mirror of
https://git.dev.opencascade.org/repos/occt.git
synced 2025-04-04 18:06:22 +03:00
Update empty method guards to new style with regex (see PR). Used clang-format 18.1.8. New actions to validate code formatting is added. Update .clang-format with disabling of include sorting. It is temporary changes, then include will be sorted. Apply formatting for /src and /tools folder. The files with .hxx,.cxx,.lxx,.h,.pxx,.hpp,*.cpp extensions.
411 lines
12 KiB
C++
411 lines
12 KiB
C++
// Copyright (c) 1995-1999 Matra Datavision
|
|
// Copyright (c) 1999-2014 OPEN CASCADE SAS
|
|
//
|
|
// This file is part of Open CASCADE Technology software library.
|
|
//
|
|
// This library is free software; you can redistribute it and/or modify it under
|
|
// the terms of the GNU Lesser General Public License version 2.1 as published
|
|
// by the Free Software Foundation, with special exception defined in the file
|
|
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
|
|
// distribution for complete text of the license and disclaimer of any warranty.
|
|
//
|
|
// Alternatively, this file may be used under the terms of Open CASCADE
|
|
// commercial license or contractual agreement.
|
|
|
|
// PRO12736 : bug quand OnLine // Ox, JCT 20/03/98
|
|
//========================================================================
|
|
// circular tangent to element of type : - Circle. +
|
|
// - Line. +
|
|
// - Point. +
|
|
// center on second element of type : - Circle. +
|
|
// - Line. +
|
|
// of given radius : Radius. +
|
|
//========================================================================
|
|
|
|
#include <ElCLib.hxx>
|
|
#include <GccAna_Circ2dTanOnRad.hxx>
|
|
#include <GccEnt_BadQualifier.hxx>
|
|
#include <GccEnt_QualifiedCirc.hxx>
|
|
#include <gp_Circ2d.hxx>
|
|
#include <gp_Dir2d.hxx>
|
|
#include <gp_Lin2d.hxx>
|
|
#include <gp_Pnt2d.hxx>
|
|
#include <math_DirectPolynomialRoots.hxx>
|
|
#include <Standard_NegativeValue.hxx>
|
|
#include <Standard_OutOfRange.hxx>
|
|
#include <StdFail_NotDone.hxx>
|
|
#include <TColStd_Array1OfReal.hxx>
|
|
|
|
typedef math_DirectPolynomialRoots Roots;
|
|
|
|
//=========================================================================
|
|
// Circle tangent : to circle Qualified1 (C1). +
|
|
// center : on straight line OnLine. +
|
|
// of radius : Radius. +
|
|
// +
|
|
// Initialise the table of solutions cirsol and all fields. +
|
|
// Eliminate depending on the qualifier the cases not being solutions. +
|
|
// Solve the equation of the second degree indicating that the found center +
|
|
// point (xc,yc) is at a distance Radius from circle C1 and +
|
|
// on straight line OnLine. +
|
|
// The solutions aret represented by circles : +
|
|
// - with center Pntcen(xc,yc) +
|
|
// - with radius Radius. +
|
|
//=========================================================================
|
|
|
|
GccAna_Circ2dTanOnRad::GccAna_Circ2dTanOnRad(const GccEnt_QualifiedCirc& Qualified1,
|
|
const gp_Lin2d& OnLine,
|
|
const Standard_Real Radius,
|
|
const Standard_Real Tolerance)
|
|
: cirsol(1, 4),
|
|
qualifier1(1, 4),
|
|
TheSame1(1, 4),
|
|
pnttg1sol(1, 4),
|
|
pntcen3(1, 4),
|
|
par1sol(1, 4),
|
|
pararg1(1, 4),
|
|
parcen3(1, 4)
|
|
{
|
|
|
|
TheSame1.Init(0);
|
|
gp_Dir2d dirx(1.0, 0.0);
|
|
Standard_Real Tol = Abs(Tolerance);
|
|
WellDone = Standard_False;
|
|
NbrSol = 0;
|
|
if (!(Qualified1.IsEnclosed() || Qualified1.IsEnclosing() || Qualified1.IsOutside()
|
|
|| Qualified1.IsUnqualified()))
|
|
{
|
|
throw GccEnt_BadQualifier();
|
|
return;
|
|
}
|
|
TColStd_Array1OfReal Coef(1, 2);
|
|
gp_Circ2d C1 = Qualified1.Qualified();
|
|
|
|
if (Radius < 0.0)
|
|
{
|
|
throw Standard_NegativeValue();
|
|
}
|
|
else
|
|
{
|
|
Standard_Integer nbsol = 0;
|
|
Standard_Integer signe = 0;
|
|
gp_Pnt2d Center;
|
|
Standard_Real xc;
|
|
Standard_Real yc;
|
|
Standard_Real R1 = C1.Radius();
|
|
Standard_Real dist = OnLine.Distance(C1.Location());
|
|
Standard_Real xdir = (OnLine.Direction()).X();
|
|
Standard_Real ydir = (OnLine.Direction()).Y();
|
|
Standard_Real lxloc = (OnLine.Location()).X();
|
|
Standard_Real lyloc = (OnLine.Location()).Y();
|
|
gp_Pnt2d center1(C1.Location());
|
|
Standard_Real x1 = center1.X();
|
|
Standard_Real y1 = center1.Y();
|
|
if (Qualified1.IsEnclosed())
|
|
{
|
|
// ============================
|
|
if (Tol < Radius - R1 + dist)
|
|
{
|
|
WellDone = Standard_True;
|
|
}
|
|
else
|
|
{
|
|
if (Abs(Radius - R1 + dist) < Tol)
|
|
{
|
|
WellDone = Standard_True;
|
|
NbrSol = 1;
|
|
if (-ydir * (x1 - lxloc) + xdir * (y1 - lyloc) < 0.0)
|
|
{
|
|
Center = gp_Pnt2d(x1 - ydir * dist, y1 + xdir * dist);
|
|
}
|
|
else
|
|
{
|
|
Center = gp_Pnt2d(x1 + ydir * dist, y1 - xdir * dist);
|
|
}
|
|
signe = 1;
|
|
}
|
|
else
|
|
{
|
|
Coef(1) = (R1 - Radius) * (R1 - Radius);
|
|
nbsol = 1;
|
|
}
|
|
}
|
|
}
|
|
else if (Qualified1.IsEnclosing())
|
|
{
|
|
// ==================================
|
|
if (R1 + dist - Radius > Tol)
|
|
{
|
|
WellDone = Standard_True;
|
|
}
|
|
else
|
|
{
|
|
if (R1 + dist - Radius > 0.0)
|
|
{
|
|
WellDone = Standard_True;
|
|
NbrSol = 1;
|
|
if (-ydir * (x1 - lxloc) + xdir * (y1 - lyloc) < 0.0)
|
|
{
|
|
Center = gp_Pnt2d(x1 - ydir * dist, y1 + xdir * dist);
|
|
}
|
|
else
|
|
{
|
|
Center = gp_Pnt2d(x1 + ydir * dist, y1 - xdir * dist);
|
|
}
|
|
signe = -1;
|
|
}
|
|
else
|
|
{
|
|
Coef(1) = (Radius - R1) * (Radius - R1);
|
|
nbsol = 1;
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
// ====
|
|
if (dist - R1 - Radius > Tol)
|
|
{
|
|
WellDone = Standard_False;
|
|
}
|
|
else
|
|
{
|
|
if (Abs(dist - R1 - Radius) < Tol)
|
|
{
|
|
WellDone = Standard_True;
|
|
NbrSol = 1;
|
|
if (-ydir * (x1 - lxloc) + xdir * (y1 - lyloc) < 0.0)
|
|
{
|
|
Center = gp_Pnt2d(x1 - ydir * dist, y1 + xdir * dist);
|
|
}
|
|
else
|
|
{
|
|
Center = gp_Pnt2d(x1 + ydir * dist, y1 - xdir * dist);
|
|
}
|
|
signe = -1;
|
|
}
|
|
else
|
|
{
|
|
if (Qualified1.IsOutside())
|
|
{
|
|
// ===========================
|
|
Coef(1) = (Radius + R1) * (Radius + R1);
|
|
nbsol = 1;
|
|
}
|
|
else
|
|
{
|
|
// ====
|
|
Coef(1) = (Radius - R1) * (Radius - R1);
|
|
Coef(2) = (Radius + R1) * (Radius + R1);
|
|
nbsol = 2;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
if (signe != 0)
|
|
{
|
|
cirsol(1) = gp_Circ2d(gp_Ax2d(Center, dirx), Radius);
|
|
// ==================================================
|
|
Standard_Real distcc1 = Center.Distance(center1);
|
|
if (!Qualified1.IsUnqualified())
|
|
{
|
|
qualifier1(1) = Qualified1.Qualifier();
|
|
}
|
|
else if (Abs(distcc1 + Radius - R1) < Tol)
|
|
{
|
|
qualifier1(1) = GccEnt_enclosed;
|
|
}
|
|
else if (Abs(distcc1 - R1 - Radius) < Tol)
|
|
{
|
|
qualifier1(1) = GccEnt_outside;
|
|
}
|
|
else
|
|
{
|
|
qualifier1(1) = GccEnt_enclosing;
|
|
}
|
|
if (Abs(Radius - R1) <= Tol)
|
|
{
|
|
TheSame1(1) = 1;
|
|
}
|
|
else
|
|
{
|
|
gp_Dir2d dir1cen(Center.X() - x1, Center.Y() - y1);
|
|
pnttg1sol(1) = gp_Pnt2d(Center.XY() + signe * Radius * dir1cen.XY());
|
|
par1sol(1) = ElCLib::Parameter(cirsol(1), pnttg1sol(1));
|
|
pararg1(1) = ElCLib::Parameter(C1, pnttg1sol(1));
|
|
}
|
|
pntcen3(1) = cirsol(NbrSol).Location();
|
|
parcen3(1) = ElCLib::Parameter(OnLine, pntcen3(1));
|
|
}
|
|
else if (nbsol > 0)
|
|
{
|
|
for (Standard_Integer j = 1; j <= nbsol; j++)
|
|
{
|
|
Standard_Real A, B, C;
|
|
OnLine.Coefficients(A, B, C);
|
|
Standard_Real D = A;
|
|
Standard_Real x0, y0;
|
|
if (Abs(D) <= Tol)
|
|
{
|
|
A = B;
|
|
B = D;
|
|
x0 = y1;
|
|
y0 = x1;
|
|
}
|
|
else
|
|
{
|
|
x0 = x1;
|
|
y0 = y1;
|
|
}
|
|
Roots Sol((B * B + A * A) / (A * A),
|
|
2.0 * (B * C / (A * A) + (B / A) * x0 - y0),
|
|
x0 * x0 + y0 * y0 + C * C / (A * A) - Coef(j) + 2.0 * C * x0 / A);
|
|
if (Sol.IsDone())
|
|
{
|
|
for (Standard_Integer i = 1; i <= Sol.NbSolutions(); i++)
|
|
{
|
|
|
|
if (Abs(D) > Tol)
|
|
{
|
|
yc = Sol.Value(i);
|
|
xc = -(B / A) * yc - C / A;
|
|
}
|
|
else
|
|
{
|
|
xc = Sol.Value(i);
|
|
yc = -(B / A) * xc - C / A;
|
|
}
|
|
Center = gp_Pnt2d(xc, yc);
|
|
if (OnLine.Distance(Center) > Tol)
|
|
continue;
|
|
NbrSol++;
|
|
cirsol(NbrSol) = gp_Circ2d(gp_Ax2d(Center, dirx), Radius);
|
|
// =======================================================
|
|
Standard_Real distcc1 = Center.Distance(center1);
|
|
if (!Qualified1.IsUnqualified())
|
|
{
|
|
qualifier1(NbrSol) = Qualified1.Qualifier();
|
|
}
|
|
else if (Abs(distcc1 + Radius - R1) < Tol)
|
|
{
|
|
qualifier1(NbrSol) = GccEnt_enclosed;
|
|
}
|
|
else if (Abs(distcc1 - R1 - Radius) < Tol)
|
|
{
|
|
qualifier1(NbrSol) = GccEnt_outside;
|
|
}
|
|
else
|
|
{
|
|
qualifier1(NbrSol) = GccEnt_enclosing;
|
|
}
|
|
gp_Dir2d dir1cen(Center.X() - x1, Center.Y() - y1);
|
|
if ((Radius > R1) || (Center.Distance(center1) > R1))
|
|
{
|
|
pnttg1sol(NbrSol) = gp_Pnt2d(Center.XY() + Radius * dir1cen.XY());
|
|
}
|
|
else
|
|
{
|
|
pnttg1sol(NbrSol) = gp_Pnt2d(Center.XY() - Radius * dir1cen.XY());
|
|
}
|
|
pntcen3(NbrSol) = cirsol(NbrSol).Location();
|
|
par1sol(NbrSol) = ElCLib::Parameter(cirsol(NbrSol), pnttg1sol(NbrSol));
|
|
pararg1(NbrSol) = ElCLib::Parameter(C1, pnttg1sol(NbrSol));
|
|
parcen3(NbrSol) = ElCLib::Parameter(OnLine, pntcen3(NbrSol));
|
|
}
|
|
WellDone = Standard_True;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
Standard_Boolean GccAna_Circ2dTanOnRad::IsDone() const
|
|
{
|
|
return WellDone;
|
|
}
|
|
|
|
Standard_Integer GccAna_Circ2dTanOnRad::NbSolutions() const
|
|
{
|
|
return NbrSol;
|
|
}
|
|
|
|
gp_Circ2d GccAna_Circ2dTanOnRad::ThisSolution(const Standard_Integer Index) const
|
|
{
|
|
if (Index > NbrSol || Index <= 0)
|
|
{
|
|
throw Standard_OutOfRange();
|
|
}
|
|
return cirsol(Index);
|
|
}
|
|
|
|
void GccAna_Circ2dTanOnRad::WhichQualifier(const Standard_Integer Index,
|
|
GccEnt_Position& Qualif1) const
|
|
{
|
|
if (!WellDone)
|
|
{
|
|
throw StdFail_NotDone();
|
|
}
|
|
else if (Index <= 0 || Index > NbrSol)
|
|
{
|
|
throw Standard_OutOfRange();
|
|
}
|
|
else
|
|
{
|
|
Qualif1 = qualifier1(Index);
|
|
}
|
|
}
|
|
|
|
void GccAna_Circ2dTanOnRad::Tangency1(const Standard_Integer Index,
|
|
Standard_Real& ParSol,
|
|
Standard_Real& ParArg,
|
|
gp_Pnt2d& PntSol) const
|
|
{
|
|
if (!WellDone)
|
|
{
|
|
throw StdFail_NotDone();
|
|
}
|
|
else if (Index <= 0 || Index > NbrSol)
|
|
{
|
|
throw Standard_OutOfRange();
|
|
}
|
|
else
|
|
{
|
|
ParSol = par1sol(Index);
|
|
ParArg = pararg1(Index);
|
|
PntSol = gp_Pnt2d(pnttg1sol(Index));
|
|
}
|
|
}
|
|
|
|
void GccAna_Circ2dTanOnRad::CenterOn3(const Standard_Integer Index,
|
|
Standard_Real& ParArg,
|
|
gp_Pnt2d& PntSol) const
|
|
{
|
|
if (!WellDone)
|
|
{
|
|
throw StdFail_NotDone();
|
|
}
|
|
else if (Index <= 0 || Index > NbrSol)
|
|
{
|
|
throw Standard_OutOfRange();
|
|
}
|
|
else
|
|
{
|
|
ParArg = parcen3(Index);
|
|
PntSol = pnttg1sol(Index);
|
|
}
|
|
}
|
|
|
|
Standard_Boolean GccAna_Circ2dTanOnRad::IsTheSame1(const Standard_Integer Index) const
|
|
{
|
|
if (!WellDone)
|
|
throw StdFail_NotDone();
|
|
|
|
if (Index <= 0 || Index > NbrSol)
|
|
throw Standard_OutOfRange();
|
|
|
|
if (TheSame1(Index) == 0)
|
|
return Standard_False;
|
|
|
|
return Standard_True;
|
|
}
|