standard_Real aPar = ElCLib::Parameter(anEllipse, PP);
Standard_Real dist = gell->Value(aPar).Distance(PP);
if (dist > tol)
return res; // not done
if (dist > param2)
param2 = dist;
}
Deviation = param2;
Standard_Real PI2 = 2 * M_PI;
cf = ElCLib::Parameter(anEllipse, c3d->Value(c1));
cf = ElCLib::InPeriod(cf, 0., PI2);
// first parameter should be closed to zero
if (Abs(cf) < Precision::PConfusion() || Abs(PI2 - cf) < Precision::PConfusion())
cf = 0.;
Standard_Real cm = ElCLib::Parameter(anEllipse, c3d->Value((c1 + c2) / 2.));
cm = ElCLib::InPeriod(cm, cf, cf + PI2);
cl = ElCLib::Parameter(anEllipse, c3d->Value(c2));
cl = ElCLib::InPeriod(cl, cm, cm + PI2);
res = gell;
}
}
/*
if (Q2 < 0 && Q1 != 0) {
// hyberbola
}
if (Q2 == 0 && Q1 != 0) {
// parabola
}
*/
return res;
}
//=================================================================================================
Handle(Geom_Curve) GeomConvert_CurveToAnaCurve::ComputeCurve(const Handle(Geom_Curve)& theC3d,
const Standard_Real tolerance,
const Standard_Real c1,
const Standard_Real c2,
Standard_Real& cf,
Standard_Real& cl,
Standard_Real& theGap,
const GeomConvert_ConvType theConvType,
const GeomAbs_CurveType theTarget)
{
cf = c1;
cl = c2;
std::array<Handle(Geom_Curve), 3> newc3d = {};
Handle(Geom_Curve) c3d = theC3d;
if (c3d.IsNull())
return c3d;
gp_Pnt P1 = c3d->Value(c1);
gp_Pnt P2 = c3d->Value(c2);
gp_Pnt P3 = c3d->Value(c1 + (c2 - c1) / 2);
std::array<Standard_Real, 3> d = {RealLast(), RealLast(), RealLast()};
std::array<Standard_Real, 3> fp = {};
std::array<Standard_Real, 3> lp = {};
if (c3d->IsKind(STANDARD_TYPE(Geom_TrimmedCurve)))
{
Handle(Geom_TrimmedCurve) aTc = Handle(Geom_TrimmedCurve)::DownCast(c3d);
c3d = aTc->BasisCurve();
}
if (theConvType == GeomConvert_Target)
{
theGap = RealLast();
if (theTarget == GeomAbs_Line)
{
newc3d[0] = ComputeLine(c3d, tolerance, c1, c2, fp[0], lp[0], theGap);
cf = fp[0];
cl = lp[0];
return newc3d[0];
}
if (theTarget == GeomAbs_Circle)
{
newc3d[1] = ComputeCircle(c3d, tolerance, c1, c2, fp[1], lp[1], theGap);
cf = fp[1];
cl = lp[1];
return newc3d[1];
}
if (theTarget == GeomAbs_Ellipse)
{
newc3d[2] = ComputeEllipse(c3d, tolerance, c1, c2, fp[2], lp[2], theGap);
cf = fp[2];
cl = lp[2];
return newc3d[2];
}
}
//
if (theConvType == GeomConvert_Simplest)
{
theGap = RealLast();
newc3d[0] = ComputeLine(c3d, tolerance, c1, c2, fp[0], lp[0], theGap);
if (!newc3d[0].IsNull())
{
cf = fp[0];
cl = lp[0];
return newc3d[0];
}
theGap = RealLast();
newc3d[1] = ComputeCircle(c3d, tolerance, c1, c2, fp[1], lp[1], theGap);
if (!newc3d[1].IsNull())
{
cf = fp[1];
cl = lp[1];
return newc3d[1];
}
theGap = RealLast();
newc3d[2] = ComputeEllipse(c3d, tolerance, c1, c2, fp[2], lp[2], theGap);
if (!newc3d[2].IsNull())
{
cf = fp[2];
cl = lp[2];
return newc3d[2];
}
// Conversion failed, returns null curve
return newc3d[0];
}
// theConvType == GeomConvert_MinGap
// recognition in case of small curve
Standard_Integer imin = -1;
if ((P1.Distance(P2) < 2 * tolerance) && (P1.Distance(P3) < 2 * tolerance))
{
newc3d[1] = ComputeCircle(c3d, tolerance, c1, c2, fp[1], lp[1], d[1]);
newc3d[0] = ComputeLine(c3d, tolerance, c1, c2, fp[0], lp[0], d[0]);
imin = 1;
if (newc3d[1].IsNull() || d[0] < d[1])
{
imin = 0;
}
}
else
{
d[0] = RealLast();
newc3d[0] = ComputeLine(c3d, tolerance, c1, c2, fp[0], lp[0], d[0]);
Standard_Real tol = Min(tolerance, d[0]);
if (!Precision::IsInfinite(c1) && !Precision::IsInfinite(c2))
{
d[1] = RealLast();
newc3d[1] = ComputeCircle(c3d, tol, c1, c2, fp[1], lp[1], d[1]);
tol = Min(tol, d[1]);
d[2] = RealLast();
newc3d[2] = ComputeEllipse(c3d, tol, c1, c2, fp[2], lp[2], d[2]);
}
Standard_Real dd = RealLast();
for (Standard_Integer i = 0; i < 3; ++i)
{
if (newc3d[i].IsNull())
continue;
if (d[i] < dd)
{
dd = d[i];
imin = i;
}
}
}
if (imin >= 0)
{
cf = fp[imin];
cl = lp[imin];
theGap = d[imin];
return newc3d[imin];
}
else
{
cf = c1;
cl = c2;
theGap = -1.;
return newc3d[0]; // must be null curve;
}
}